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Circulating tumor cells (CTCs) have a great potential for noninvasive diagnosis and real-time monitoring
of cancer. A comprehensive evaluation of four whole genome amplification (WGA)/next-generation
sequencing workflows for genomic analysis of single CTCs, including PCR-based (GenomePlex and
Ampli1), multiple displacement amplification (Repli-g), and hybrid PCR- and multiple displacement
amplificationebased [multiple annealing and loop-based amplification cycling (MALBAC)] is reported
herein. To demonstrate clinical utilities, copy number variations (CNVs) in single CTCs isolated from four
patients with squamous nonesmall-cell lung cancer were profiled. Results indicate that MALBAC and
Repli-g WGA have significantly broader genomic coverage compared with GenomePlex and Ampli1.
Furthermore, MALBAC coupled with low-pass whole genome sequencing has better coverage breadth,
uniformity, and reproducibility and is superior to Repli-g for genome-wide CNV profiling and detecting
focal oncogenic amplifications. For mutation analysis, none of the WGA methods were found to achieve
sufficient sensitivity and specificity by whole exome sequencing. Finally, profiling of single CTCs from
patients with nonesmall-cell lung cancer revealed potentially clinically relevant CNVs. In conclusion,
MALBAC WGA coupled with low-pass whole genome sequencing is a robust workflow for genome-wide
CNV profiling at single-cell level and has great potential to be applied in clinical investigations.
Nevertheless, data suggest that none of the evaluated single-cell sequencing workflows can reach
sufficient sensitivity or specificity for mutation detection required for clinical applications.
(J Mol Diagn 2020, 22: 770e781; https://doi.org/10.1016/j.jmoldx.2020.02.013)
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Circulating tumor cells (CTCs) are a population of cells that
are shed from a primary or metastatic tumor into the
bloodstream. As a new type of liquid biopsy, CTCs bear
tremendous potential for noninvasive diagnosis and real-
time monitoring of cancer. Genomic analysis of CTCs using
single-cell sequencing may help to reveal the underlying
mechanisms of tumor metastasis and intratumor heteroge-
neity and to identify gene mutations that potentially
contribute to disease relapse or drug resistance.1e5

To achieve accurate genomic analysis of CTCs at the
single-cell level, whole genome amplification (WGA) of
genomic DNA from a single cell must be performed with
sufficient breadth and precision. Depending on the mode of
downstream genomic analysis [ie, single-nucleotide variants
(SNVs), insertions/deletions (indels), or copy number
Pathology and American Society for Investiga
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variations (CNVs)], specific performance metrics may be
required for different applications. For example, a robust
CNV analysis requires wide genome coverage (breadths) as
well as high coverage uniformity and reproducibility. On the
other hand, to achieve the high sensitivity and specificity
required for the analysis of SNVs and indels, high genome
coverage/low allele dropout (ADO) rate, and low amplifi-
cation errors would be critical.6,7
tive Pathology. Published by Elsevier Inc.
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Circulating Tumor Cell Genomic Analysis
Currently, the most commonly implemented WGA
methods for single-cell genomic analyses are PCR or
isothermal multiple displacement amplification (MDA)
based.8 PCR-based WGA methods typically conduct PCR
amplification using degenerate-oligos as primers (ie,
PicoPlex)9,10 or linker adaptors with universal sequences
ligated to the DNA fragments (ie, GenomePlex and
Ampli1).10 In general, PCR-based WGA methods are
believed to generate higher coverage and uniformity but
at the expense of introducing sequence-dependent
coverage bias and significantly more single-nucleotide
errors than MDA-based methods. On the other hand,
the isothermal MDA-based methods (ie, Repli-g)11 use
high-fidelity v29 DNA polymerase for linear amplifica-
tion of larger DNA fragments across the genome with
higher fidelity than PCR-based approaches, making it
potentially better suited for identification of point muta-
tions. However, MDA-based methods are also known to
suffer from amplification biases and nonuniformity that
can prevent applications in CNV analysis. WGA methods
that hybridize the principles of PCR- and MDA-based
approaches have also been reported [ie, multiple anneal-
ing and loop-based amplification cycling (MALBAC)].12

MALBAC generates looped DNA molecules during the
initial multiple rounds of displacement preamplification
using a specific oligo design, which is intended to reduce
the bias often observed with nonlinear amplification.
These DNA loops are then further amplified using PCR
amplification. Although such a hybrid approach has
broader genomic coverage while maintaining uniformity
sufficient for CNV analysis, it can still result in >30%
base dropout,13 a potential significant sacrifice in sensi-
tivity of detecting single-nucleotide mutations. Despite
intensive efforts in method development in recent years, a
comprehensive evaluation of methods and workflows for
accurate single-cell genomic analysis has been lacking.

In this study, the performance of four different WGA
methods for single CTC analysis, including two PCR-based
methods (GenomePlex and Ampli1), an MDA-based
method (Repli-g), and a hybrid approach (MALBAC),
were systematically evaluated. Results indicate that MAL-
BAC and Repli-g WGA have significantly higher genome
coverage compared with GenomPlex and Ampli1, the two
PCR-based WGA methods. Furthermore, MALBAC
coupled with low-pass whole genome sequencing (LP-
WGS) was found to be superior to Repli-g for genome-wide
CNV profiling and detecting focal oncogenic amplifications.
When coupled with whole exome sequencing (WES),
MALBAC WGA had higher sensitivity but lower specificity
in SNV/indel detection compared with Repli-g. Neverthe-
less, none of the WGA methods can achieve sufficient
sensitivity and specificity for genome-wide point mutation
analysis at the single-cell level. Finally, the clinical utilities
of genetic analysis of single CTCs were found by profiling
CNVs in single CTCs isolated from four patients with
squamous nonesmall cell lung cancer (NSCLC) enrolled in
The Journal of Molecular Diagnostics - jmd.amjpathol.org
a phase 2 trial (NCT01493843) treated with pictilisib in
combination with chemotherapy.
Materials and Methods

Synthetic CTC Samples with Spiked-In Tumor Cells

To mimic CTCs in blood, synthetic CTC samples were
created by spiking viable tumor cells from three tumor cell
lines, EBC-1, KPL-4, and PC-3 (see cell line information in
Supplemental Table S1), into 3.75-mL normal human donor
blood samples. The spiked-in CTCs were selected with the
CellSearch platform (Menarini Silicon Biosystems Inc.,
Huntington Valley, PA), a semiautomated system that en-
riches for cells expressing epithelial cell adhesion molecules
(EpCAMs) but lacking the leukocyte-specific molecule
CD45. Cells are further immunostained with fluorescent-
labeled anti-keratin antibodies identifying, among others,
cytokeratin (CK) 8, CK18, and CK19, and individual single
cells were then isolated using DEPArray System (Menarini
Silicon Biosystems).
CTCs from Patients With Squamous NSCLC

Four patients with squamous NSCLC treated with the
phosphatidylinositol 3-kinase inhibitor pictilisib in combi-
nation with carboplatin and paclitaxel in a phase 2 trial
(FIGARO, GO27912, NCT01493843) were selected for
clinical application of single CTC analysis. All patient blood
samples were obtained from the institutional review board
or ethics committee at each site. Informed consent was
obtained from all patients.

