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Inflammasomes, intracellular, multimeric protein complexes, are assembled when damage
signals stimulate nucleotide-binding oligomerization domain receptors (NLRs). Several
inflammasomes have been reported, including the NOD-, LRR- and pyrin domain-
containing protein 3 (NLRP3), NLRP1, NLRP7, ice protease-activating factor (IPAF), absent
in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4). Among
these inflammasomes, the NLRP3 inflammasome is the most well-studied in terms of
structure and function. Unlike other inflammasomes that can only be activated by a finite
number of pathogenic microorganisms, the NLRP3 inflammasome can be activated by the
imbalance of the internal environment and a large number of metabolites. The biochemical
function of NLRP3 inflammasome is to activate cysteine-requiring aspartate proteinase-1
(caspase-1), which converts pro-IL-1b and pro-IL-18 into their active forms, namely, IL-1b
and IL-18, which are then released into the extracellular space. The well-established, classic
role of NLRP3 inflammasome has been implicated in many disorders. In this review, we
discuss the current understanding of NLRP3 inflammasome and its critical role in
gynecological disorders and obstetrical complications.

Keywords: nucleotide-binding oligomerization domain-containing protein-, leucine-rich repeats-, and pyrin
domain-containing protein 3 (NLRP3), IL-1b, nuclear factor kappa-B (NF-kB), cervical cancer, preterm birth,
recurrent pregnancy loss
INTRODUCTION

Inflammasomes, including NLRP1, NLRP3, NLRP7, IPAF, AIM2, and NLRC4, have been reported to be
involved in the pathogenesis of many inflammatory diseases, such as dermatitis, arthritis, interstitial
pneumonia, and infantile enterocolitis (1–4). Meanwhile, in the studies of gynecological disorders and
obstetrical complications, the NLRP3 inflammasome was found to be highly related to cervical cancer
(CC), preterm birth, fetal growth restriction (FGR), recurrent pregnancy losses (RPL), pre-eclampsia (PE),
intrauterine fetal death and neonatal hypoxic-ischemic encephalopathy (NHIE) (5–11). Herein, we focus
on the NLRP3 inflammasome and its critical role in gynecological disorders and obstetrical complications.
The NLRP3 inflammasome is a member of the nucleotide-binding and leucine-rich repeat-containing
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(NLR) protein family, of which 23 members have been reported in
humans (12, 13). The NLRP3 inflammasome is closely related to
various heritable and acquired diseases, especially inflammation-
driven diseases, such as gout, cardiovascular diseases, type 2
diabetes, Alzheimer’s disease, prion diseases, infectious diseases,
gynecological diseases, and obstetrical complications (12, 14–17).
This association can be partly explained by mutations and
polymorphisms in NLR coding genes. Indeed, multiple NLRP3
gene mutations have been reported in various autoimmune
inflammatory diseases, such as cryopyrin-associated periodic
syndrome (CAPS), Crohn’s disease, psoriatic juvenile idiopathic
arthritis, rheumatoid arthritis, food-induced anaphylaxis, aspirin-
induced asthma, urticaria, type 2 DM, hypertension, and cancer.
For example, over 90 genetic variants of the NLRP3 gene have been
reported in CAPS. Hereditary mutation of the NLRP3 gene is often
overlapped with de novo mutation, suggesting the presence of hot-
spot loci within the NLRP3 gene that exhibits high mutation
susceptibility (18).

There are three critical components of NLRP3 inflammasome:
NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3),
apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC), and caspase-1, which mainly acts as an
IL-1b-converting enzyme (12, 19). The activation of NLRP3
inflammasome is triggered by damage-associated molecular
patterns (DAMPs) during sterile inflammation or by pathogen-
associated molecular patterns (PAMPs) during infections. DAMPs,
also called alarmins, are self-originating molecules, including
extracellular ATP, ROS, high mobility group box-1 (HMGB1), and
uric acid crystals (7, 12, 19–27). PAMPs refer to molecular patterns of
pathogens, including bacterial messenger RNA, bacterial DNA, RNA
hybrids, bacterial muramyl dipeptide, DNA, viral RNA, fungi, and
protozoa (12, 26, 28). Pattern recognition receptors (PRRs) in the
membrane or cytoplasm sense the signals of “damage”, then all sorts
of changes have occurred in the body to combat danger, and one of
the most important is to initiate the assembly of NLRP3
inflammasome (16, 19, 29, 30). In this review, the current
understanding of NLRP3 inflammasome, including its activation
and regulatory mechanisms, and its possible role in gynecological
disorders and obstetrical complications, are documented.
THE NUCLEOTIDE-BINDING
OLIGOMERIZATION DOMAIN-CONTAINING
PROTEIN-, LEUCINE-RICH REPEATS-, AND
PYRIN DOMAIN-CONTAINING PROTEIN 3
INFLAMMASOME

