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Abstract

Motivation: Structural kinetic modelling (SKM) is a framework to analyse whether a metabolic

steady state remains stable under perturbation, without requiring detailed knowledge about indi-

vidual rate equations. It provides a representation of the system’s Jacobian matrix that depends

solely on the network structure, steady state measurements, and the elasticities at the steady state.

For a measured steady state, stability criteria can be derived by generating a large number of

SKMs with randomly sampled elasticities and evaluating the resulting Jacobian matrices. The

elasticity space can be analysed statistically in order to detect network positions that contribute sig-

nificantly to the perturbation response. Here, we extend this approach by examining the kinetic

feasibility of the elasticity combinations created during Monte Carlo sampling.

Results: Using a set of small example systems, we show that the majority of sampled SKMs would

yield negative kinetic parameters if they were translated back into kinetic models. To overcome

this problem, a simple criterion is formulated that mitigates such infeasible models. After evaluat-

ing the small example pathways, the methodology was used to study two steady states of the

neuronal TCA cycle and the intrinsic mechanisms responsible for their stability or instability. The

findings of the statistical elasticity analysis confirm that several elasticities are jointly coordinated

to control stability and that the main source for potential instabilities are mutations in the enzyme

alpha-ketoglutarate dehydrogenase.

Contact: dorothee.childs@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metabolic systems tend to exhibit steady states that can be measured

in terms of the concentrations and fluxes of the metabolites

involved. These measurements can be regarded as a phenotypic

representation of all the complex interactions and regulatory mech-

anisms taking place in the underlying metabolic pathway. Such

interactions determine the system’s response to external perturb-

ations and are responsible, for example, for its asymptotic stability

or for oscillatory trajectories around the steady state. However,

determining these perturbation responses in the absence of

fully specified kinetic models remains an important challenge of

computational systems biology.

Structural kinetic modelling (SKM) is a framework to analyse such

responses to perturbations, without requiring detailed knowledge

about individual rate equations (Reznik and Segre, 2010; Reznik

et al., 2013; Steuer et al., 2006). It provides a parameterized represen-

tation of the system’s Jacobian matrix in which the model parameters

encode information about the enzyme-metabolite interactions.

Stability criteria can be derived by generating a large number of struc-

tural kinetic models (SKMs) with randomly sampled parameter sets

and evaluating the resulting Jacobian matrices. The parameter space

can be analysed statistically in a Monte Carlo experiment in order to

detect pathway positions that contribute significantly to the perturb-

ation response. Because the sampled parameters are equivalent to the
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elasticities used in metabolic control analysis (MCA) (Kacser and

Porteous, 1987), the results are easy to interpret biologically.

In order to perform an SKM experiment, it is not necessary to

specify the kinetic rate laws in detail. However, the sampling

procedure requires the selection of predefined intervals for each elas-

ticity. The common procedure is to choose the interval (0,1] for

sampling elasticities that should represent enzymatic reactions. This

interval corresponds to the range of possible elasticity values for re-

actions following Michaelis Menten kinetics.

In this work, we demonstrate that if the assumption of Michaelis

Menten kinetics holds true, only very specific combinations of elas-

ticities allow the steady state to be maintained with non-negative

kinetic parameters. Because of this, an easily applicable criterion is

introduced that enables detecting elasticity combinations associated

with negative kinetic parameters of enzymatic reactions.

Furthermore, we examine how the sampled elasticities can be

analysed to derive quantitative thresholds for instabilities. This ap-

proach was already used in the past to examine stability conditions

of the Calvin Benson cycle (Girbig et al., 2012b). In this work, we

illustrate how these conditions affect the underlying kinetic param-

eters of the model. We examine how a simple example system reacts

to inducing such instabilities. Furthermore, we demonstrate how the

proposed methodology is applied to study destabilizing mechanisms

in the neuronal citric acid (TCA) cycle.

1.1 Introduction to SKM
Given a metabolic system with m metabolites S1; . . . ; Sm and n reac-

tions v1; . . . ; vn, which can be defined by the ordinary differential

equation system

dS

dt
¼ N � vðSÞ ¼: fðSÞ (1)

with stoichiometric matrix N, a steady state is defined as a point S�

in the state space where no net changes in the concentrations can

occur and all reaction rates fulfill the mass balance equation

dS

dt
¼ N � vðS�Þ ¼ 0: (2)

The response of the system in steady state to small perturbations de-

pends on the asymptotic stability of the steady state. When it is asymp-

totically stable, a coordinated system response enables the return of

concentrations and fluxes to the same values prior to the perturbation.

