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ABSTRACT

Recent scientific evidence has shown the importance of diet and lifestyle habits for the proper functioning of the human body. A balanced and
healthy diet, physical activity, and psychological well-being have a direct beneficial effect on health and can have a crucial role in the development
and prognosis of certain diseases. The Southern European Atlantic diet, also named the Atlantic diet, is a unique dietary pattern that occurs in
regions that present higher life expectancy, suggesting that this specific dietary pattern is associated with positive health effects. In fact, it is enriched
with nutrients of high biological value, which, together with its cooking methods, physical activity promotion, reduction in carbon footprint, and
promoting of family meals, promote these positive effects on health. The latest scientific advances in the field of nutri-epigenetics have revealed that
epigenetic markers associated with food or nutrients and environmental factors modulate gene expression and, therefore, are involved with both
health and disease. Thus, in this review, we evaluated the main aspects that define the Southern European Atlantic diet and the potential epigenetic
changes associated with them based on recent studies regarding the main components of these dietary patterns. In conclusion, based on the
information existing in the literature, we postulate that the Southern European Atlantic diet could promote healthy aging by means of epigenetic
mechanisms. This review highlights the necessity of performing longitudinal studies to demonstrate this proposal. Adv Nutr 2022;13:1725–1747.

Statement of Significance: The Southern European Atlantic diet (SEAD) has features that are able to modulate epigenetic mechanisms,
which could, in turn, promote healthy aging through the consumption of nutritional bioactive compounds, physical activity, promotion of
psychological well-being, and reduction in the environmental production of endocrine disruptors. Therefore, this review provides evidence
that the beneficial effect of the SEAD could be promoted by epigenetic mechanisms. This evidence strongly warrants further scientific studies
to demonstrate the epigenetic value of the SEAD in promoting healthy aging by slowing down the molecular or physiological aging process,
which is of the foremost relevance in the nutritional field of disease prevention.
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Introduction

For centuries, it has been known that food can interfere with
the health status of an individual and, hence, it has been used
to treat different conditions and diseases throughout history
(1). Currently, the scientific community shows a growing
interest in how our genes respond to the different foods
human beings consume. However, at present, the molecular
basis by which dietary nutrients or dietary patterns modify
the expression of genes has not yet been fully described.
The most widely accepted hypothesis suggests that epigenetic
regulation is responsible for these processes (2). Epigenetics
involves the study of how environmental factors, such as
lifestyle, physical activity, exposure to toxins, and diet, are
capable of modulating the expression of genes without
altering our DNA sequence (3–5). Epigenetic modifications
are common in many diseases, such as obesity (6–8), type
2 diabetes (9, 10), metabolic syndrome (4, 11), insulin
resistance (12, 13), and cancer (14–17). Importantly, these
epigenetic markers can be reversed by different therapeutic
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strategies such as occur after following a low-calorie diet
(18, 19), bariatric surgery (20, 21), or physical activity (22,
23) during obesity management. Nutrients can also act as a
source of epigenetic modifications and reverse specific epige-
netic markers associated with disease (24). Thus, nutritional
epigenetics has emerged as a novel mechanism underlying
gene–diet interactions, providing evidence of the modulating
role of nutrition in aging and the development of age-related
diseases (25–27).

Knowing what dietary components or dietary patterns
influence the molecular regulatory mechanisms involved in
gene expression would help advance research related to the
prevention, prognosis, and treatment of pathologies such
as obesity, diabetes, and cardiovascular diseases (CVDs) or
cancer (28), and finally, to guarantee survival into old age.

Healthy dietary patterns are generally based on including
health-promoting foods, such as plant-based foods, fresh
fruits and vegetables, half-grain or whole-grain cereals, nuts,
which are sources of omega-3 fatty acids and low in saturated
fat and trans fat and refined added sugars, as well as different
bioactive compounds. Examples of healthy dietary patterns
are the Mediterranean diet and the Dietary Approaches to
Stop Hypertension (DASH). A Mediterranean diet occurs
naturally in certain regions and is ingrained in local tradition,
and is not only perceived as a healthy diet but also as
a lifestyle (29). The DASH diet was created as a result
of studies to improve certain pathologies, such as blood
pressure and other CVDs (30). Both dietary patterns have
been extensively assessed in relation to chronic diseases and
were associated with beneficial effects on preventing several
diseases. In the last few years other potentially healthy diets
have been highlighted among traditional dietary patterns,
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such as the Nordic diet and Southern European Atlantic diet
(SEAD).

The Nordic diet, based on typical Finnish foods (31),
shares nutritional recommendations with the Mediterranean
diet: both emphasize local seasonal foods and promote
sustainability and preservation of the environment; their
main difference is the type of oil used for cooking, where
the Nordic diet preferably uses canola oil. In relation to
the Nordic diet, epidemiological studies are still lacking
to demonstrate its effects on health, as shown with the
Mediterranean diet (32).

Particularly, in the northwestern Iberian Peninsula,
mainly Galicia and northern Portugal, there is another
dietary pattern, the SEAD (33). Although there are few
scientific studies to date, the SEAD is also associated with
health benefits similar to the Mediterranean diet.

The SEAD regions by themselves present higher life
expectancy linked to a group of interconnected factors
(socioeconomic, health, environmental, and genetic). Partic-
ularly in the Galicia region, higher survival rates were ob-
served, with 1823 centenarians registered in 2020 according
to the National Institute of Statistics (34–36). These data
demonstrate that the SEAD regions have a high prevalence
of survival into old age, which is strongly determined by
mortality after 85 y of age, mainly caused by CVD. In fact,
Europe accounts for 49% of the deaths which implies a great
public health importance (37). Whereas, in the northwest of
Spain low rates of CVD mortality were found, which is linked
to significantly high rates of survival in recent years (34, 38,
39). This old-age survival observed in the SEAD region may
be related to a healthy dietary pattern.

The aim of this review was to collect scientific evidence
demonstrating the beneficial properties of the main compo-
nents included in the SEAD pattern, such as foods, physical
activity, healthy habits and behaviors and environmental
sustainability, and the potential epigenetic changes associated
with them based on recent studies regarding the main
components of this dietary pattern.

Comparison between the SEAD and Other
Studied Healthy Dietary Patterns
Although the Mediterranean diet, DASH, Nordic diet, and
SEAD have common bases, there are also certain aspects
that differentiate them and make each one a unique and
independent dietary pattern. Table 1 shows the consumption
of food servings and food groups in 4 dietary patterns.