The Activation of Nucleotide-Binding
Oligomerization Domain-Containing
Protein-, Leucine-Rich Repeats-,
and Pyrin Domain-Containing Protein 3
Inflammasome; Canonical
and Non-Canonical Pathways
Recent studies show that the canonical NLRP3 inflammasome
activation in macrophages requires two signals (12, 29). The first
Frontiers in Immunology | www.frontiersin.org 2
signal is priming via the nuclear factor Kappa-B (NF-kB)-
dependent pathway (29). The priming signal is initiated by
various cytokines or PAMPs, such as IL-1b, tumor necrosis
factor (TNF) and Toll-like receptor (TLR) ligands (31). These
stimulants induce the nuclear translocation of NF-kB by binding
to PRRs, such as TLRs, IL-1 receptor, TNF receptor, and
nucleotide-binding oligomerization domain-containing protein
2 (NOD2). Following translocation, NF-kB binds to a specific
sequence of DNA and causes transcription of various genes
involving pro-IL-1b and NLRP3. Finally, this transcription
induces the synthesis of pro-IL-1b and the upregulation of
NLRP3 at the transcriptional level (12, 24, 29). The priming
signal is a complicated process with many participating
regulatory factors. For example, FADD and caspase-8 promote
the synthesis of pro-IL-1b via TLR4 mediated NF-kB activation
at the transcriptional level (32–34). The adaptor TIR domain-
containing adapter-inducing interferon-b (TRIF) and IRAK1
also regulate the priming signal through IRAK-induced
posttranscriptional modification at the posttranscriptional level
(24, 35–38). Although the priming signal is an extraordinarily
orchestrated process, the time required for this priming is quite
short (35, 36). The second signal is activation triggered by
various DAMPs or PAMPs, resulting in the formation and
activation of the NLRP3 inflammasome. Activation step
includes NLRP3 oligomerization, ASC clustering, and caspase-
1 recruitment (16). NLRP3 receptor protein contains three
domains: pyrin domains (PYD), NACHT (also called the NOD
domains) and C-terminal leucine-rich repeats (LRRs) (39, 40). In
canonical NLRP3 inflammasome pathway, the signal is triggered
by various DAMPs or PAMPs. Then PYD domains of NLRP3
receptor protein interact with PYD domains of ASC, leading to
the assembly of ASC (12, 16, 29). Afterwards, CARD domains of
ASC interact with CARD domains of the effector protein, caspase
domains. As a result, active caspase-1 is released from pro-
caspase-1 by self-cutting, resulting in the cleavage of pro-IL-18
and pro-IL-1b (12, 29, 40). Finally, mature and biologically active
IL-18 and IL-1b are released, which play significant roles in
inflammatory responses (12, 16). Active caspase-1 also induces
gasdermin D-mediated programmed cell necrosis, called
pyroptosis (19, 30, 41, 42). In pyroptosis, caspase-1 cleaves
gasdermin D into gasdermin DNterm. When gasdermin DNterm

is inserted into the cell membrane and forms pores, cell necrosis
is induced with the release of IL-1b (38).