Patients’ blood (7.5 mL) was collected in Streck tubes
(Streck Inc., La Vista, NE) and shipped to Epic Sciences
within 48 hours and processed immediately on arrival.
Erythrocytes were lysed, and approximately 3 million
nucleated blood cells were dispensed onto each of 10 to 16
glass microscope slides and placed at �80�C for long-term
storage according to methods previously described.14,15

Prepared slides were thawed and subjected to automated
immunofluorescent staining for CK, DAPI (DNA marker),
and CD45 (blood lineage marker). Automated scanning
identified candidate cells of interest among nucleated cell
populations based on size and morphologic features of the
cells, nuclear features, and CK expression in the absence of
blood-lineage CD45 expression. Candidate cells were then
reviewed by California-licensed clinical laboratory scientists
to confirm immunohistochemical staining profile as well as
to assess the cytomorphometric features of the cell (size,
shape, nucleus/cytoplasm ratio, and so on as they relate to
the features associated with CTCs). Candidate cells were
given histologic classification of single cells, clusters (more
than one sharing cytoplasmic boundaries), or apoptotic cells
(nuclear features consistent with apoptosis).
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Single-Cell WGA

Captured single CTCs were stored in a 0.2-mL PCR tube
stored at �80�C. All single cells were washed with
phosphate-buffered saline buffer; phosphate-buffered
saline volume carried over with the cell sample into the
amplification protocol should not exceed 1 mL. To avoid
DNA contamination from external sources or from the
amplified DNA product, sample preparation steps before
amplification were performed in pre-PCR hood and room.
Diluted control human genomic DNA in concentrations of
30 pg/mL and 1 mL (30 pg) was used for positive control
for single-cell WGA. Four different WGA workflows
were performed with commercial available kits (MAL-
BAC Single Cell WGA Kit, catalog number YK001B,
Yikon Genomics, Shanghai, China; Repli-g Single Cell
Kit, catalog number 150345, Qigen, Venlo, the
Netherlands; GenomePlex Single Cell Whole Genome
Amplification Kit, product number WGA4, Sigma-
Aldrich, St. Louis, MO; and Ampli1 WGA Kit, refer-
ence number WG 001 050 R02, Silicon Biosystems) and
strictly followed by manufacturer’s manual. Supplemental
Figure S1 shows the schemes of these four different
WGA methods.
PCR-Based Targeted Sequencing by MMP-Seq

Targeted sequencing was performed using a matrix metal-
loproteinase sequencing (MMP-seq) panel (963 amplicons
that targeted 88 oncogenic and tumor suppresser genes) and
workflow that developed and reported previously.16 The
experiments were performed according to the Multiplex
Amplicon Tagging Protocol from the manufacturer (Fluid-
igm, South San Francisco, CA). The resulting sequencing-
ready amplicon libraries were sequenced on MiSeq using
Illumina MiSeq version 2 chemistry [2 � 108-bp paired-end
(PE) reads; Illumina Inc., San Diego, CA]. The mean yield
is 18 million per run.
LP-WGS

TruSeq PCR-free libraries (Illumina) were generated from 2
mg of Repli-g amplified sample DNA. Libraries from 150 ng
of MALBAC amplified DNA for WGS were prepared from
the adaptor-ligated DNA before the pooling step in exome
library preparation. Eight-cycle enrichment PCR was per-
formed on an aliquot of adaptor-ligated DNA to complete
the adaptor for Illumina PE sequencing. Both libraries were
checked for quality (TapeStation, Agilent Technologies
Inc., Santa Clara, CA) and quantity (KAPA Biosciences
Library Quantification, Kapa Biosystems Inc., Wilmington,
MA) and sequenced to 0.1� using Illumina MiSeq version
chemistry (2 � 100 PE reads). Libraries were sequenced to
0.1� using Illumina MiSeq version chemistry (2 � 100 PE
reads).
772
Whole Exome Sequencing

SureSelectXT (Agilent Technologies Inc.) next-generation
sequencing libraries were prepared using Repli-g and
MALBAC amplified samples. Repli-g (500 ng) and MAL-
BAC (150 ng) amplified DNA was sheared to approxi-
mately 150-bp fragments using the Covaris E220 Focused
ultrasonicator system (Covaris Inc., Woburn, MA). Frag-
mented DNA was processed according to manufacturer’s
protocol with slight modifications to generate partial adaptor
ligated DNA suitable for target enrichment using the Sure-
SelectXT Exome Target Enrichment System for Illumina
Sequencing version 5 DNA baits (Agilent Technologies
Inc.). Exome-enriched libraries were PCR amplified to
complete the Illumina adaptor and then sequenced to 100�
coverage (2 � 100 PE) using Illumina HiSeq 2500 Rapid
Run with on-board cluster generation version 1 chemistry
(Agilent Technologies Inc.). All sequencing data (including
MMP-Seq, LP-WGS, and whole exome sequencing) in this
study have been submitted to the Sequence Read Archive
(https://trace.ncbi.nlm.nih.gov/Traces/sra; SRA number
SRP256948).

Next-Generation Sequencing Statistical Analysis

Alignment
All the paired FASTQ files were mapped to the GRCh37
human reference genome with BWA-MEM version
0.7.15,17 and the BAM alignment files were sorted and
indexed with SAMtools version 1.3.1.18 For the exome
sequencing and WGS, BAM files (biobambam219) were
used to mark duplicates. For each WGA platform, two of the
12 single cells (four replicas for each of the three cell lines)
were removed from further analyses because of their low
depth of coverage.

Coverage
For MMP-seq, the locations of 963 amplicons were merged
to 416 amplified regions according to the overlapping of
amplicons using Bedtools.20 The amplified regions cover
approximately 100 Kb of the human genome. For WES, the
targeted 230,417 exonic regions from the Agilent SureSelect
platform (Agilent Technologies Inc.) cover approximately
50 Mb of the genome.
The mean depth of coverage of the amplified regions and

the exonic regions were calculated for the MMP-seq and
WES sequencing data, respectively, using Sambamba21 with
the default setting. For WGS, the genome was split into
nonoverlapping windows of fixed length. The breadth of
coverage is defined as the number of windows covered by at
least one read divided by the total number of windows. The
number of covering reads is calculated by the program
readCounter in HMMCopy software version 1.28.22 R
package ineq software version 0.2-1323 was used to generate
Lorenz curves to represent inequality of the depths of
coverage across windows or targeted regions.
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Circulating Tumor Cell Genomic Analysis
To calculate the mean depth of coverage for the three
genes ERBB2, MET, and PTEN, Sambamba was used for
the WGS and WES data. For WES, the depth of coverage
was further normalized according to the total length of the
exonic regions in the gene.