If the steady state is unstable, such a return is not supported.

Local dynamic properties of a steady state, like stability or oscilla-

tory behaviour, can be derived from the Jacobian matrix evaluated in

the steady state (Heinrich and Schuster, 1996). Hence, only if the larg-

est real part of the eigenvalues is negative, changes evoked by perturb-

ations diminish over time and the steady state is asymptotically stable.

Oscillatory trajectories occur if eigenvalues form a complex conjugate

pair. The oscillation is damped, stable or increasing if the largest real

part of the eigenvalues is negative, zero or positive, respectively.

Computation of the Jacobian matrix typically requires know-

ledge of all kinetic rate laws and kinetic parameters describing the

reactions in the system in order to compute the partial derivatives
@vj

@Si
. However, SKM enables the computation of the Jacobian matrix

without relying on such knowledge. Instead, it is derived by

Ji;k ¼
Xn

j¼1

Ni;j
@vj

@Sk jS¼S�
¼
Xn

j¼1

Ni;jv
�
j

S�k|fflffl{zfflffl}
ki;j

�
S�k
v�j

@vj

@Sk jS¼S�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�
vj
Sk

(3)

with ki;j :¼ Ni;j �
v�j
S�

i
and elasticities �

vj

Sk
.

The Jacobian matrix can thus be computed by the simple matrix

multiplication

JS� ¼ K � E; (4)

where the matrix E contains the elasticities �
vj

Si
, and K 2 Rm;n is the

matrix of normalized stoichiometric coefficients ki;j.

Elasticities are a central concept from MCA (Fell and Sauro,

1985; Fell, 1997; Kacser and Porteous, 1987). If associated with en-

zyme-catalysed reactions, they indicate the amount of saturation of

the enzyme with a particular metabolite. Because of this interpret-

ation, the sampled elasticities in SKM experiments are also called

‘saturation parameters’ (Steuer et al., 2006). In particular, the larger

the absolute value of an elasticity, the less the enzyme catalysing the

reaction is saturated with its metabolite (Wang et al., 2004).

As demonstrated by Equation (4), the Jacobian matrix for a

given steady state, for which experimental measurements are avail-

able, can be derived solely from a set of model parameters (elastic-

ities) E 2 Rn;m, the stoichiometric matrix N, and the steady state

measurements S� and v�. Although the stoichiometry, the steady

state concentrations and the fluxes are experimentally accessible, the

elasticities are often unknown in practice. However, due to the nor-

malization step, they are restricted to pre-defined intervals, from

which they can be sampled in a Monte Carlo approach. This enables

the creation of a large number of models followed by the explor-

ation of the parameter space to detect regions associated with stabil-

ity or instability.

1.2 Deriving elasticities for enzymatic reactions
The interval boundaries for elasticity sampling are chosen according

to the type of kinetics employed by an enzyme. For example, if a re-

action v(S) follows irreversible Michaelis Menten kinetics

vðSÞ ¼ Vmax �S
SþKM

, the corresponding normalized rate law l :¼ v
v� can be

derived as

lðxÞ ¼ vðSÞ
vðS�Þ ¼

vðx � S�Þ
vðS�Þ ¼

Vmax � ðx � S�Þ
ðx � S�Þ þ KM

� S
� þ KM

Vmax � S�
(5)

¼ x
S� þ KM

ðx � S�Þ þKM
(6)

The derivative with respect to the normalized substrate x ¼ S
S� is

then given by

@l
@x
¼ S� þ KM

x � S� þ KM
� x � S�ðS� þ KMÞ
ðx � S� þ KMÞ2

(7)

Evaluation of the derivative at the steady state (indicated by

x¼1) provides the substrate elasticity

�vS :¼ @l
@xjx¼1

¼ S� þKM

S� þKM
� S�ðS� þ KMÞ
ðS� þ KMÞ2

¼ 1

1þ S�

KM

2 ð0;1�

Reversely, the original kinetic parameters can be computed from

the elasticities for a given steady state by

KM ¼
S� � �vS
1� �vS

(8)