Contrarily, non-canonical NLRP3 inflammasome activation
is independent on caspase-1. The key activator of the non-
canonical NLRP3 inflammasome activation is caspase-11 (12).
Most Gram-negative bacteria, including Escherichia coli,
Citrobacter rodentium, and Vibrio cholerae, but not Gram-
positive bacteria, activate non-canonical NLRP3 inflammasome
pathway, suggesting the crucial role of LPS, an immunogenic
parietal fragment only from Gram-negative bacteria (30, 43, 44).
Due to the CARD domains of caspase-11 bind to the lipid A
portion of LPS with high specificity and affinity (44). Meanwhile,
although upstream signal of caspase-11 activation is still
controversial, type I IFN signaling were supported by several
studies (12, 43). Therefore, caspase-11 acts as PRR and senses
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fang et al. The NLRP3 Inflammasome
LPS in the cytoplasm, then resulting in the activation of NLRP3
inflammasome and subsequently IL-1b and IL-18 release (12).
And extracellular LPS are recognized by TLR4, then initiating
the TRIF signal activation and subsequently nuclear
translocation of NF-kB. Afterwards, type I IFN bind to
IFN receptor, and JAK/STAT pathway are activated and
leading to the transcription of caspase-11 gene. Finally, non-
canonical NLRP3 inflammasome activation induce the
maturation and release of IL-1b and IL-18, besides pyroptosis
(44, 45). Caspase-11-dependent non-canonical NLRP3
activation is independent from canonical NLRP3 activation
process (45). In conclusion, the activation of the NLRP3
inflammasome is an extremely complicated process mediated
by multiple factors (12, 29, 30).
The Immune Effects of IL-1b and IL-18
NLRP3 inflammasome is a versatile inflammasome that is capable
of reacting to a variety of “damage” signals and inducing the
maturation and release of IL-18 and IL-1b (19, 46). Therefore, the
inflammasome is considered the most well-characterized
molecular platform responsible for IL-18 and IL-1b production
(47–49). IL-18, a member of the IL-1 family, is a critical regulator
of innate and adaptive immune responses. IL-18 is mainly
synthesized by dendritic cells, epithelial cells, and macrophages
(50). IL-18 induces the T cell expression of Fas ligand (FasL) and
enhances Fas-mediated cytotoxicity. Additionally, IL-18 alone
only induces a small amount of IFN-g and GM-CSF, but in
conjunction with IL-12 or IL-15, IL-18 can induce NK cells and
CD4 T cells to produce high levels of IFN-g. Moreover, IL-18
modulates Th2, and Th17 cell responses, and CD8 cytotoxic cell
activity by adjusting the microenvironment of the host (51, 52).
IL-1b, a member of the IL-1 family, is a potent proinflammatory
cytokine that is involved in the majority of the inflammatory
reaction (46). IL-1b is mainly synthesized by monocytes and
macrophages. IL-1b induces the secretion and release of many
cytokines, such as IL-1b itself, IL-1a, IL-6, and TNF-a, and the
recruitment of T, B, and NK cells to orchestrate immune responses
(50, 53).
The Activation Pathways of Nucleotide-
Binding Oligomerization Domain-
Containing Protein-, Leucine-Rich
Repeats-, and Pyrin Domain-Containing
Protein 3 Inflammasome
Considering that so many stimuli can activate NLRP3
inflammasome, it is unlikely that these stimuli directly interact
with the inflammasome. Instead, it is more likely that these stimuli
activate the inflammasome through common pathways (12). The
pathways that activate NLRP3 inflammasome are still in dispute.
However, several hypothetical pathways have been suggested to
explain the mechanism of activation (16). These hypotheses include
the K+ efflux hypothesis, Ca2+ mobilization hypothesis, ROS
hypothesis, and lysosomal rupture hypothesis. These pathways
may be synergistic to a certain extent and not completely exclusive.
Frontiers in Immunology | www.frontiersin.org 3
When damage signals are transmitted to cells, several
consequences may occur. (1) An ATP-gated ion channel named
purinergic P2RX7 triggers the efflux of K+. In addition, membrane
integrity can be destroyed by bacterial pore-forming toxins and the
complement membrane attack complex, which may contribute to
the K+-H+ antiporter (16, 54). K+ efflux activates the formation of
the inflammasome by promoting the never in mitosis gene A-
related kinase 7 (NEK7)-NLRP3 interaction, inducing
mitochondrial and lysosomal damage, and increasing the
production of ROS (55, 56). (2) P2RX7 also triggers the influx of
extracellular Ca2+. Additionally, an increased influx of extracellular
Ca2+ into the cytoplasm through the calcium-sensing receptors
(CASRs) or damaged cell membranes leads to the activation of
phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-
bisphosphate (PIP2) into DAG and inositol 1,4,5-triphosphate
(IP3) via PLC-mediated PIP2 hydrolysis. Finally, IP3 binds to its
receptor, IP3R, on ERmembranes, which triggers Ca2+ release (57–
59). Ca2+ mobilization may activate the inflammasome by
promoting NLRP3-ASC complex formation, which acts as a
second messenger. Then, this second messenger induces
mitochondrial Ca2+ overload, followed by the production of ROS
and the release of mtDNA and cardiolipin (59–63). (3)
Mitochondrial hypoxia, mitochondrial membrane damage, and
autophagy/mitophagy inhibition lead to the significant
production of ROS (19). (4) Crystalline and particulate matter
attack the lysosomal membrane and disrupt the membrane
integrity. Then, cathepsin B, the chemical nature of which is a
lysosomal cysteine protease, as well as lipases, K+, and Ca2+ shift
their location from the lysosome into the cytoplasm. Finally,
cathepsin B, K+, Ca2+, and activated cell stress-responsive kinases,
including TAK1 and JAK, activate NLRP3 inflammasome (12, 16,
29). The proposed pathways are shown in Figure 1.
The Regulators of Nucleotide-Binding
Oligomerization Domain-Containing
Protein-, Leucine-Rich Repeats-,
and Pyrin Domain-Containing Protein 3
Inflammasome
NEK7, as a member of the NIMA-related kinase (NEK proteins)
family, is a serine/threonine kinase and is involved in the
regulation of the cell cycle and NLRP3 inflammasome (56).
The inflammasome response and cell division are exclusive
and cannot be carried out at the same time, suggesting that
NEK7 may function as a cellular switch (64). The well-
established classic role of NEK7 in the activation of NLRP3
inflammasome has been shown in recent studies (56, 64, 65).
NEK7 is indispensable for inflammasome activation and is
thought to act downstream of K+ efflux (66). The high-
molecular-mass NLRP3-NEK7 complex is assembled through
the interaction of the LRR domain of NLRP3 and the catalytic
domain of NEK7 in a kinase-independent manner (64). Schmid-
Burgk J.L. et al. reported that NLRP3–NEK7 complex assembly,
as well as ASC oligomerization and ASC speck formation, were
entirely suppressed when NEK7 was absent (67). Likewise, He Y.,
et al. observed that caspase-1 activation and IL-1b secretion in
January 2021 | Volume 11 | Article 555826
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response to stimulation by numerous agonists, including ATP,
lipopolysaccharide (LPS), nigericin, and alum, were also
suppressed without NEK7 (56). Several regulators of NLRP3
inflammasome activation have been reported, such as double-
stranded RNA-dependent protein kinase (PKR) and guanylate-
binding protein 5 (GBP5); however, the roles of these regulators
are still in dispute (68, 69).