Variant Calling and Quality Analysis
The same strategy was applied for the WES and MMP-seq
alignment data. With the use of the alignment data, the var-
iants of four MALBAC replicates, four Repli-g replicates,
and the bulk cell line DNA were jointly called with Free-
Bayes24 for the three cell lines PC-3, EBC-1, and KPL4,
respectively. Only the variants in the exonic regions and in
the amplified regions were reported for WES and for MMP,
respectively. A variant was marked as known if it was in
dbSNP Human Build 150 release25 and unknown if other-
wise. The joint calling distinguished reference calls from
noncovered sites for all the sites called in at least one tested
sample. For each cell line, the sites where the depth of
coverage is <10 in bulk were filtered, and the genotypes of
bulk at these sites were used as the ground truth. The variants
were further annotated with SnpEff software version 4.3g.26

Sensitivity
For each cancer cell line, first, the sites that were not gen-
otyped as homologous reference and had depth of coverage
�10� in the bulk DNA sample were identified as the
ground truth. Supplemental Table S2 gives the number of
these sites for the three cell lines using MMP-seq and WES.
The sensitivity of the variant calls for the single cell is
defined as the percentage of these sites having the same
genotypes as in bulk DNA sequencing.

FDR
The false discovery rate (FDR) was calculated as previously
reported.13 Briefly, high-confidence homozygous reference
sites where the coverage is at least 20� and there was no
evidence of a nonreference allele (checked with samtools
mpileup) were identified. The numbers of these sites are
listed in Supplemental Table S3. Next, the frequency of
nonreference alleles detected at these sites in single cells
was measured.

ADO Rates
The ADO rates27 were accessed using a similar approach as
previously described.13 High-confidence heterozygous sites
where the coverage is at least 10� and genotypes are het-
erozygous in bulk were identified. The numbers of these
sites are listed in Supplemental Table S4. The frequency of
homozygous alleles detected at these sites in single cells
was then measured.
CNV Profiling by LP-WGS of Single Cells

For WGS data, HMMCopy was used to correct the number
of reads across the windows based on the guanine-cytosine
The Journal of Molecular Diagnostics - jmd.amjpathol.org
content and mapability. The corrected numbers of reads
were then used for visualization and to identify the copy
numbers with the HMM model where the parameter E20 was
set as 0.9999999 and the window size was set as 200 Kb.
For WES data, for each 200-Kb window, the number of
reads by the total length of the exonic regions in the window
was normalized, and windows without mapping reads or
with a total length of the exonic regions <1 Kb were
removed. HMMCopy was again used to identify the CNV
for the windows.

Results

Benchmarking Performance of Four Different WGA
Methods by Targeted Sequencing of Single Tumor Cells

First, the performance of four existing WGA methods
(Supplemental Figure S1), including PCR-based (Genome-
Plex and Ampli1), MDA (Repli-g), and hybrid PCR- and
MDA-based (MALBAC), was systematically evaluated.
Figure 1A summarizes the experimental design and analyzes
the workflow. For this evaluation, three synthetic CTC
samples were created by spiking viable tumor cells from
three tumor cell lines, EBC-1, KPL-4, and PC-3 (Table 1),
into normal human donor blood samples. The CTCs were
then captured with the CellSearch platform (EpCAMþ,
CKþ, and CD45�), and individual single cells were isolated
using the DEPArray system (Materials and Methods). Four
single tumor cells and nine white blood cells from each of
the three synthetic CTC samples were subjected to different
WGA methods followed by targeted sequencing, LP-WGS,
and WES. As controls, 50 ng of bulk genomic DNA from
each of the three cancer cell lines and a normal peripheral
blood mononuclear cell sample were also sequenced
without WGA (Figure 1A).

To have an initial assessment of the performance of the
four WGA methods, first, targeted deep sequencing was
performed by MMP-seq, which targets 88 clinically
relevant oncogenes and tumor suppressor genes.16 The
first performance metric evaluated was the coverage
breadth of each WGA method, which was assessed as the
fraction of the 416 amplified regions with >50� depth of
coverage. MALBAC and Repli-g WGA had significantly
broader coverage breadth (73.6% � 9.6% and
69.0% � 9.3%, respectively) than Ampli1 and Genome-
Plex (48.1% � 5.7% and 17.9% � 11.7%, respectively),
whereas the breadth of the bulk was 97.0% � 1.4%,
indicating a vast difference in amplicon dropout rates
among these WGA methods (Figure 1B and Supplemental
Figure 2A). To further investigate whether the different
amplicon dropout rates observed in different WGA
methods are random or systematic events, a two-cell
strategy was applied that calculates the number of
amplicons covered by at least two of the four single cells
of the same synthetic CTC sample. Use of the two-cell
strategy was found to slightly improve the genomic
773
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Figure 1 Study design and performance of four different whole genome amplification (WGA) methods by targeted matrix metalloproteinase sequencing
(MMP-seq) of single circulating tumor cells (CTCs). A: A schematic illustration of the experimental design and workflow for genetic analysis of single CTCs. B:
Comparison of the coverage breadth of four WGA methods evaluated by targeted MMP-seq. Percentage of coverage of amplified regions (detectable amplicons
with read depth >50�) was displayed for the bulk sequencing (control) and each of the four WGA methods evaluated. The lines in the boxes are the median
values across 12 single cells derived from the three synthetic CTC samples. C: Uniformity of amplicon coverage. The distribution of amplicon coverage depth
(dropout amplicons with read depth �50� were excluded) was presented for each WGA method. D: Reproducibility of amplicon coverage. Scatterplots of the
read depth across all detectable amplicons between two single cells independently analyzed through a given WGA MMP-seq workflow. Cor, correlation; MALBAC,
multiple annealing and loop-based amplification cycling; NGS, next-generation sequencing.

Lu et al
coverage for each WGA method (Supplemental Table S2
and Supplemental Figure S2B), suggesting that the
amplicon dropout is likely a result of systematic ampli-
fication bias intrinsic to each of the WGA methods.
Table1 Cell Lines Used in This Study

Cancer cell line Indication Copy numb

PC-3 Prostate cancer PTEN homo
EBC-1 Lung cancer MET amplifi
KPL-4 Breast cancer ERBB2 amp

774
The second performance metric evaluated was the
coverage uniformity, which assesses whether the amplifi-
cations are biased toward some regions more than others.
Among the four WGA methods evaluated, MALBAC
er variation No. of copies Ploidy

zygous deletion 0 2.9
cation 9 2.8
lification 6 2.4
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showed the best coverage uniformity with a sharp peak in
distribution of amplicon depth, whereas Repli-g and
GenomePlex showed a wide range of amplicon coverage
distribution, indicating unevenness in coverage across
amplicons (Figure 1C). Interestingly, Ampli1 showed a
unique binary distribution in amplicon coverage. This
finding may be due to the bias introduced by the restriction
enzyme digestion step to fragment genomic DNA before
PCR amplification in this workflow (ie, genomic DNA re-
gions that were digested into too small or too big fragments
by the restriction enzyme may result in no or less amplifi-
cation products).

Last, the reproducibility of each of the WGA methods
was evaluated. For this, coverage depth of the same
amplicons among different single cells isolated from the
same synthetic CTC sample was compared. MALBAC and
Ampli1 had higher cell-to-cell reproducibility (mean
R Z 0.63 and 0.76, respectively), whereas the Repli-g and
GenomePlex had poor coverage reproducibility (mean
R Z 0.39 and 0.16, respectively) (Figure 1D).