In SEAD, as in the Nordic diet, the consumption of fish
and shellfish is higher than in the Mediterranean diet (44–
46); moreover, in the SEAD, the consumption of seaweed
is gaining interest in the last few years (28). On the other
hand, in DASH, the consumption of fish and shellfish is
lower due to the low consumption of protein of animal origin
(2). With regard to meat consumption, it is higher with the
SEAD, mainly pork and veal (28, 29). On the contrary, in the
Mediterranean diet, Nordic diet, and DASH diet, less meat is
consumed, and the consumption of lean meat is encouraged
(29, 30, 45, 46).

The consumption of fruits, vegetables, and legumes is
high in these above-mentioned dietary patterns (45–47).
Remarkably, the variety of vegetables consumed differs,
however, with vegetables of the Brassicas genus being the pre-
dominant variety of vegetables consumed in SEAD (44). The
same occurs with fruits, where, in SEAD, more apples, pears,
or citrus fruits are consumed than in the Mediterranean diet
(47) and the Nordic diet (45, 46). With regard to nuts, in the
SEAD more chestnuts are consumed, which is a low-calorie
nut; in the Mediterranean diet, more hazelnuts, almonds, or
pistachios are consumed (44); and in the Nordic diet, more
almonds are consumed (45, 46). However, high amounts
of fruits and vegetables are consumed, as well as legumes
and nuts to provide plant-based protein in the DASH diet
(30).

Although bread is present as the basis of both SEAD
and the Mediterranean diet, there are differences in the
consumption of the sources of complex carbohydrates. The
bread consumed in the SEAD is mostly unrefined flour. In
SEAD and Nordic diets, the consumption of potatoes pre-
dominates, compared with rice and pasta that predominate
in the Mediterranean diet (44–46). Also, the consumption of
whole grains is highly consumed in the SEAD, Nordic diet,
and DASH diets (30, 44–46).

Dairy products are highly consumed in the SEAD, par-
ticularly cheeses, compared with the Mediterranean diet and
Nordic diet, where their consumption is low and moderate,
respectively (29, 44–46), or in the DASH diet, where cheeses
consumed are low in fat or without fat and consumed
moderately (30).

The main source of fat is olive oil for cooking and dressing
in the SEAD and the Mediterranean diet (29, 44). However,
canola oil is the main source of fat for cooking and dressing
in the Nordic diet (45, 46). Alcohol consumption is moderate
in the 4 dietary patterns, based mainly on wine in the SEAD
(44) and the Mediterranean diet (29) and in beer in Nordic
diet (45, 46). In addition, in the SEAD, the Mediterranean
diet, and the Nordic diet there is a moderate consumption of
eggs (29, 44–46), and in the DASH diet, sodium consumption
is limited to 2300 mg/d (30).

In addition to the differences in the food-group consump-
tion, the SEAD, the Mediterranean diet, and the Nordic diet
emphasize sustainable and seasonal foods (29, 45, 46, 48).
Moreover the SEAD regions are found in rural areas where
pollution is low. (34). The SEAD and Mediterranean diet
promote a healthy lifestyle with daily physical activity and
enjoying meals as a social act (29, 48).

Specific Properties of the SEAD
The SEAD, also called the “Atlantic diet,” represents a
dietary pattern associated with the countries in Western
Europe that border the Atlantic Ocean: Ireland, Scotland,
Wales, southern England, Isle of Man, French Brittany,
northern Portugal, and northwestern Spain (Galicia, Leon,
and Asturias). Specifically, the SEAD is the characteristic
eating pattern of the northwestern parts of the Iberian
Peninsula, including Galicia (Spain) and northern Portugal
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TABLE 1 Differences between servings in the SEAD, Mediterranean diet, DASH diet, and Nordic diet1

Components SEAD (40) Mediterranean diet (41) DASH diet (30) Nordic diet (42, 43)

Whole-grain bread ≥1 servings/d ≥1 servings/d Not specified 3–4 servings/d
Rice and cereals ≥1 servings/d, whole

grain
1–2 servings/main meal Grains: 6–8 servings/d Lunch cereals: 1.5 servings/d

(muesli, oat bran, barley
flakes)

Whole grain: 3 servings/wk
Potatoes ≥1 servings/d ≤3 servings/wk Not specified >2.5 servings/d
Vegetable oil Frequent use of olive oil Frequent use of olive oil Fat and oils: 2–3

servings/d
Frequent use of canola oil

Fresh fruit ≥2 servings/d 1–2 servings/main meal 4–5 servings/d >3 servings/d
Vegetables ≥2 servings/d

Brassicas, ≥3
servings/wk

≥2 servings/main meal 4–5 servings/d >3 servings/d

Legumes ≥2 servings/wk ≥2 servings/wk 4–5 servings/wk High consumption but not a
concrete recommendation

Fish ≥3 servings/wk ≥2 servings/wk ≤ 2 servings/d 3–5 servings/wk

Sea food ≥1 servings/wk Not specified Not specified High consumption but not a
concrete recommendation

Meat Pork, ≥1 servings/wk
Poultry/game, ≥1

servings/wk
Veal, ≥1 servings/wk

White meat, 2 servings/wk
Red meat, <2 servings/wk

Lean meat, poultry:
≤ 2 servings/d

Meat, ≤5 servings/wk
Poultry, ≤3 servings/wk

Dairy products ≥2 servings/d 2 servings/d 2–3 servings/d (fat-free
or low-fat)

1–2 servings/wk

Eggs ≥3 servings/wk 2–4 servings/wk ≤4 servings/wk Without exceeding total
cholesterol intake
recommendation

Nuts Preferably chestnuts,
walnuts, and almonds,
≥2 servings/wk

1–2 servings/d 4–5 servings/wk 0.5 servings/d (preferably
almonds)

Sweets Never or hardly ever ≤2 servings/wk ≤5 servings/wk For weekends
Alcohol2 Wine, ≥1 servings/d Fermented beverages,

1–2 glass/d
≤2 drinks/d for men and

≤1 drink/d for women
Beer in moderation

1DASH, Dietary Approaches to Stop Hypertension; SEAD, Southern European Atlantic diet.
2Glass/drink: wine, 100 mL; beer, 200 mL.

(33, 49). In 2006, the “Baione Declaration of the Atlantic
Diet” was signed by different institutions, which marked
the first step towards the generation of the SEAD criteria.
Currently, this declaration is known as the “Atlantic Diet
Decalogue” and includes a high consumption of fish and
seafood; high intake of cereals, potatoes, and legumes;
high consumption of fruits and vegetables; olive oil as the
primary source of fat; daily consumption of dairy products;
moderate consumption of meat; water as the main bever-
age; simple cooking processes; maintenance of traditional
Atlantic food habits; and daily exercise (Figure 1) (44,
50).