The Agonists and Antagonists of
Nucleotide-Binding Oligomerization
Domain-Containing Protein-, Leucine-Rich
Repeats-, and Pyrin Domain-Containing
Protein 3 Inflammasome
Agonists and antagonists activate or inhibit NLRP3
inflammasome through the four pathways described above,
either directly or indirectly (26). RIP1 activates NLRP3
inflammasome by forming a complex that promotes
mitochondrial damage and ROS production (70). CASR
agonists, such as Gd3+, AL3+, and R-568, and the PLC agonist
m-3M3FBS activate NLRP3 inflammasome by promoting Ca2+

mobilization (59, 71).
Multiple antagonists for NLRP3 inflammasome have been

reported, including indirect inhibitors (glyburide, 16673-34-0,
JC124, and FC11A-2), inhibitors for the constituents of NLRP3
inflammasome (parthenolide, VX-740 and -765, BAY 11-7082m
and b-hydroxybutyrate) and direct inhibitors of NLRP3 protein
(MCC950, 3,4-mehtylenedioxy-b-nitrostyrene, CY-09, tranilast,
OLT1177, and oridonin) (72). In addition, RIP2 inhibits
inflammasome activation by enhancing autophagy of mitochondria
and subsequently reducing ROS (19, 70). CA-074-ME, a cathepsin B
inhibitor, blocks inflammasome activation by inhibiting the
translocation of cathepsin B from the lysosome to the cytoplasm
(16). Currently, none of these molecules is approved by Food and
Frontiers in Immunology | www.frontiersin.org 4
Drug Administration or other governmental agencies. Further
development of small molecules with improved therapeutic efficacy
is needed.
NUCLEOTIDE-BINDINGOLIGOMERIZATION
DOMAIN-CONTAINING PROTEIN-, LEUCINE-
RICHREPEATS-, AND PYRIN DOMAIN-
CONTAINING PROTEIN 3 INFLAMMASOME
ANDCLINICAL DISORDERS

Increasing numbers of studies indicate that NLRP3 inflammasome
is the critical modulator in various inflammatory conditions. When
cells and tissues are damaged or dying, DAMPs are released and
activate NLRP3 inflammasome and various immune cells, including
neutrophils, dendritic cells (DCs) and macrophages (27). Then,
these immune effectors release numerous cytokines and
chemokines, which in turn recruit more immune cells by
inducing the proliferation, differentiation, and migration of
immune effectors, subsequently leading to immune activation and
sterile inflammation (29). There is an array of DAMPs and DAMP-
sensing receptors that participate in sterile inflammation and
synergistically orchestrate the initiation, regulation, and
termination of sterile inflammation. Sterile inflammation is
usually beneficial to the host and promotes the repair and
regeneration of cells and tissues (27). However, the protective
effect of sterile inflammation is often limited, and sterile
inflammation can be detrimental to the body by inducing
inflammatory disorders (46, 50).