Comparison of Performance of MALBAC and Repli-g
WGA Methods Coupled with LP-WGS and WES

To further confirm findings from the targeted sequencing
evaluation, MALBAC and Repli-g, the two WGA methods
with better performance in the targeted sequencing evalua-
tion, were the next focus. LP-WGS (approximately 0.1�
mean sequencing depth) and WES (approximately 100�
mean sequencing depth) were performed on the two WGA
products. With the LP-WGS approach, MALBAC showed
The Journal of Molecular Diagnostics - jmd.amjpathol.org
better genome-wide coverage (79.0% � 3.8%) compared
with that of Repli-g (52.2% � 11.5%) (Figure 2A). A
similar conclusion was derived from the WES data. Among
exons with >10� coverage in the bulk DNA sequencing,
the mean exonic coverages of MALBAC was 46% � 6.2%,
which was consistently higher than Repli-g (30.7% � 8.6%)
(Figure 2A).

To assess the genome-wide and exome-wide coverage
uniformity of the two WGA methods, the Lorenz curves
were plotted to benchmark their performance against the
assumed perfect uniformity exhibited by bulk sequencing.
Consistent with the MMP-seq targeted sequencing results,
MALBAC WGA single-cell sequencing outperformed
Repli-g in uniformity of both genome (10-Kb window)
(Figure 2B) and exome (Figure 2B) coverage.

MALBAC WGA Coupled with LP-WGS Is Superior to
Repli-g for CNV Profiling

CNVs are one of the major forms of genetic variations in
cancers. For noninvasive prognosis and diagnosis of cancer,
theoretically it would be advantageous to analyze CTCs
other than cell-free DNA fragments for CNV because it
removes background contributed from the normal blood
cells. Next, whether CNVs of single tumor cells can be
precisely determined using MALBAC and Repli-g WGA
products was examined. By LP-WGS, the CNVs across the
whole genomes of four single cells from each of the three
synthetic CTC samples were determined. Figure 3A shows
the CNV patterns (segmented with a hidden Markov model)
across all chromosomes for the synthetic CTCs derived
Figure 2 Performance of multiple annealing
and loop-based amplification cycling (MALBAC)
and Repli-g whole genome amplification (WGA)
methods coupled with low-pass whole genome
sequencing (LP-WGS) and whole exome sequencing
(WES). A: Genome-wide coverage was displayed for
bulk DNA sequencing and single cells subjected to
MALBAC or Repli-g WGA. Left panel, LP-WGS (read
depth 0.1�), 10-Kb window, coverage defined by
read depth �1�. Right panel: WES (100�),
coverage defined by read depth �10�. B:
Genome-wide coverage uniformity represented as
Lorenz curves for single cells amplified by MALBAC
(solid red) and single cells amplified by Repli-g
(solid blue), along with bulk genomic DNA con-
trols (solid black). The ideal black diagonal line
represents perfect uniformity. Left panel: LP-WGS;
right panel: WES. n Z 12 (B, MALBAC and Repli-
g); n Z 3 (B, genomic DNA).
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Figure 3 Performance of multiple annealing and loop-based amplifi-
cation cycling (MALBAC) and Repli-g whole genome amplification (WGA)
coupled with low-pass whole genome sequencing (LP-WGS) or whole exome
sequencing (WES) for copy number variation (CNV) profiling. A: LP-WGS
(read depth 0.1�); B: WES (read depth 100�). Digitized genome-wide
CNV patterns across all chromosomes derived from single circulating
tumor cells using EBC-1 as a representative example. Profiles of four in-
dividual single cells (SCs) are presented for each WGA method and for each
sequencing method. The results from the bulk DNA sequencing (top panel)
were used as the ground truth. Black dotted lines are fitted CNV numbers
obtained from the hidden Markov model. The binning window is 200 Kb.

Figure 4 Performance of multiple annealing and loop-based amplifi-
cation cycling (MALBAC) and Repli-g for detecting focal copy number
variations (CNVs) in oncogenic drivers. Each of the whole genome ampli-
fication methods were coupled with LP-WGS (read depth 0.1�) (A) or whole
exome sequencing (read depth 100�) (B) to test whether they can detect
known focal CNVs identified by bulk sequencing of the three cancer cell
lines used for creating the synthetic circulating tumor cell samples in this
study, including MET amplification in EBC-1, ERBB2 amplification in KPL-4,
and PTEN deletion in PC-3 (Table 1). The calculated copy number fold
changes of MET, ERBB2, and PTEN genes in single cells were compared with
those determined by bulk DNA sequencing. Each bar represents one single
cell.

Lu et al
from EBC-1 as a representative example. Results for addi-
tional synthetic CTCs (KPL-4 and PC-3) are included in the
supplementary materials (Supplemental Figure S3). The
results from the bulk DNA sequencing were used as the
ground truth, assuming the cells derived from tumor cell
lines were pure homogenous populations. The CNV profiles
across different chromosomes of single cells by MALBAC
WGA were consistent with those of the bulk DNA. More-
over, four single CTCs were found to exhibit highly
reproducible CNV patterns using MALBAC workflow. On
the other hand, Repli-g WGA found a much higher back-
ground noise level that resulted in less robust resolutions on
CNV differences. The performance of CNV profiling based
on the WES data was also evaluated. The resolution of
CNVs by WES (mean depth of 100�) was significantly
decreased compared with that of LP-WGS even for the bulk
DNA sample (Figure 3B). Furthermore, the CNV pattern
became too noisy to yield confident CNV profiles when
using WES of single cells regardless of WGA methods.
776
These results suggested that WES is not suitable for
genome-scale CNV detections at the single-cell level.
In addition to the genome-wide CNV patterns, the two

WGA methods for detecting focal CNVs in oncogenic
drivers were also evaluated. On the basis of bulk WES, it
was established that each of the three cancer cell lines used
for creating the synthetic CTC samples harbors specific
oncogenic CNVs, including MET amplification in EBC-1,
ERBB2 amplification in KPL-4, and PTEN deletion in
PC-3 (Table 1). To assess the sensitivity and feasibility of
focal CNV detection using low-pass WGS and WES, the
copy number fold changes of MET, ERBB2, and PTEN
genes in single cells were calculated and compared with
bulk samples. Although LP-WGS (Figure 4A) and WES
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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(Figure 4B) data indicate that MALBAC reproducibly
detected the three known oncogenic CNVs among four
single cells, significantly bigger variations were observed
with the workflow using Repli-g WGA followed by
LP-WGS or WES.