Food and nutrition
Seafood and fish.
The high intake of fish and seafood (mollusks and crus-
taceans) in this dietary pattern provides high biological
value as proteins and omega-3 fatty acids have a protective
effect on cardiovascular health (51), and the high-quality

protein could have an important role in delaying sarcopenia
(52), which is a frequent cause of poor quality of life and
disability in older adults (53). In addition, fish, seafood and
shellfish contain important amounts of minerals such as
iodine, calcium, or selenium (54).

Meat.
The moderate consumption of meat in the SEAD comes
mainly from autochthonous bovine and porcine breeds from
extensive livestock farms, where the animals are fed based on
grass and milk, in the case of veal (Galician blonde calves
and Cachena breed calves), and with chestnuts in the case
of pork (Galician Celtic pig) (55, 56). This traditional and
sustainable farming system gives the meat certain properties
such as a rich content of proteins of high biological value and
easy digestion (57), the high content of MUFAs and PUFAs
(58, 59), and are an important source of minerals (iron,
phosphorus, potassium, calcium, and zinc) and vitamins
(mainly from group B) (44).
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FIGURE 1 Representation of the 3 main features of the SEAD pyramid corresponding to food and nutrition, environmental sustainability,
and healthy eating habits and behavior. (Left) This triangle illustrates the typical SEAD based on a balanced, varied, healthy diet, including
foods that are consumed daily (continuous line), 2–3 times/wk (dashed box)), and occasionally (dotted-dashed box). The recommended
frequency for the intakes of the most important groups of foods is illustrated in ascending order, from the most to the least frequent.
(Center) This triangle describes the typical habits and behaviors in the northwestern parts of the Iberian Peninsula that favor
environmental sustainability. (Right) This triangle emphasizes the typical eating habits and behaviors of the SEAD that favor healthy living:
cooking at home and family meals promote a stress-free environment. Daily physical activity is a part of daily routine in the northwestern
parts of the Iberian Peninsula. SEAD, Southern European Atlantic diet.

Vegetables and fruits.
In the SEAD region, there is a high production of Brassica
vegetables, a genus of plants that includes broccoli, cabbage,
collard greens, and grelos (Brassica rapa L. var. rapa, broccoli
raab, “nabizas,” and turnip). These vegetables are usually
consumed cooked or prepared in a broth with pork. It is
known that members of the Brassica are high in antioxidants
and phytochemicals that contribute to the prevention of
CVDs (49) and cancer (60).

The apple is the fruit with the highest production in the
region and is part of a large number of staple dishes of the
SEAD. Pears, grapes, and citrus fruits are also important in
this dietary pattern. All of these fruits contain high amounts
of fiber, and high fiber intake has known cardiovascular,
metabolic (44), and constipation-preventing benefits (61).

Nuts.
Although the consumption of walnuts is important, chest-
nuts are the most widely nut consumed under the SEAD.
They have been used as a food source in Europe since the
Middle Ages and in northwestern Spain; in communities that
had low access to cereal flour, chestnuts were used as the
main source of carbohydrates (62). Currently, chestnuts are
consumed alone as snacks or used to prepare creams and
soups. These nuts are rich in PUFAs (63) and tocopherols,
and also have the highest concentrations of phytosterols
compared with other nuts (62). In a recent study, mice that
were supplemented with chestnuts had reduced abdominal
adipose tissue and lower serum cholesterol concentration
than those that were fed a standard diet (64). These results

suggest that chestnuts may have an important role in
regulating adipose tissue deposition and maintaining good
health.

Cereals, complex carbohydrates.
Carbohydrates contribute 50% of the caloric intake, with
whole grains, legumes, and potatoes being the main sources
of carbohydrates (49). In fact, the consumption of baked
and cooked potatoes [nonfried potatoes, even with skin
(cachelos)] in the northwest is the highest in the Iberian
Peninsula and bread (mainly with unrefined flour) intake
is higher than in other regions, which have a higher
consumption of rice and pasta. It is known that baked
potatoes have a lower glycemic index than rice and fried
potatoes, and in a recent meta-analysis of prospective cohort
studies diets with high glycemic indices and glycemic loads
were predictive of the development of type 2 diabetes (65).

Dairy products.
Dairy products, especially cheese, which occupy a relevant
place in the SEAD in addition to milk, are consumed daily in
the SEAD and are sources of high-value protein, calcium, and
vitamins. Fermented milk products are probiotic foods that
contain beneficial live microbiota (66). Also, dairy products
increase bone mineral content during childhood (67).

Olive oil.
The main source of fat in the SEAD is olive oil, which is used
for seasoning and grilling. It provides MUFAs, antioxidants,
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and other bioactive components (phytosterols, tocopherols,
and pigments) with known health benefits (44).

Healthy habits and behaviors
Exercise is an important component of a healthy lifestyle,
and complements diet in this dietary pattern. In the SEAD
geographical area, there are many factors that promote
physical activity, such as warm weather, trails, rivers, and
multiple spaces for hiking. Thus, the climate and geography
make it a region where physical activity can be undertaken
outdoors for most of the year (44).

As mentioned above, the SEAD is a dietary pattern; thus,
in addition to the types of food that make up the SEAD, how
the food is eaten is also important. Traditional Atlantic food
habits include home cooking, eating meals together, enjoying
the food, and considering eating food as a social act. In fact,
gastronomic festivals are typical in this region and they are a
main topic in the tourism policy of the Galician government
(68, 69). All of these features contribute to improving well-
being, which is becoming increasingly important as mental
illness increases in a society subjected to many types of
economic, social, and environmental stress.

General health and mental well-being are closely related
to healthy behaviors, where SEAD plays an important role by
including healthy and sustainable nutritional habits together
with other lifestyles and social factors that have a direct
and beneficial impact on health and society. A stress-free
environment may be relevant for mental health disorders (70)
and this fact highlights the need for further exploration of the
link between SEAD and well-being in order to unravel the
potential collateral benefits of this relationship, so that they
can be implemented to improve the well-being of society.