In type 2 diabetes, chronic hyperglycemia activates NLRP3
inflammasome by promoting the generation of ROS; then, IL-1b
induces the dysfunction and destruction of pancreatic islet b cells
(16). In gout, monosodium urate (MSU) activates NLRP3
FIGURE 1 | The proposed activation pathways of NLRP3 inflammasome.
January 2021 | Volume 11 | Article 555826
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inflammasome, through which IL-1b induces chronic
inflammation and inflammatory injuries (73).

The Possible Molecular Mechanisms of
Nucleotide-Binding Oligomerization
Domain-Containing Protein-, Leucine-Rich
Repeats-, and Pyrin Domain-Containing
Protein 3 Inflammasome in Gynecological
Disorders and Obstetrical Complications
NLRP3 inflammasome is highly related to multiple gynecological
disorders and obstetrical complications, such as cervical cancer
(CC), preterm labor, FGR, RPL, PE, intrauterine fetal death, and
NHIE (5–11). The possible molecular mechanisms of NLRP3
inflammasome has been proposed in cervical cancer. Particular
ligands, such as LPS, trigger carcinogenesis by binding to their
receptors, such as Toll-like receptor 4 (TLR4). TLR4, as a membrane
PRR, activates the TRAF6-TAK signalosome via the myeloid
differentiation factor 88 (MyD88)-dependent pathway.
Subsequently, the signalosome activates transforming growth
factor-b-activated kinase 1 (TAK1) via autophosphorylation.
TAK1 then phosphorylates IkB kinases (IKKs). The
phosphorylated IKKs induce the phosphorylation of inhibitor of
nuclear factor kappa-B kinase (IkB), and IkB dissociates from the
inactive P65- NF-kB -IkB trimer. The activated P65-NF-kB dimer
translocate into the nucleus and triggers the expression, synthesis
and release of various proinflammatory cytokines. Finally, persistent
inflammation contributes to the malignant transformation of
normal cervical cells and the establishment of a tumor
microenvironment (74–76). Additionally, polymorphism of the
inflammasome component IL-1b is a factor that increases
susceptibility to CC at the genetic level (77). For preterm labor,
fetal growth restriction, recurrent pregnancy loss, pre-eclampsia,
intrauterine fetal death, and neonatal hypoxic-ischemic
encephalopathy, the exact mechanism is unclear. Excessive
inflammation induced by NLRP3 inflammasome may play a
crucial role in the pathogenesis of these conditions either by
directly participating in or indirectly regulating various stages of
disease progress (Figure 2).

The Role of Nucleotide-Binding
Oligomerization Domain-Containing
Protein-, Leucine-Rich Repeats-, and Pyrin
Domain-Containing Protein 3
Inflammasome in Gynecological Diseases
NLRP3 inflammasome is closely associated with various
gynecological diseases, especially in gynecological-oncology
conditions (76, 78). Accumulating studies have demonstrated that
inflammasomes play a pivotal role in carcinogenesis by recruiting
various immune cells, including neutrophils, dendritic cells, natural
killer (NK) cells, macrophages, T and B lymphocytes, and inducing
inflammatory responses (79–81). Moderate inflammation may
contribute to fighting cancer. For example, IL-18 contributes to
repairing the epithelial barrier and inducing NK cells to kill tumor
cells. Additionally, IL-1b drives the efficient CD8+ T cell response
against tumor cells (82, 83). However, persistent inflammation is
Frontiers in Immunology | www.frontiersin.org 5
related to the dysregulation of cell differentiation, angiogenesis,
apoptosis evasion, and malignant transformation and progression.
Additionally, inflammatory factors may contribute to
carcinogenesis by participating in the interaction between cancer
cells and the microenvironment (84).