Mutation Detection from Single CTCs by WES and
Targeted Sequencing

Another potential utility of genetic analysis of single CTCs
is detecting mutations, such as SNVs and indels, including
known oncogenic driver mutations and emerging acquired
Figure 5 Mutation detection from single circulating tumor cells (CTCs) by whol
detection was evaluated using the WES data of the bulk DNA samples (combinatio
Methods). Each performance metric was also evaluated with the single-cell (SC) [s
sample) or two-cell strategy (SNVs detected in at least two single cells from a given
percentage of homozygous reference sites showing the same genotypes as in th
previously reported.13 High-confidence homozygous sites (reference) where the co
the ground truth, whereas high-confidence heterozygous sites where the coverage
C: The allele dropout (ADO) rate27 was determined as the percentage of homozygou
matrix metalloproteinase sequencing (MMP-seq) in synthetic single CTCs and bulk o
with SnpEff, are shown in this figure. The full list is given in Supplemental Table S4
wild-type mutations are in gray. Bulk (ground truth) is shown in the middle colum
shown in the left columns, and 4 SCs by the Repli-g WGA method are shown in t
mutated genes are listed along the left side of the heatmap.
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new somatic mutations during the disease evolution and
treatment regimens. For assessing the sensitivity of SNV
detection, the targeted exome regions of each cell were
sequenced to a mean depth of 60�, and the high-confidence
SNVs (with �10� read depth) from the WES data of the
bulk DNA samples from the three cell lines as the ground
truth (Materials and Methods). Both WGA and WES
workflows had relatively low sensitivities (Figure 5A and
Table 2). The MALBAC-WES single cell workflow had a
50.5% sensitivity in detecting all SNVs, whereas Repli-g’s
sensitivity was only 32.2%. Applying the two-cell strategy,
which requires SNVs to be detected in at least two single
e exome sequencing (WES) or targeted sequencing. Performance of mutation
n of EBC1, KPL-4, and PC-3 tumor cells) as the ground truth (Materials and
ingle nucleotide variations (SNVs) detected in any single cell from a given
sample). A: The sensitivity of the variant calls for the SC was defined as the
e bulk DNA samples. B: The false discovery rate (FDR) was calculated as
verage was at least 20� were identified in the bulk DNA samples and used as
was at least 10� and genotypes were heterozygous in the bulk DNA samples.
s alleles detected at these sites in SCs. D: Heatmap of mutation detection by
f KPL-4 cell line. Only the variants with high or moderate effects, annotated
. Nonsynonymous heterozygous and homozygous mutations are in blue and
n, four SCs by the MALBAC whole genome amplification (WGA) method are
he right columns. The blank regions represent no sequence coverage. The
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Table 2 Performance of Single-Nucleotide Variation Detection by Single-Cell WES or Targeted Sequencing

Workflow

Single cells At least two cells

WES MMP-seq WES MMP-seq

Sensitivity, means � SD
MALBAC 50.5% � 6% 66.2% � 7% 41.8% � 4% 58.5% � 6%
Repli-g 32.2% � 7% 68.1% � 8% 19.4% � 4% 59.5% � 6%

Mean false discovery rate
MALBAC 4.79 � 10�4 1.63 � 10�3 2.33 � 10�5 3.02 � 10�5

Repli-g 5.83 � 10�5 1.04 � 10�4 3.68 � 10�6 2.60 � 10�6

Allele dropout, means � SD
MALBAC 45.5% � 5% 25.6% � 4% 39.8% � 3% 27.5% � 3%
Repli-g 48.4% � 6% 27.8% � 6% 32.6% � 5% 31.8% � 3%

MALBAC, multiple annealing and loop-based amplification cycling; MMP-seq, matrix metalloproteinase sequencing; WES, whole exome sequencing.
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cells from a given sample, the sensitivity of MALBAC and
Repli-g workflows further decreased to 41.8% and 19.4%,
respectively.

On the basis of high-confidence homozygous reference
sites identified from EBC-1, KPL4, and PC3 bulk DNA
samples (Supplemental Table S3), the FDR in SNV detec-
tion were evaluated by single-cell sequencing. Repli-g
outperforms MALBAC in specificity and has an approxi-
mately 10-fold lower FDR (mean, 5.83 �10�5) in SNV
detection compared with MALBAC (mean, 4.79 �10�4)
(Figure 5B and Table 2). Furthermore, applying the two-cell
strategy can further improve the specificity of both methods
by approximately 15- to 20-fold.

Because WGA amplification bias may also lead to
amplification of one allele at heterozygous sites, the ADO27

rate was evaluated next by these two single-cell WES
workflows. To quantify ADO rates, 14,366, 21,619, and
16,650 high-confidence heterozygous sites were identified
(Supplemental Table S3) in the EBC-1, KPL4, and PC-3
bulk genomic DNA controls, respectively, and the fre-
quency with which one allele or the other was lost in each of
the single cells assayed was determined. Relatively high
ADO rates were observed for the MALBAC (45.5%) and
Repli-g (48.4%) methods (Figure 5C and Table 2). The
two-cell strategy reduced the ADO rate for MALBAC
(39.8%) and Repli-g (32.6%). Collectively, data indicate
that neither of these WGA-WES single-cell sequencing
workflows demonstrated sufficient sensitivity or specificity
for SNV detection required for clinical implementation.

Last, single-cell WGA coupled with targeted sequencing
(ie, MMP-seq), which focuses on 88 well-characterized
oncogenes,16 was evaluated for performance in detecting
clinically relevant mutations. Potential advantages of tar-
geted sequencing also include significantly increased
throughput and reduced cost compared with WES, two
important considerations for clinical feasibility of single-cell
mutation analysis. Among 207, 197, and 183 high-
confidence variant calls identified in the EBC-1, KPL4,
and PC-3 bulk genomic DNA, respectively, by MMP-seq
(Supplemental Table S2), MALBAC, and Repli-g, single-
cell sequencing had a similar SNV detection sensitivity
778
(66.2% and 68.1%) and a similar ADO rate (25.6% and
27.8%) (Figure 5, A and C, Table 2), both a significant
improvement compared with WGA-WES workflows.
Figure 5D shows the total of 61 predicted high- and
moderate-impact variant calls in bulk (23 mutations and 38
wild type) and single cells of KPL-4 as a representative
(Supplemental Table S4). Although the mutation detection
in single cells from both WGA methods are similar by
visualization of the heatmap, the number of false-positive
calls by Repli-g WGA is significantly fewer than those by
MALBAC WGA, indicating a better specificity with the
Repli-g method. Consistent findings were also observed
from single cells of EBC-1 and PC-3 (Supplemental
Figure S4). Repli-g coupled with targeted sequencing also
had an order of magnitude lower FDR, which was consistent
with the WES data, highlighting its superior specificity in
SNV detection compared with MALBAC (Figure 5B and
Table 2). Similar to the WES results, the two-cell strategy
further significantly reduced the FDR of SNV detection in
MMP-seq by >40- to 50-fold in both methods. The data
suggest that, with further optimization, WGA coupled with
targeted sequencing may have promising potential in
detecting actionable mutations in single CTCs in the clinical
settings.

CNV Profiling of Single CTCs in Patients with Squamous
NSCLC

From the above analysis, it was concluded that MALBAC
WGA coupled with LP-WGS is a robust workflow for CNV
profiling at single-cell level and has great potential to be
applied in clinical investigations. Next, clinical utilities of
profiling CNVs of single CTCs isolated from patients with
cancer were evaluated using this workflow. For this, blood
samples collected from four patients with squamous
NSCLC treated with chemotherapy in combination with
pictilisib (a potent inhibitor of phosphatidylinositol 3-kinase
a/d) in a phase 2 clinical trial (NCT01493843, Materials
and Methods) were analyzed. Of the four patients studied,
a total of 80 circulating epithelial cells (CKþ, CD45�,
DAPIþ) were collected to enrich CTCs using Epic Sciences
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 6 Copy number variation (CNV) profiling of single circulating
tumor cells (CTCs) in patients with squamous nonesmall-cell lung cancer
(NSCLC). Digitized copy numbers across the genome were plotted for selected
single CTCs isolated from four patients with squamous NSCLC A: Patient 4956.
B: Patient 1801. C: Patient 4952. D: Patient 1453. The CNV profiles of
patient-matched white blood cells (WBCs) were used as normal controls.
Black dotted lines are fitted CNV numbers obtained from the hidden Markov
model. The single cells were sequenced at only 0.1� depth, and the binning
window was 200 Kb. PR, partial response; SD, stable disease.
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platform (Materials and Methods, Supplemental Table S5).
MALBAC WGA and LP-WGS (0.1�) were performed on
each of the single cells from the enriched CTC population
along with 11 white blood cells as normal controls. Of the
80 circulating epithelial cells profiled across the four pa-
tients, CNV changes were detected in 15 cells
(Supplemental Table S5). The observed relatively low rate
The Journal of Molecular Diagnostics - jmd.amjpathol.org
of CNV detection (mean, 19%; range, 13% to 40% across
patients) may be due to the low CTC enrichment efficiency
using the Epic Sciences platform (Discussion).