Environmental sustainability
Food sustainability is a relevant topic in future policies on
food production and consumption. It is quite important
to promote sustainable consumption patterns in society.
In this regard, it has been demonstrated that the SEAD
can be considered as an example of a sustainable diet
despite being a diet that includes animal-based foods at
its core, including meats (71, 72). A recent analysis of the
SEAD has shown that this dietary pattern has a significant
effect on climate change. An evaluation was carried out by
quantifying the carbon footprint following the Life Cycle
Analysis methodology and identifying its nutritional quality,
according to the value of the Nutrient-Rich Dietary index
(NRD9.3). The carbon footprint of the SEAD was 3.01 kg
CO2 eq · person−1 · d−1, and the SEAD had a high nutritional
score (72). Esteve-Llorens et al. (72) reported that the SEAD
had a better environmental and nutritional impact than
the current diet in the region, concluding that the SEAD
has a low environmental impact and promotes food safety
and quality. This fact could be counterintuitive considering
that higher consumption of meat has a higher impact on
climate change through higher production of greenhouse
gas (GHG) emissions (71). However, although the SEAD
is an omnivorous diet with a significant presence of foods

of animal origin, it has environmental indices such as the
water footprint and carbon footprint that are in line with
those corresponding to other diets with a lower intake
of this type of food. One of the main reasons for these
results is the characteristic of this diet that promotes the
consumption of seasonal, local foods and a balanced intake
of different food categories. This fact is especially favored
by the size of the cities in the SEAD region, since the
number of inhabitants living in 50% of them is less than
100,000 inhabitants and the population density in this region
is 125.8 inhabitants/km2 (73, 74). Therefore, in times of
global environmental change, there is an urgent need for a
sustainable agricultural and livestock policy, such as the one
based on traditional breeding schemes (75, 76). Extensive
livestock farms based on autochthonous breeds promote this
specialization of traditional, rural, and ecological production
systems typical of the SEAD regions.

Scientific Evidence for the Beneficial Health
Effects of the SEAD
To show the scientific evidence for the beneficial health
effects of the SEAD, a systematic review based on the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) protocol was conducted. For this
purpose, an electronic search of PubMed was carried out
using appropriate keywords, as follows: “Atlantic Diet”
OR “Southern European Atlantic Diet.” The database was
searched up to September 2021, without a time limitation.
Thus, 24 articles were identified through this database search,
and a total of 19 studies investigating beneficial health effects
of the SEAD were finally assessed (Figure 2). The different
scientific studies that have reported the beneficial health
effects of SEAD are summarized in Table 2.

In a population-based, case-control study by Oliveira
et al. (77) conducted in adults with (n = 820) and with-
out (n = 2,196) a history of incident acute myocardial
infarction, it was shown that a greater adherence to the
SEAD was associated with a lower probability of nonfatal
acute myocardial infarction. In addition, some components
of the SEAD may contribute to the very low mortality
from CVDs in northern Portugal and Galicia. Guallar-
Castillón et al. (51) analyzed the association between the
SEAD and coronary risk biomarkers in a cross-sectional
study conducted in 10,231 individuals; the study showed
that the SEAD was associated with lower concentrations
of inflammation markers and a reduction in triglyceride
concentrations, insulin concentrations, resistance to insulin,
and blood pressure. In line with the aforementioned findings,
in a recent subanalysis with 833 participants from the
EVIDENT 2 study, Rodríguez-Martín et al. (83) showed that
greater adherence to the SEAD was associated with a lower
CVD disease risk, lower total cholesterol and triglyceride
concentrations, and lower rates of obesity.

Adherence to the SEAD has also been associated with
decreased myocardial infarction risk due to its links with
reduced triglyceride concentrations, inflammatory markers,
insulin concentrations, and blood pressure (51, 83). Some
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FIGURE 2 Systematic review flow chart.

studies have investigated the combined effects of cardiorespi-
ratory fitness (CRF) or muscular fitness (MF) and the SEAD
(78). The first cross-sectional study assessing the combined
associations of CRF and the SEAD on cardiometabolic
risk was carried out in 468 adolescents aged 15–18 y.
Different variables were studied, such as CRF, cholesterol
concentrations, insulin concentrations, waist circumference,
and systolic blood pressure, among others, from which the
metabolic risk score was constructed (78, 86). In this study, it
was shown that adherence to the SEAD combined with CRF
decreased the metabolic risk score, whereas low adherence to
the SEAD was significantly associated with a high metabolic
risk score (78).

Although the clinical manifestations of CVD occur in
adulthood, the development of atherosclerosis begins during
early stages of life, often during childhood (87). A study car-
ried out in an adolescent population evaluated the association
of CRF, MF, and adherence to the SEAD with the atherogenic

index of plasma (82). Agostinis-Sobrinho et al. (82) observed
that the atherogenic index of plasma was inversely associated
with CRF, MF, and adherence to the SEAD in adolescents.
In addition, adolescents with high adherence to the SEAD,
high MF, and high CRF had the lowest atherogenic index
of plasma. As part of the same longitudinal school-based
study, the same authors investigated the combined impact
of MF, adherence to the SEAD, and C-reactive protein
concentrations (81). This protein is one the most important
inflammatory markers that is released as a proinflammatory
acute-phase protein; thus, an anti-inflammatory dietary
pattern, such as the SEAD, could exert an effect on the
concentrations of the proinflammatory C-reactive protein
(88). Several studies have demonstrated C-reactive protein
to be a powerful predictor for the development of CVDs and
type 2 diabetes (87, 88). The authors concluded that MF was
inversely associated with C-reactive protein concentrations,
and adolescents with low MF and low adherence to the
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Atlantic diet had the highest C-reactive protein values. For
this reason, the combined effect of high MF and high
adherence to the SEAD played a key role in low-grade
inflammation in adolescents (81). Additionally, in the same
Azorean population that was studied, it was observed that the
SEAD was inversely correlated with systolic blood pressure,
waist circumference, and the cardiometabolic risk score. In
fact, low MF with low adherence to the SEAD was associated
with the highest cardiometabolic risk score (80).

Although there is no scientific evidence on the role of the
SEAD in cancer until now, certain components of this dietary
pattern are associated with a decreased risk of the incidence
of some types of cancer. The SEAD comprises foods rich in
bioactive compounds with potential cancer-fighting effects,
such as resveratrol, which is present in grapes and red wine,
which has shown potential in vitro anticancer effects on
various tissues and cell lines, including in breast cancer (14).
Preclinical studies have shown that certain components, such
as glucosinolates from Brassica vegetables, have anticancer
properties (33, 60). In addition, the SEAD also has beneficial
environmental impacts. As certain environmental pollutants
are associated with complications that can manifest into
serious illnesses over time, such as cancer, high adherence
to the SEAD could reduce the risk of cancer (89, 90). More
studies are warranted to evaluate the beneficial effects of this
dietary pattern on cancer.