Cervical cancer (CC) is an extraordinarily common cancer
in women, second only to breast cancer (85). Studies have
shown that chronic inflammation, along with human
papillomavirus (HPV) infection, induces carcinogenesis of the
cervix (86, 87). However, in a study of women with CC (N=74),
the IL-18 expression in cervical tissue was significantly lower
in CC groups compared to that of high grade squamous
intraepithelial lesion (HSIL) group. In addition, the IL-1b
expression was significantly decreased in the CC group
compared with those of normal and low grade squamous
intraepithelial lesion groups (LSIL) (5). Therefore, a complex
immunological mechanism regulates inflammatory cytokine
expressions, while the preneoplastic cervical lesions progress to
a more advanced state. Further studies are needed to investigate a
possible regulatory role of the inflammasomes in inflammatory
cytokine production.

In a study using LPS-stimulated human CC cells, human
SiHa and Caski cells (HPV-16-infected cervical cancer cell
lines), the mRNA and protein levels of inflammasome
components, such as NLRP3, pro-IL-1b, IL-1b, and caspase-
1, was significantly increased. When immunosuppressor
CD200Fc was added, in addition to IL-1b, caspase-1, NLRP3,
ASC, the protein levels of TLR4 and P65, and the translocation
of P65 to the nucleus were significantly decreased in a dose-
dependent manner, suggesting the crucial role of CD200Fc in
the modulation of TLR4- NF-kB and NLRP3 inflammasome
pathway. However, in HeLa cells (HPV18-infected cervical
cancer cell line) and C33A cells (HPV-negative cervical
cancer cells), no such changes were observed (76). In HeLa
cells and C33A cells, the TLR4 mRNA level was found no
significant difference when treated with different doses of LPS,
suggesting HeLa cells and C33A cells did not have an obvious
response to LPS (86) In HeLa cells and C33A cells, the TLR4
mRNA level was found no significant difference when treated
with different doses of LPS, suggesting HeLa cells and C33A
cells did not have an obvious response to LPS (86).

The Role of Nucleotide-Binding
Oligomerization Domain-Containing
Protein-, Leucine-Rich Repeats-, and Pyrin
Domain-Containing Protein 3
Inflammasome in Obstetrical
Complications
The fetus and placenta, as a semiallograft, express not only
maternal antigens but also paternal antigens (9). Therefore,
pregnancy presents a unique immune challenge to the mother,
and maternal-fetal immunotolerance is essential for a successful
pregnancy. Thus, the bias toward immune tolerance is one of the
determinants of a successful pregnancy. During normal
pregnancy, the maternal adaptive immune system is inhibited,
and the innate immune system is relatively activated. These
January 2021 | Volume 11 | Article 555826
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changes have been reported to be beneficial for a successful
pregnancy (88). In pregnant women, the inflammasome is
mainly assembled in the placenta, which is a vital organ that is
responsible for successful pregnancy (46, 89, 90). The placenta
regulates its function and the progress of the pregnancy by
producing pro- and anti-inflammatory cytokines, including IL-
1b, IL-6, TNF-a (91, 92). Inflammatory dysfunction of the
placenta may contribute to the dysregulation of immune
responses at the maternal-fetal interface and result in
devastating consequences (10, 20, 89). Excessive placental
inflammation directly or indirectly affects the mother and the
offspring, and it is highly associated with a number of
specific obstetrical complications, such as preterm birth, FGR,
RPL, PE, intrauterine fetal death and NHIE (6–11). NLRP3
inflammasome, as a critical constituent of the immune system,
is intimately involved in the inflammatory response of these
conditions (88, 90, 93, 94).

Preterm Birth
Preterm birth is defined as delivery occurring before 37 weeks of
gestation. Preterm birth is the primary cause of neonatal
morbidity and mortality worldwide, and the incidence is
reported to be 10% or higher (95). As a syndrome that results
from multiple etiologies, a close association between NLRP3
inflammasome and preterm birth has been reported (6, 17).
NLRP3 inflammasome can be activated by amniotic infection,
leading to the initiation of labor, membrane rupture, and cervical
dilatation, finally resulting in preterm birth (6, 96).

In a study of women with preterm births (N=37), membranes
with acute chorioamnionitis had increased levels of HMGB1,
caspase-1, IL-18, and IL-1b compared with those from women
who underwent normal labor (17).