The genome-wide CNV profiles of the 15 single CTCs are
outlined in Figure 6. For patient 4956, single-cell CNV
profiling (6 weeks after treatment) detected Chr3q amplifica-
tion (encompassing the PIK3CA and SOX2 genes) in three
CTCs (Figure 6A). The PIK3CA gene amplification
(PIK3CA/Chr3 ratio is 4.38) was further validated by
PIK3CA chromogenic in situ hybridization assay on the
tumor biopsy sample collected from the same patient before
treatment. Interestingly, Chr3q loss was detected in one of
the CTCs, indicating loss of PIC3CA may be one of the
potential mechanisms of acquired resistance to combination
treatment by PIK3CA inhibitor and chemotherapy. In addi-
tion, other oncogenic CNVs frequently found in patients
with NSCLC, including Chr8 amplification (where the
FGFR1 and MYC genes are located) and Chr5p loss were
also detected in several of the CTCs from patient 4956.

For patient 1801, Chr3q amplification (containing
PIK3CA and SOX2) was detected in all four CTCs isolated
at week 36 after treatment (Figure 6B). In addition, Chr10q
loss (containing the tumor suppressor gene PTEN ) was
detected in three of the four CTCs. Chr6 deletion (con-
taining the tumor suppressor genes PLAGL1 and LATS1)
was also detected in one of the CTCs.

For patient 4952, Chr3q amplification was detected in one
CTC, Chr3p amplification in two CTCs, and Chr5p ampli-
fication in one CTC. Chr17p deletion (containing TP53) was
also detected in one CTC (Figure 6C). Lastly, for patient
1453 (Figure 6D), the two CTCs isolated at disease pro-
gression had Chr8 deletion (containing the tumor suppressor
gene PRLTS ) and Chr13p amplification (containing the
oncogene CCND1).

Collectively, these data provided promising clinical util-
ity of CNV profiling of single CTCs from patients with
NSCLC. The identified potentially clinically relevant CNVs
and intrapatient cell-to-cell heterogeneities in CTCs may
inform mechanisms of response and resistance and novel
therapeutic strategies.
Discussion

Genomic analysis of CTCs at the single-cell level holds
great promise in clinical applications, such as uncovering
the mechanism of tumor metastasis, intratumor heteroge-
neity, and genetic alterations conferring drug resistance.
Despite great technical advancements in CTC selection and
isolation,28 WGA method development, and downstream
sequencing analysis, only a few studies have reported on
their potential clinical utilities, such as mutational analysis
of single CTCs in metastatic breast cancer29,30 and genetic
profiling in small cell lung cancer31; a systematic assess-
ment of performance and clinical applications of different
workflows of single CTCs analysis has been lacking. The
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current study reports a comprehensive evaluation of multi-
ple WGA/NGS workflows for single CTC genomic anal-
ysis. This study also highlights the strengths and limitations
of these workflows in clinical applications of single CTC
analysis. These findings are also applicable to the genetic
analysis of single cells in general.

By spiking viable tumor cells from tumor cell lines into
normal human donor blood samples, three synthetic CTC
samples were created and single CTCs were isolated using
CellSearch and DEPArray systems. First, a quick assess-
ment of four commercially available WGA methods was
performed by targeted sequencing. Compared with
GenomPlex and Ampli1, the two PCR-based WGA
methods, MALBAC and Repli-g were superior in several
key performance metrics, including broader coverage
breadth, coverage uniformity, and reproducibility.

MALBAC and Repli-g were analyzed next. Coupled with
LP-WGS or WES, the performance of these workflows was
evaluated in two different downstream genomic applica-
tions: CNV profiling and mutation analysis of single CTCs.
MALBAC coupled with LP-WGS (0.1�) was identified as
the most robust workflow for single CTC CNV analysis.
Compared with Repli-g, MALBAC had better coverage
breadth, uniformity, and reproducibility and accurately
detected genome-wide CNV alterations and focal oncogenic
amplifications. These findings are consistent with the known
strength of MALBAC WGA, including good reproducibility
and lack of large-scale bias coverage, both important re-
quirements for robust CNV detection.32e34

Another important finding of this study is the limitations
of current single CTC analysis workflows in mutation
analysis. Results indicate that MALBAC and Repli-g
coupled with WES exhibited different strengths and weak-
nesses in SNV/indel detection (ie, MALBAC had better
overall sensitivity, whereas Repli-g had better specificity).
Compared with the previous study by Hou et al,7 which
reported a mean ADO rate of 43.09% and a mean FDR of
6.04 � 10�5 of WES from single CTCs by MDA, in this
study, data from single cells by Repli-g (48.4% � 6% and
5.83 � 10�5, respectively) are in the same range or
magnitude. Nevertheless, it is concluded that none of the
WGA methods can achieve sufficient sensitivity and spec-
ificity for genome-wide point mutation analysis at the
single-cell level. Further optimization of the WGA methods
(ie, increasing coverage breadth and uniformity and
decreasing ADO rates and amplification errors) may
improve the sensitivity and specificity of single CTC
mutation analysis and enable robust clinical applications in
the future.6

More importantly, the clinical utilities of CNV profiling
of single CTCs derived from patients with squamous
NSCLC treated with a combination of chemotherapy and a
PIK3CA inhibitor (pictilisib) was established.35,36 MAL-
BAC coupled with LP-WGS on single CTCs can identify
frequent oncogenic CNV alterations found in squamous
NSCLC, including amplifications in PIK3CA and SOX2 as
780
well as loss of the tumor suppressor gene PTEN. Of interest,
Chr3q loss (encompassing PIK3CA) from a CTC isolated
from a patient at 6 weeks after treatment was identified,
indicating loss of PIK3CA may be one of the potential
mechanisms of acquired resistance to combination treatment
by PIK3CA inhibitor and chemotherapy.
Lastly, further improvement of platforms for selecting

and isolating single CTCs is also critical to improve the
efficiency and cost-effectiveness of clinical application of
single CTC analysis. This optimization may also need to be
tailored to specific indications. For example, the lungs, as
part of the respiratory system, are the front-line barrier to the
outer world. In responding to environmental stimuli, such as
allergen, virus, air pollution, and smoke, the process of
epithelial cell repair and regeneration may result in the
shedding of normal epithelial cells into the circulating sys-
tem along with the CTCs. Some previous studies used
cancer-specific markers combined with epithelial markers to
better specifically select CTCs. For example, a panel of
immunomagnetic nanoparticles against four markers,
EpCAM, HER2/neu, epidermal growth factor receptor, and
mucin-1, was applied to detect CTCs in patients with
ovarian cancer.27,28 Miyamoto et al37 successfully measured
androgen suppression treatmenteinduced signaling re-
sponses within CTCs in prostate cancer by analyzing
prostate CTCs with prostate-specific antigen and prostate
specific membrane antigen quantitative immunofluores-
cence assay.37 Therefore, developing tumor-specific bio-
markers in conjunction with epithelial markers for CTC
selection may enable further improvement in the sensitivity
and the specificity of the CTC-capturing platforms.