Interestingly, dietary quality also influences other impor-
tant aspects, such as the nutritional composition of breast
milk (91). It has been observed that the concentrations of
some nutrients, such as PUFAs, in the mother’s diet and in
human milk are correlated (92). However, no correlation was
observed for iron and other minerals (zinc and chromium)
(93). Nevertheless, a recent analysis from 75 human-milk
samples from Galicia in northwestern Spain showed a
positive association between adherence to the SEAD and iron
content in breast milk (84). As previously mentioned, this
dietary pattern is characterized by a high consumption of
meat; thus, maternal adherence to the SEAD could influence
the iron content in breast milk, which has a fundamental role
in infant development (94). Moreover, it has been shown that
Galician breast milk has high concentrations of the PUFAs
ɑ-linolenic acid (18:3n−3) and linoleic acid (18:2n−6), due
to the high intake of especially fish, and also nuts. It is
known that the quality of fats rather than the total amount
plays an important role in an infants’ neurological and retina
development (95, 96).

Another important aspect to consider is the role of
dietary patterns in microbiota profiles. Gut bacteria play an
important role in various metabolic processes and human
diseases, such as obesity and its accompanying comorbidities
such as diabetes and adverse cardiovascular events (97, 98).
Both diet and physical activity influence different microbiota
profiles. In fact, it is known that dietary patterns, probiotics,
and other factors such as stress, age, exercise, and climatic
conditions can dramatically affect the balance and diversity of
the human gut microbiota (99). The proportion of different
microbial populations in the human intestine in relation to
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adherence to the SEAD was studied, and it was observed
that the only bacterial group that demonstrated statistically
significant differences was the genus Bifidobacterium spp.,
whose concentrations were greater in participants who
adhered to the SEAD (66). Bifidobacterium spp. plays an
important role in the human body as it participates in impor-
tant physiological functions, such as the development of the
immune response (100), and several species are considered
probiotics (101). Hence, it is believed that Bifidobacterium
spp. has a protective effect on health. The genus has been
linked to the concept of a healthy microbiota (102–104) and
is closely associated with the consumption of dairy products.
Fermented milks, which is 1 of the 10 points in the Atlantic
Diet Decalogue (66, 105), have probiotics able to reduce
lactose malabsorption (106), a fairly common problem in the
Galician population (107).

Scientific evidence published to date shows that the SEAD
is associated with improvements in general health. In line
with this, in a representative cohort of noninstitutionalized
persons aged ≥60 y in Spain, higher adherence to the SEAD
was associated with lower all-cause mortality. Nevertheless,
the associations between the food components of the SEAD
and all-cause mortality were weak, except for moderate wine
consumption (85). This result reinforces the idea that the
benefits of this dietary pattern are due to the cumulative effect
of individual foods and the interactions between the food
components (108).

In the current coronavirus disease 2019 (COVID-19) era,
studies linking dietary recommendations and the risk of
infections are scarce. Viral infections are characterized by the
production of reactive oxygen species (ROS), which can lead
to decreased immunity in an organism (109). Thus, obtaining
appropriate amounts of natural antioxidants from dietary
sources could be of particular relevance during the current
COVID-19 pandemic. In this context, healthy dietary pat-
terns, such as the SEAD, provide the recommended amounts
of essential vitamins, minerals, and phenolic compounds
needed to activate antioxidant responses to maintain the
immune system, with the exception of vitamins D and
E, which should be supplemented, especially in vulnerable
populations (110). Further studies are needed to evaluate the
role of a dietary pattern based on the SEAD in the prevention
and management of COVID-19.

Most of the studies performed to date that have assessed
the beneficial effects of the SEAD have been observational,
based on the evaluation of adherence to the SEAD. To the best
of our knowledge, there is only 1 clinical trial that examined
the effects of the SEAD on metabolic health, cardiovascular
health, and adiposity: the GALIAT [Galicia Alimentación
Atlántica (Galicia Atlantic Diet)] study (111). This was a
randomized, controlled, dietary intervention clinical trial
that evaluated the potential effects of this dietary pattern
on glucose metabolism, inflammation markers, lipid profiles,
and adiposity in 250 families (715 adults and children aged
>3 y). The sample unit was the family, and each family
was randomly assigned to either the control diet group
or SEAD group (AD group) for a period of 6 mo. The

families in the AD group received educational sessions on
food, diet, and gastronomy. Moreover, they attended cooking
lessons and were provided with a range of foods characteristic
of the traditional SEAD. Some results of this nutritional
intervention were decreases in cholesterol concentrations,
body weight, BMI, and body fat mass percentages in the
AD group (50, 111, 79). Therefore, more intervention
studies with large sample sizes and longer follow-up are
needed to evaluate the effects of the SEAD on human
health.

Evidence of the Epigenetic Effects Induced by
the SEAD Components
The term “epigenetics” refers to the study of the different
molecular mechanisms that regulate the expression of genes
without changes in the underlying DNA nucleotide sequence,
ultimately determining the phenotype from the genotype
and playing an important role in healthy development (112,
113). These changes in gene expression respond to the
state of transcriptional activation or inactivation of genes
and are regulated by the action of epigenetic mechanisms
that are relevant throughout the life course and at different
stages of embryonic development (114, 115). Epigenetic
mechanisms are important molecular regulators that include
DNA methylation, one of the most present in the organism
and one of the most studied, histone post-translational
modification and regulatory noncoding RNAs (ncRNAs),
currently considered as health actors (116, 117) (Figure 3).
They are characterized by being transmissible to the follow-
ing generations (118), and by changing in response to specific
stimuli of the organism (117). For these reasons, epigenetic
mechanisms are characterized by being hereditary, dynamic,
and reversible.

Epigenetic mechanisms are subject to the action of
various environmental factors and external agents, such as
lifestyle, nutrition, physical activity, stress, or exposure to
pathogens and toxins, among others (5), with nutrition being
a relevant environmental factor in health. In fact, nutritional
epigenetics is currently postulated as a potential study tool for
understanding the interconnection between genes and diet
(24–26).

Along with the modulating role of the environment
determined by our lifestyles, aging itself increases the suscep-
tibility to a wide range of diseases (119, 120). The application
of epigenetic clock models to data generated by epigenome-
wide association studies that are focused on dietary intake
and nutritional interventions is helping uncover the dietary
determinants of healthy aging (121–124). Interestingly, a
comparison of different molecular predictors of age indicated
that the epigenetic clock had the highest correlation with
biological age (125).