In LPS-induced C57BL/6 mice preterm birth model, the
mRNA and protein levels of NLRP3, caspase-1, IL-18, and IL-
1b in the fetal membrane and basal decidua were markedly
Frontiers in Immunology | www.frontiersin.org 6
elevated as compared with those of the phosphate-buffered saline
(PBS)-treated control mice, suggesting that NLRP3
inflammasome may play a critical role in proinflammatory
changes. Moreover, when mice undergoing LPS-induced
preterm birth were treated with the inflammasome inhibitor
MCC950, the time interval from the LPS injection to delivery was
prolonged, and the preterm birth rate was reduced by 30%.
Additionally, the neonatal mortality rate was decreased by
approximately 30% (97). These findings were consistent with
the previous study, which reported a 50% preterm birth rate
when the alarmin S100B was injected into the C57BL/6 mouse
model, whereas MCC950 reduced the preterm birth rate and
neonatal morbidity by 35.7% and 26.7%, respectively (6).

Fetal Growth Restriction
FGR is defined as a fetal weight below the tenth percentile of
normal fetal weights (98). Excessive placental inflammation was
reported to be associated with FGR.

In the MSU-induced FGR rodent model, the prevalence of FGR
was increased in a dose-dependent manner. 20% of pups developed
growth restriction when the pregnant rat was treated with MSU 250
mcg/Kg. When pregnant rats were treated with MSU 500 or 1000
mcg/Kg, over 80% fetal growth restriction was observed in
comparison to the PBS treated controls. Additionally, the growth
restriction induced byMSUwas reversed by a caspase-1 inhibitor or
IL-1b inhibitor (7).

It is speculated that in pathological pregnancies, increases in
various DAMPs from the maternal-fetal interface, such as
increased levels of MSU and HMGB1, trigger the activation of
the NLRP3 inflammasome, which in turn increases IL-1b.
Increased IL-1b may induce defective spiral artery remodeling,
aberrant uteroplacental hemodynamics, decreased system A
amino acid transporter activity, cytotrophoblast cell apoptosis,
and decreased syncytialization. All of these pathological changes
may conspire to the development of FGR (7, 99, 100).
FIGURE 2 | The possible molecular mechanisms of NLRP3 inflammasome in inflammatory conditions.
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Recurrent Pregnancy Loss
RPL, defined as two or more consecutive clinical pregnancy losses
prior to 20 weeks of gestation, is the most common pregnancy
complication, and approximately 5–15% of all pregnancies can be
affected (101). Of all the causes leading to RPL, NLRP3
inflammasome has been demonstrated to play an important role
in RPL by establishing inflammatory responses during
pregnancy (102).

In a study of endometrial tissues derived fromwomenwith RPL
(N=30), the endometrial expression of NLRP3, caspase-1, IL-18,
and IL-1bwas significantly increased comparedwith that of normal
fertilewomen(46). Inanother studyof endometrial tissuesobtained
from women with RPL (N=36), increased secretion of
proinflammatory cytokines, such as IL-1b, TNF-a, and IFN-g
was reported. In contrast, the secretion of anti-inflammatory
cytokines, such as IL-4 and IL-10, and angiogenic cytokines,
including IL-2, IL-6, and IL-8, was reduced compared with those
of normal fertile women (103).Mutations inNLRP7 and KHDC3L
were known to cause familial biparental hydatidiform moles
(BiHMs), a rare form of pregnancy loss and endometrial cancer.
However, the study did not find any relationship between NLRP7,
NLRP2, KHDC3L, and RPL (104).

It is generally accepted that the establishment and
maintenance of a successful pregnancy rely on a balance
between pro- and anti-inflammatory responses at the
maternal-fetal interface. Additionally, endometrial cells convert
into a specific phenotype that is suitable for embryo
implantation, subsequent placenta and fetal development, and
spiral artery invasion, which often requires inflammatory
cytokines (105). Women with RPL have a higher incidence of
abnormal intestinal permeability and increased plasma LPS
levels. The impaired intestinal epithelial barrier may increase
intestinal permeability, which permits the entry of Gram-
negative bacteria into the bloodstream. Then, LPS, an
immunogenic parietal fragment from bacteria, is produced.
Subsequently, large amounts of inflammatory cytokines can be
produced. Therefore, NLRP3 may be associated with
endometrial proinflammatory micro-milieu and defective
angiogenesis, which contribute to RPL by disturbing the
inflammatory balance at the maternal-fetal interface (7, 104,
106, 107).