Supplemental Data

Supplemental material for this article can be found at
https://doi.org/10.1016/j.jmoldx.2020.02.013
References

1. Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, Chen K,
Scheet P, Vattathil S, Liang H, Multani A, Zhang H, Zhao R,
Michor F, Meric-Bernstam F, Navin NE: Clonal evolution in breast
cancer revealed by single nucleus genome sequencing. Nature 2014,
512:155e160

2. Alderton GK: Genomics: one cell at a time. Nat Rev Cancer 2011, 11:
312

3. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J,
Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L,
Krasnitz A, McCombie WR, Hicks J, Wigler M: Tumour evolution
inferred by single-cell sequencing. Nature 2011, 472:90e94

4. Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B,
Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW,
Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG,
Lynch TJ, Toner M, Haber DA: Detection of mutations in EGFR in
circulating lung-cancer cells. N Engl J Med 2008, 359:366e377

5. Polzer B, Medoro G, Pasch S, Fontana F, Zorzino L, Andergassen U,
Meier-stiegen F, Czyz ZT, Alberter B, Schamberger T, Sergio M,
Bregola G, Doffini A, Gianni S, Calanca A, Signorini G,
jmd.amjpathol.org - The Journal of Molecular Diagnostics

https://doi.org/10.1016/j.jmoldx.2020.02.013
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref1
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref1
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref1
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref1
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref1
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref1
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref2
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref2
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref3
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref3
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref3
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref3
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref3
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref4
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref4
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref4
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref4
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref4
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref4
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref5
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref5
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref5
http://jmd.amjpathol.org


Circulating Tumor Cell Genomic Analysis
Bolognesi C, Hartmann A, Fasching PA, Maria T: Molecular
profiling of single circulating tumor cells with diagnostic intention.
EMBO Mol Med 2014, 6:1371e1387

6. de Bourcy CFa, De Vlaminck I, Kanbar JN, Wang J, Gawad C,
Quake SR: A quantitative comparison of single-cell whole genome
amplification methods. PLoS One 2014, 9:e105585

7. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al: Single-cell
exome sequencing and monoclonal evolution of a JAK2-negative
myeloproliferative neoplasm. Cell 2012, 148:873e885

8. Gawad C, Koh W, Quake SR: Single-cell genome sequencing: cur-
rent state of the science. Nat Rev Genet 2016, 17:175e188

9. Deleye L, Tilleman L, Vander Plaetsen AS, Cornelis S, Deforce D,
Van Nieuwerburgh F: Performance of four modern whole genome
amplification methods for copy number variant detection in single
cells. Sci Rep 2017, 7:3422

10. Huang L, Ma F, Chapman A, Lu S, Xie XS: Single-cell whole-
genome amplification and sequencing: methodology and applica-
tions. Annu Rev Genomics Hum Genet 2015, 16:79e102

11. Deleye L, Gansemans Y, De Coninck D, Van Nieuwerburgh F,
Deforce D: Massively parallel sequencing of micro-manipulated cells
targeting a comprehensive panel of disease-causing genes: a
comparative evaluation of upstream whole-genome amplification
methods. PLoS One 2018, 13:e0196334

12. Zong C, Lu S, Chapman A, Xie X: Genome-wide detection of single-
nucleotide and copy-number variations of a single human cell. Sci-
ence 2012:1622e1627

13. Szulwach KE, Chen P, Wang X, Wang J, Weaver LS, Gonzales ML,
Sun G, Unger MA, Ramakrishnan R: Single-cell genetic analysis
using automated microfluidics to resolve somatic mosaicism. PLoS
One 2015, 10:e0135007

14. Werner SL,GrafRP,LandersM,ValentaDT,SchroederM,GreeneSB,
Bales N, Dittamore R, Marrinucci D: Analytical validation and capa-
bilities of the epic CTC platform: enrichment-free circulating tumour
cell detection and characterization. J Circ Biomark 2015, 4:3

15. Beltran H, Jendrisak A, Landers M, Mosquera JM, Kossai M,
Louw J, Krupa R, Graf RP, Schreiber NA, Nanus DM, Tagawa ST,
Marrinucci D, Dittamore R, Scher HI: The initial detection and partial
characterization of circulating tumor cells in neuroendocrine prostate
cancer. Clin Cancer Res 2016, 22:1510e1519

16. Bourgon R, Lu S, Yan Y, Lackner MR, Wang W, Weigman V,
Wang D, Guan Y, Ryner L, Koeppen H, Patel R, Hampton GM,
Amler LC, Wang Y: High-throughput detection of clinically relevant
mutations in archived tumor samples by multiplexed PCR and next-
generation sequencing. Clin Cancer Res 2014, 20:2080e2091

17. Li H: Aligning Sequence Reads, Clone Sequences and Assembly
Contigs with BWA-MEM. [Epub] arXiv 2013:1303.3997

18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N,
Marth G, Abecasis G, Durbin R: The sequence alignment/map format
and SAMtools. Bioinformatics 2009, 25:2078e2079

19. Tischler G, Leonard S: biobambam: tools for read pair collation based
algorithms on BAM files. Source Code Biol Med 2014, 9:13

20. Quinlan AR, Hall IM: BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 2010, 26:841e842

21. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P: Sambamba: fast
processing of NGS alignment formats. Bioinformatics 2015, 31:
2032e2034

22. Lai D, Ha G: HMMcopy: A Package for Bias-Free Copy Number
Estimation and Robust CNA Detection in Tumour Samples from
WGS HTS Data. Vienna, Austria, R Foundation for Statistical
Computing, 2016. pp. 14

23. Zeileis A: ineq: Measuring Inequality, Concentration, and Poverty.
Vienna, Austria, R Foundation for Statistical Computing, 2014

24. Garrison E, Marth G: Haplotype-Based Variant Detection from Short-
Read Sequencing; 2012. Preprint. Posted July 20, 2012. arXiv
12073907 [q-bio]
The Journal of Molecular Diagnostics - jmd.amjpathol.org
25. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM,
Sirotkin K: dbSNP: the NCBI database of genetic variation. Nucleic
Acids Res 2001, 29:308e311

26. Cingolani P, Platts A, Wang leL, Coon M, Nguyen T, Wang L,
Land SJ, Lu X, Ruden DM: A program for annotating and predicting
the effects of single nucleotide polymorphisms, SnpEff: SNPs in the
genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly
(Austin) 2012, 6:80e92