In this context, recent studies have shown that a low
BMI, exercise, and consumption of fish, poultry, fruits, and
vegetables (126) reduce the acceleration of the epigenetic
clock. Dietary factors such as folate and related B vitamins
are emerging as modifiers of epigenetic age because they can
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FIGURE 3 Role of epigenetic mechanisms during development and aging. Histone post-translational modifications, DNA methylation,
and non-coding RNAs (miRNA and lncRNA) are involved in the regulation of gene expression, which induce the activation or inactivation
of genes. This regulation is involved in the proper functioning of an organism and, if it becomes aberrant, it can promote disease onset.
Part of this figure was produced using modified elements from BioRender.io (Toronto, ON, Canada). lncRNA, long-noncoding-RNA; miRNA,
micro-RNA.

modulate DNA methylation (127). Therefore, we hypothe-
sized that the components provided by the SEAD may have
an important contribution in improving health outcomes
with respect to diseases related to age and life expectancy.

Epigenetic effects of food and nutrients
The foods included in the SEAD contain bioactive and
functional compounds, such as omega-3 fatty acids, sterols,
flavonoids, carotenoids, and glucosinolates, that have
beneficial health effects (49). In addition, the cooking
techniques used in this dietary pattern preserve these
bioactive compounds better than other culinary techniques
such as frying (50). In this section, we focus on the actions
that the main foods of the SEAD exert on health through
epigenetic mechanisms (Table 3, Figure 4).

Experimental studies in animal and cell models have
shown that compounds contained in the Brassicaceae family
and their derivatives exert beneficial health effects, such as
preventing the development of cancer (135). This protective
effect is mediated through epigenetic markers, which act as
regulators and inhibitors of the expression factors present
in most cancers (136). Glucosinolates induce changes in
DNA methylation that reduce the risk of developing certain
chronic diseases (137), and the chemopreventive and health-
promoting properties of cruciferous vegetables could be
mediated by mechanisms related to ncRNAs (138). More
studies are needed, especially in humans, to determine which
epigenetic markers occur as a result of the incorporation of
these cruciferous vegetables into the diet, not only in cancer
prevention but also in many other biological processes in
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TABLE 3 Summary of the bioactive compounds present in the SEAD and their effects on health in the
general population1

Bioactive compound Dietary source Effects on health

Sulfur compounds
Glucosinolates Turnip greens, cabbage, collard

greens
Anticancer
Cholesterol-lowering (128)

Aliaceae Onion, garlic, leek Anticancer
Cholesterol-lowering antihypertensive

(128)
Omega-3 fatty acids Fish, shellfish, walnuts Anti-inflammatory (129, 130)
Bioactive peptides Dairy products Antihypertensive (131)
Polyphenols

Flavonoids Onion, leek, tomato, apple,
pear, grape, lettuce, or citrus

Antioxidant capacity
Antithrombotic
Anti-atherosclerotic
Anti-inflammatory (132)

Resveratrol Grape skin and wine Antioxidant capacity
Antithrombotic
Anti-atherosclerotic
Anti-inflammatory (132)

Carotenoids
Carotenes Dark-green leafy vegetables,

orange vegetables and fruits
Antioxidant capacity (132)
Anticancer
Cholesterol-lowering (133)

Xanthophylls Green leafy vegetables,
potatoes, tomato, red
pepper, egg yolk

Antioxidant capacity (132)
Anticancer
Cholesterol-lowering (133)

Plant sterols Olive oil, nuts Cholesterol-lowering (134)
Vitamins

Vitamin C Citrus, cabbage, peppers, peas Antioxidant capacity (49)

Vitamin E Tomato, peppers, lettuce, peas Antioxidant capacity (49)
Folic acid Green leafy vegetables Anticancer

Prevents degenerative diseases
Important in embryonic development (49)

1SEAD, Southern European Atlantic diet.

chronic diseases that involve inflammation and elevated cell
proliferation.

Carotenoids have anticancer properties that have been
shown to be driven by changes in the DNA methylation
of genes responsible for proangiogenic processes (139).
Polyphenols, which include flavonoids and stilbenes such
as resveratrol, can alter epigenetic cellular mechanisms
associated with potential health-promoting effects (140, 141).
Polyphenols reverse adverse epigenetic regulation by altering
epigenetic markers, resulting in the reactivation of favor-
able genes (silenced tumor suppressors, antioxidant genes,
and DNA repair genes) or inactivation of harmful genes
(oncogenes involved in inflammation, cell cycle progression,
proliferation, invasion, angiogenesis, and metastasis) (142).

The positive action of polyphenols on the body, mediated
by epigenetic mechanisms, inhibits the development of
pathologies such as CVDs (143–146), metabolic syndrome
(147, 148), obesity (149), and cancer (150, 151), among
others.

Omega-3 fatty acids and selenium contained in fish and
shellfish possess anti-inflammatory and hypotriglyceridemic
properties that are attributed to their alteration of genes car-
ried out by epigenetic mechanisms such as DNA methylation
(152) and microRNAs (153). Recently, anti-obesity effects
and efficacy against metabolic syndrome have been attributed
to omega-3 fatty acids, and research has shown that these
effects are due to the epigenetic action carried out by these
components when counteracting the associated metabolic
changes (154, 155). Other beneficial actions of omega-3 fatty
acids associated with epigenetic markers have been reported
in research related to other disease areas such as cancer
(156), Alzheimer disease (157), and CVD (158, 159). There
are some studies on the favorable effects of selenium on
health, which are also regulated by epigenetic modifications
(160).

In addition, olive oil, dairy products, and foods rich in
vitamins are present in the SEAD, which also have nutrients
and bioactive components that promote proper functioning
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FIGURE 4 Representation of the epigenetic effects of bioactive compounds in foods of the Southern European Atlantic diet to promote
health benefits.

of the body and reduce the risk of developing obesity and
chronic diseases (2). Studies have shown that epigenetics may
be regulating these processes (161–165).