Pre-Eclampsia
PE, characterized by the presence of increased blood pressure
(BP>140/90 mmHg) and proteinuria (>300 mg/24 h) after 20
weeks of gestation, is usually accompanied by headache, nausea,
vomiting, and epigastric discomfort (108, 109). PE is a multisystem
pregnancy disorder that causes severe maternal symptoms (88).
Among the factors that contribute to PE, including impaired spiral
artery remodeling, endothelial dysfunction, and excessivematernal
systemic inflammation, the systemic inflammation accounts for
many of the remaining factors (110–112).

In a study of women with PE (N=20), Ingrid C Weel et al.
reported that the placental expression of NLRP3, IL-1b, and
caspase-1 was significantly increased in the placenta from PE
women compared to that from normotensive pregnant women,
Frontiers in Immunology | www.frontiersin.org 7
indicating that NLRP3 inflammasome may participate in the
development of PE (9).

In a mice model, C57BL/6 mice were injected with extracellular
vesicles (EV), which induces the accumulation of activated platelets
in the placental bed and activates the NLRP3 inflammasome. EV-
injection induced PE-like phenotypes with renal dysfunction and
elevated blood pressure. In addition, the expression of NLRP3,
caspase-1, and IL-1b was increased in the placentas of EV-injected
mice compared to those of control mice. Additionally, when
NLRP3/caspase-1 knockout mice or mice given NLRP3
inflammasome inhibitors received the same treatment, the PE-
like phenotype did not appear (113).

Neonatal Hypoxic–Ischemic Encephalopathy
NHIE is associated with 23–25% of neonatal death worldwide and
results in long term sequelae if affected neonates survive (114, 115).
Maternal hypotension, cardiac arrest, placental thrombosis,
placental abruptio, uterine rupture, and placental inflammation
have been reported to be the risk factors for NHIE. In the brain
parenchyma, hypoxia-ischemia has been demonstrated to induce
inflammatory responses, followed by subsequent neuronal death
mediated by the peripheral immune system (116, 117).

Activated microglial cells release proinflammatory cytokines
and ROS, and microglial inflammation is reported to be regulated
by the NLRP3 inflammasome (118). In an experimental chronic
migraine mice model, NLRP3 and IL-1b were mainly expressed in
themicroglia in the trigeminal nucleus caudalis (TNC),while IL-1R
was expressed in the neurons. Activation of NLRP3 inflammasome
in microglia mediates IL-1b release by promoting the process of
pro-IL-1b to mature one (48, 119). In a preclinical rodent model of
LPS+Hypoxia/ischemia-induced encephalopathy, neuronal IL-1b
upregulated cytokine-induced neutrophil chemoattractant,
monocyte chemoattractant protein -1 and inducible nitric oxide
synthase, suggesting its role in PMN infiltration. IL-1bwas also
associated with the activation of an apoptotic and necroptotic
pathway by increasing the expression of activated caspase-3 and
receptor-interacting-protein-3 (120). Ina rodentmodelundergoing
hypercapnia/hypoxemia, cognitive impairment, apoptosis of
hippocampal neurons, NLRP3 inflammasome activation, and
upregulation of IL-1b had interaction effects. In hypoxia-activated
microglia, the expression of NLRP3, caspase-1, and IL-1b was
significantly increased by hypercapnia (121).

In a cord blood study of women undergoing cesarean section
and vaginal delivery, IL-1b level was significantly lower in elective
cesarean section cases as compared with those of emergency
cesarean section and vaginal delivery, suggesting cord blood IL-
1b levelmay determine high-risk babies for perinatal hypoxic stress
(122). The NLRP3 inflammasome in neonates with NHIE has not
been elucidated well, and more studies are needed in the future.
CONCLUSION

In this review, the components, assembly, and activation of NLRP3
inflammasome are discussed. Although multiple hypotheses, such
as the K+ efflux, Ca2+ mobilization, ROS production, and lysosomal
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rupture hypotheses, have been proposed to explain inflammasome
activation, a widely accepted theory has not yet emerged. In
addition, NLRP3 inflammasome has been indicated to play an
important role in the pathogenesis of various gynecological and
obstetrical diseases. Therefore, NLRP3 inflammasome might be an
attractive therapeutic and diagnosis target NLRP3 inflammasome-
related disorders. However, clinical studies of NLRP3
inflammasome in normal pregnant women, women with
gynecological and obstetrical complications, and neonates with
NHIE are significantly limited. Further clinical studies and studies
to investigate the feasibility and safety of targeted therapy
are needed.
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