27. Issadore D, Chung J, Shao H, Liong M, Ghazani AA, Castro CM,
Weissleder R, Lee H: Ultrasensitive clinical enumeration of rare
cells ex vivo using a micro-hall detector. Sci Transl Med 2012, 4:
141ra192

28. Heitzer E, Auer M, Ulz P, Geigl JB, Speicher MR: Circulating tumor
cells and DNA as liquid biopsies. Genome Med 2013, 5:73

29. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S,
Simi L, Mancini I, Vannucchi AM, Pazzagli M, Di Leo A, Pinzani P:
Mutational analysis of single circulating tumor cells by next gener-
ation sequencing in metastatic breast cancer. Oncotarget 2016, 7:
26107e26119

30. Shaw JA, Guttery DS, Hills A, Fernandez-Garcia D, Page K,
Rosales BM, Goddard KS, Hastings RK, Luo J, Ogle O, Woodley L,
Ali S, Stebbing J, Coombes RC: Mutation analysis of cell-free DNA
and single circulating tumor cells in metastatic breast cancer patients
with high circulating tumor cell counts. Clin Cancer Res 2017, 23:
88e96

31. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG,
Trapani F, Polanski R, Burt DJ, Simpson KL, Morris K, Pepper SD,
Nonaka D, Greystoke A, Kelly P, Bola B, Krebs MG, Antonello J,
Ayub M, Faulkner S, Priest L, Carter L, Tate C, Miller CJ,
Blackhall F, Brady G, Dive C: Tumorigenicity and genetic profiling
of circulating tumor cells in small-cell lung cancer. Nat Med 2014,
20:897e903

32. Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, Zong C, Bai H,
Chapman AR, Zhao J, Xu L, An T, Ma Q, Wang Y, Wu M, Sun Y,
Wang S, Li Z, Yang X, Yong J, Su XD, Lu Y, Bai F, Xie XS,
Wang J: Reproducible copy number variation patterns among single
circulating tumor cells of lung cancer patients. Proc Natl Acad Sci U
S A 2013, 110:21083e21088

33. Gao Y, Ni X, Guo H, Su Z, Ba Y, Tong Z, Guo Z, Yao X, Chen X,
Yin J, Yan Z, Guo L, Liu Y, Bai F, Xie XS, Zhang N: Single-cell
sequencing deciphers a convergent evolution of copy number alter-
ations from primary to circulating tumor cells. Genome Res 2017, 27:
1312e1322

34. Su Z, Wang Z, Ni X, Duan J, Gao Y, Zhuo M, Li R, Zhao J, Ma Q,
Bai H, Chen H, Wang S, Chen X, An T, Wang Y, Tian Y, Yu J,
Wang D, Xie XS, Bai F, Wang J: Inferring the evolution and pro-
gression of small-cell lung cancer by single-cell sequencing of
circulating tumor cells. Clin Cancer Res 2019, 25:5049e5060

35. Chen D, Zhen H, Qiu Y, Liu P, Zeng P, Xia J, Shi Q, Xie L,
Zhu Z, Gao Y, Huang G, Wang J, Yang H, Chen F: Comparison
of single cell sequencing data between two whole genome
amplification methods on two sequencing platforms. Sci Rep
2018, 8:4963

36. Chen X, Chang CW, Spoerke JM, Yoh KE, Kapoor V, Baudo C,
Aimi J, Yu M, Liang-Chu MMY, Suttmann R, Huw LY, Gendreau S,
Cummings C, Lackner MR: Low-pass whole-genome sequencing of
circulating cell-free DNA demonstrates dynamic changes in genomic
copy number in a squamous lung cancer clinical cohort. Clin Cancer
Res 2019, 25:2254e2263

37. Miyamoto DT, Lee RJ, Stott SL, Ting DT, Wittner BS, Ulman M,
Smas ME, Lord JB, Brannigan BW, Trautwein J, Bander NH,
Wu CL, Sequist LV, Smith MR, Ramaswamy S, Toner M,
Maheswaran S, Haber DA: Androgen receptor signaling in circulating
tumor cells as a marker of hormonally responsive prostate cancer.
Cancer Discov 2012, 2:995e1003
781

http://refhub.elsevier.com/S1525-1578(20)30075-1/sref5
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref5
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref5
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref5
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref6
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref6
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref6
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref7
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref7
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref7
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref7
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref8
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref8
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref8
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref9
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref9
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref9
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref9
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref10
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref10
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref10
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref10
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref11
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref11
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref11
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref11
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref11
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref12
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref12
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref12
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref12
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref13
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref13
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref13
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref13
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref14
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref14
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref14
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref14
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref15
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref15
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref15
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref15
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref15
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref15
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref16
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref16
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref16
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref16
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref16
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref16
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref17
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref17
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref18
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref18
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref18
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref18
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref19
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref19
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref20
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref20
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref20
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref21
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref21
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref21
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref21
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref22
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref22
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref22
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref22
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref23
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref23
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref24
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref24
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref24
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref25
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref25
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref25
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref25
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref26
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref26
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref26
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref26
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref26
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref26
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref27
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref27
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref27
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref27
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref28
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref28
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref29
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref29
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref29
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref29
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref29
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref29
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref30
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref30
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref30
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref30
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref30
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref30
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref30
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref31
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref31
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref31
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref31
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref31
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref31
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref31
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref31
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref32
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref32
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref32
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref32
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref32
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref32
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref32
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref33
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref33
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref33
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref33
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref33
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref33
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref34
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref34
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref34
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref34
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref34
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref34
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref35
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref35
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref35
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref35
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref35
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref36
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref36
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref36
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref36
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref36
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref36
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref36
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref37
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref37
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref37
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref37
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref37
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref37
http://refhub.elsevier.com/S1525-1578(20)30075-1/sref37
http://jmd.amjpathol.org

	Genomic Analysis of Circulating Tumor Cells at the Single-Cell Level
	Materials and Methods
	Synthetic CTC Samples with Spiked-In Tumor Cells
	CTCs from Patients With Squamous NSCLC
	Single-Cell WGA
	PCR-Based Targeted Sequencing by MMP-Seq
	LP-WGS
	Whole Exome Sequencing
	Next-Generation Sequencing Statistical Analysis
	Alignment
	Coverage
	Variant Calling and Quality Analysis
	Sensitivity
	FDR
	ADO Rates

	CNV Profiling by LP-WGS of Single Cells

	Results
	Benchmarking Performance of Four Different WGA Methods by Targeted Sequencing of Single Tumor Cells
	Comparison of Performance of MALBAC and Repli-g WGA Methods Coupled with LP-WGS and WES
	MALBAC WGA Coupled with LP-WGS Is Superior to Repli-g for CNV Profiling
	Mutation Detection from Single CTCs by WES and Targeted Sequencing
	CNV Profiling of Single CTCs in Patients with Squamous NSCLC

	Discussion
	Supplemental Data
	References