Epigenetic effects of exercise
Recent research shows that exposure of an organism to
certain external agents, such as diet and physical exercise,
can trigger alterations in the epigenome (126, 166, 167).
This implies that nutrients and physical activity influence
the expression of genes and, therefore, have a relevant role
in health status and disease prevention in individuals. In
this context, physical activity is able to induce a modulation
in gene expression, and this modulation can be mediated

by epigenetic mechanisms (168). Furthermore, the effect
of physical exercise on gene expression depends on the
type, intensity, duration of exercise, as well as on sex
and age (169). Thus, the beneficial effects of moderate
exercise on health, mainly its anti-inflammatory poten-
tial (169, 170), improvements in clinical outcomes (171),
and reduction in the risk of noncommunicable diseases
(170), may be mediated by epigenetic mechanisms (169,
170). Recent studies have reported that exercise causes a
decrease in the methylation of many genes; in contrast,
other studies have reported that the levels of methylation
increase in some genes with physical activity (Table 4)
(168–177).
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TABLE 4 Overview of observational and interventional studies that assessed the associations between adherence to physical exercise and
epigenetic effects in adults aged >18 y1

Reference Type of physical exercise Epigenetic modifications Participants (age) Sample

(173) At least 30 min/d of physical
activity

≤10 min/d of physical activity

Increased level of global DNA
methylation with physical
activity

131 (45–75 y) Peripheral blood

(172) Physical activity across 3 time
periods (≥9.8 h/wk in
childhood, 5.9 h/wk in
adolescence, and 12.5 h/wk
in past 12 mo)

Increased level of percent
global DNA methylation

647 non-Hispanic White
women with a family history
of breast cancer (35–74 y)

Peripheral blood

(178) Physical exercise intervention
for 6 wk

Resistance exercise plus
walking

Changes in methylation of 756
CpG sites

8 colorectal cancer survivors
(>50 y)

Peripheral blood

(174) 3 mo of aerobic physical
exercise intervention

Increased level of global DNA
methylation

Increased levels of DNA
methylation in genes
involved in blood pressure

68 (22–70 y) Peripheral blood

(22) 6 mo of endurance exercise Changes in global DNA
methylation of genes
important in muscle
physiology

13 men without family history
of T2D; 15 men with family
history of T2D (32–44 y)

Skeletal muscle

(176) 1 wk of acute exercise Changes in global DNA
methylation of genes
important in muscle
physiology

14 healthy and sedentary (25 ±
1 y)

Skeletal muscle

(23) 6 mo of endurance exercise
intervention

Changes in DNA methylation
of adipocyte-specific genes

16 healthy and sedentary men
without family history of
T2D; 15 healthy and
sedentary men with family
history of T2D (32–42 y)

Adipose tissue

(177) Acute exercise plus 6 wk of
intensive exercise program
(45-min cycling sessions 5
d/wk)

Changes in DNA methylation
of adipocyte-specific genes

15 healthy and sedentary men
(19–27 y)

Adipose tissue

1T2D, type 2 diabetes.

Several epigenetic markers were found to be altered in
response to exercise, with a potential influence on skeletal
muscle metabolism. However, whether these epigenetic
markers play a role in the physiological impact of exercise is
unclear (22). On the other hand, in men with a history of low
physical activity levels, a 6-mo exercise intervention altered
the level of DNA methylation of numerous CpG sites in
genes that affect adipocyte lipogenesis (23). Currently, there
is still a lack of clear data on the role of the type of exercise
on epigenetic modulation. Therefore, the main objective of
future studies should focus on developing panels of specific
epigenetic markers that allow predicting the reaction of
an individual to stimulation by a specific exercise-training
regimen (168).

Epigenetic effects of psychological well-being
The tradition of family meals is an important aspect of the
SEAD. Several studies have suggested that healthier family
meals benefit the nutritional health of family members, with
positive benefits on weight-related health, particularly in
young individuals and children (179–181). It has currently

been reported that frequent family meals help overcome
several challenges, such as costs of healthy foods, scheduling,
differences in food preferences, etc. The home environment
is very important for mealtime, and lack of organization
and a frantic pace of life are associated with an inadequate
diet. On the contrary, low levels of household chaos, fixed
dinnertime routines, and family cohesion have been linked to
better nutrition and eating behaviors, with higher childhood
intake of healthier foods such as fruits or vegetables, lower
consumption of fast foods, and lower standardized BMI
scores among children and parents being observed (179,
182, 183). Furthermore, adolescent involvement in food
preparation has been associated with improved dietary
quality and healthier eating patterns for the family.

Family meals also provide opportunities for communi-
cation and connections among members, which exerts a
protective effect against adolescent participation in risky
health behaviors and promotes social and psychosocial
well-being (184–187). Thus, meal preparation and family
mealtimes could be parts of an intervention program to
improve family health and prevent obesity.
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The protective role of family meals against disordered
eating behaviors among young individuals has been demon-
strated in numerous studies (188–191). In line with this,
nutritional psychiatry is based on the relation between
dietary patterns and psychiatric pathologies (depression,
anxiety, and bipolar disorder). Dietary intervention studies,
for example, the SMILES and HELFIMED trials (192–194),
reported a reduction in depressive symptoms; however, the
molecular mechanisms involved in this relation are still
poorly understood. Oxidative stress, mitochondrial dys-
function, and inflammation are present in neuropsychiatric
pathologies. Epigenetics also plays an important role in
the pathogenesis of psychiatric disorders. Several studies
have shown that environmental factors, such as stress, act
through epigenetic mechanisms that lead to changes in
gene expression and altered brain function (195, 196). A
growing number of studies demonstrate DNA methyla-
tion of hypothalamic-pituitary-adrenal (HPA) axis genes
as an important mechanism involved in stressful physical
and social environments (197). Furthermore, a differential
methylation profile was found in association with posttrau-
matic stress disorder, suggesting a relevant role of epigenetic
mechanisms in the development of this pathology (198,
199).

A stress-free environment associated with dietary patterns
such as the SEAD could prevent the activation of epigenetic
mechanisms associated with mental health disorders.

Epigenetic effects of environmental contaminants
Dietary strategies promote health and well-being and reduce
the incidence of diet-related diseases. However, in recent
years, dietary strategies have increasingly been investigated
as approaches to reduce the environmental impacts of the
food system (200). Food production chains and consumption
patterns account for one-third of the human impact on
climate change; hence, it is important to fight climate change
through sustainable diets that are more environmentally
friendly (72). The sustainable diets concept, according to
the FAO, encompasses those diets with low environmental
impacts that contribute to food and nutrition security and to
healthy lives for present and future generations. Sustainable
diets are protective and respectful of biodiversity and
ecosystems, culturally acceptable, accessible, economically
fair and affordable, nutritionally adequate, and safe and
healthy, while optimizing natural and human resources
(201).

Approximately 50% of all GHG emissions from the food
system are related to farming activities, which are attributed
to emissions of nitrous oxide, methane, and carbon dioxide
(202, 203). GHG emissions vary according to food products
(especially those of animal origin, e.g., red meat) and the
efficiency of the production chain.

The environmental footprints of some diets have been
quantified according to the Life Cycle Assessment method-
ology (204–208) through the determination of the carbon
footprint, which is considered an indicator of environmental
impact. The SEAD has an approximately 8% lower carbon

footprint than that of the Mediterranean diet, due to the
SEAD prioritizing the consumption of plant-based, seasonal,
fresh, and local products with limited cooking, which
translates into a reduction in GHG emissions (72, 209,
210).

In the SEAD, the manufacturing stage is responsible for
approximately 78% of the total GHG emissions, while the
remaining amount is attributed to the household stage and
transport activities. Due to the shorter distribution distances
of Galician products, they are associated with low GHG
emissions. With regard to food, meat and dairy production is
responsible for 26% and 30% of GHG emissions, respectively,
whereas the contribution of seafood is 15%. Grain products
are basic components of the SEAD, and their contribution is
9% (72, 209).

Thus, the SEAD is not only beneficial for health but also
for the environment due to the high intake of vegetables
and fish compared with other dietary patterns, as well as
the focus on consuming local products with simple cooking
methods. These are important characteristics of the SEAD
to consider because the presence of manmade chemical
pollutants in the environment has increased rapidly over
the past 70 y. The harmful effects of these pollutants are
predominantly induced by endocrine-disrupting chemicals
(211). These chemicals are environmental compounds that
interfere with normal endocrine signaling and they are one
of the largest classes of toxins that we are exposed to on
a daily basis. Endocrine disruptors (EDCs) interfere with
hormone signaling pathways in the body. They are synthetic
or natural compounds present in the environment that can
interfere with endocrine functions (212) as they mimic the
actions of endogenous hormones and have impacts at various
levels of organization in organisms, from physiological
changes (phenotypes) to molecular alterations, including
epigenetic modifications (211). EDCs in the environment
can be classified as pesticides, plasticizers, industrial by-
products, pharmaceuticals, flame retardants, phytoestrogens,
or heavy metals such as cadmium (213–215). Environmental
pollutants, such as pesticides, can cause both acute and
delayed health effects in exposed participants (216). The
molecular mechanisms underlying such effects are still
under investigation; however, as epigenetic mechanisms
such as DNA methylation have already been shown to be
activated by external factors, they may be also triggered by
environmental factors (217). Early exposure to EDCs has
been associated with complications that manifest over time,
such as obesity, diabetes, and cancer. The underlying factors
for such associations are still unknown; however, they may
be likely mediated by EDC-induced epigenetic changes (89,
90). Current evidence indicates that epigenetic markers may
mediate the effects of pesticides on human health, including
EDCs, persistent organic pollutants, arsenic, various herbi-
cides, and insecticides (218).

Understanding the mechanistic links between EDC-
and pesticide-induced epigenetic changes and phenotypic
endpoints will be critical in providing improved strategies to
better protect the environment and humans from exposure to
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FIGURE 5 Representation of the proposal of the SEAD as an “epigenetic diet.” The SEAD involves healthy food, physical activity,
promotion of psychological well-being through a stress-free environment, and a reduction in endocrine disruptors by minimizing the
carbon footprint. These factors may help modulate mechanisms of the epigenetic clock and, as a result, may improve life expectancy,
promote healthy aging, and reduce the risk of several diseases. SEAD, Southern European Atlantic diet.

these contaminants. In recent years, environmental epigenet-
ics aims to analyze compounds, such as EDCs, responsible for
inducing epigenetic effects (219, 220). Evidence suggests that
environmental exposures markedly affect endocrine-related
gene expression and, therefore, affect clinical endocrine out-
comes (89). Several investigations have examined the effects
of environmental exposures and epigenetic markers and have
identified toxic substances that modify epigenetic states (221,
222). Thus, current evidence underscores that epigenetics has
substantial potential to broaden our understanding of the
molecular mechanisms of the effects of pesticides and EDCs
on health, as well as to predict health-related risks due to
environmental exposure and individual susceptibility. This
risk of disease-promoting epigenetic mechanisms mediated

by environmental factors could be prevented by adhering to
the SEAD, which is associated with a low consumptive water
footprint and carbon footprint (223).

Another major problem for the environment is the drastic
increase in the production of plastics, used for food pack-
aging and water bottling, which are easily incorporated into
marine ecosystems due to their great stability and durability.
These break down into small pieces called microplastics
or nanoplastics depending on their size. These fragments
are ingested by living beings, joining the food system.
The ingestion of micro- and nanoplastics is associated
with metabolic and intestinal problems, and some scientific
evidence indicates that the ingestion of nanoplastics can
induce important epigenetic changes (224). In this regard,
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due to the consumption of seasonal and local foods, the
SEAD has a beneficial impact on the environment also by
reducing the use of plastics in food packaging.

Conclusions
The SEAD is a specific and traditional dietary pattern from
the Southern Atlantic area that shows beneficial effects from
both a health and environmental perspective. These bene-
ficial features could induce their effect on increased human
survival by means of modulating epigenetic mechanisms.
This warrants the necessity to explore the current adherence
to a pattern of the SEAD in the population. To this end,
there is a score for the study of the adherence to the SEAD,
which was designed in 2010 by Oliveira et al. (77) based on
population data collected in Porto (northern Portugal). The
score has been widely used in different studies. However,
the index has some limitations. It does not include the
consumption of shellfish or olive oil, 2 basic foods in the
Galician diet, as shown by dietary surveys carried out in this
population (225, 226). Thus, it is necessary to design a new
index of adherence to the Atlantic diet that represents the
overall characteristics of the SEAD.

According to the scientific evidence so far, diet plays
a critical role in both health and disease. Embracing and
promoting healthy diets enriched in nutrients of high
biological value, such as the SEAD, are crucial to guarantee
the well-being of and disease prevention in the population.
New scientific advances in epigenetics and nutrition are
necessary to establish the mechanisms through which food
interferes with the expression of genes. As epigenetic changes
are reversible, epigenetic markers associated with nutrients
have been postulated as attractive and promising tools for the
prescription of personalized diets to treat diseases. The SEAD
has features that are able to modulate epigenetic mechanisms,
which could, in turn, promote healthy aging through the
consumption of nutritional bioactive compounds, physical
activity, promotion of psychological well-being, and reduc-
tion in EDCs (Figure 5). Therefore, the SEAD could be
proposed as an epigenetic diet. The term “epigenetic diet”
was coined for the first time in 2011 by Hardy and Tollefsbol
(227), based on numerous studies delineating the impact of
bioactive dietary compounds on changes in the epigenome.
Considering that definition, we propose in this narrative
review that the SEAD could be a potential “epigenetic diet”
considering that there is scientific evidence regarding the
epigenetic effect of its main components (nutrients, healthy
habits and behaviors, and environmental sustainability).
This proposal strongly warrants further scientific studies to
demonstrate the epigenetic value of the SEAD as a whole in
promoting healthy aging by slowing down the molecular or
physiological aging process.
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