Vmax ¼ v� � ð1þ KM

S�
Þ: (9)

Repeating the procedure described earlier for the reversible

Michaelis Menten equation

vðS;PÞ ¼
Vþmax � S

Kþ
M

1þ S
Kþ

M

þ P
K�

M

�
V�max � P

K�
M

1þ S
Kþ

M

þ P
K�

M

; (10)
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where S and P are the substrate and product concentrations, leads to

the following equations for the elasticities �v
þ

S and �v
�

P :

�v
þ

S ¼
1þ P

K�
M

1þ S
Kþ

M

þ P
K�

M

2 ð0; 1� (11)

�v
�

P ¼
1þ S

Kþ
M

1þ S
Kþ

M

þ P
K�

M

2 ð0; 1�: (12)

Elasticities of the respective reverse reactions are given by

�v
þ

P ¼ �v
�

P � 1 2 ð�1;0� (13)

�v
�

S ¼ �v
þ

S � 1 2 ð�1;0� (14)

The relationship to the original kinetic parameters derived from

these equations leads the following representations of the KM values:

KþM ¼ S� � 1� �
vþ

S � �v
�

P

�v
þ

S � 1
(15)

K�M ¼ P� � 1� �
vþ

S � �v
�

P

�v
�

P � 1
: (16)

The corresponding maximum velocities are given by

Vvþ

max ¼ vþðS�;P�Þ �
1þ S�

Kvþ
M

þ P�

Kv�
M

S�

Kvþ
M

(17)

Vv�

max ¼ v�ðS�;P�Þ �
1þ S�

Kvþ
M

þ P�

Kv�
M

P�

Kv�
M

: (18)

2 Results

2.1 Reducing the elasticity sampling space to ensure

kinetically realistic models
When performing an SKM experiment, the sampling interval (0, 1]

is often chosen for enzymatic reactions. This interval represents the

range of possible elasticity values for reactions following the revers-

ible Michaelis Menten Equation (10). However, calculation of

Michaelis constants from elasticities, as demonstrated in Equations

(15) and (16) shows that if the assumption of reversible Michaelis

Menten kinetics holds true, only very specific combinations of elas-

ticities allow the steady state to be maintained with non-negative

kinetic parameters. In particular, a closer inspection of Equations

(15) and (16) shows that KþM and K�M are only non-negative for

�v
þ

S þ �v
�

P > 1: (19)

Because Michaelis constants are given in units of concentrations

and, as such, are required to be non-negative, elasticity combin-

ations not fulfilling this criterion are kinetically infeasible for any

given steady state. We therefore define elasticity filtering as restrict-

ing the randomly chosen values to those that fulfil this equation.

2.2 Effects of elasticity filtering on local dynamic steady

state properties
In order to systematically evaluate the effects of elasticity filtering,

three simple artificial example models were constructed (Fig. 1). For

each of these example pathways, a kinetic model with known rate

laws and kinetic parameters was created. These kinetic models were

used to compute steady state concentrations and fluxes for SKM

(details about the pathway structure and steady state values used for

SKM can be found in the Supplementary Material to this article.).

Out of 10 000 SKMs sampled for the linear pathway, only 907

(9.07%) were kinetically feasible in the sense that the randomly

sampled elasticities led to non-negative kinetic parameter values ac-

cording to Equation (19). For the branched and cyclic pathways,

only 891 (8.91%) and 944 (9.44%) feasible models remained. These

low numbers show that it is important to account for kinetical feasi-

bility when performing SKM experiments.

In order to assess whether filtering for feasible models can im-

pact the results of SKM experiments, probabilities of the different

types of dynamic steady state properties were compared before and

after filtering. As shown in Figure 2, the chance to observe oscilla-

tions strongly increased in each pathway. The elasticity combin-

ations fulfilling Equation (19) tended to have larger values than

independently sampled elasticities and hence described fast perturb-

ation responses of their associated enzymes. We can conclude that

such fast responses enhanced the chance for observing oscillations in

the examined systems.

2.3 Detecting conditions for stability or oscillatory

trajectories by multivariate pattern search
So far, most SKM experiments have focused on the detection of indi-

vidual enzymes to identify single reactions important for maintain-

ing the stability of a steady state (Bulik et al., 2009; Grimbs et al.,

2007). We recently extended this approach by demonstrating how

SKM enables the detection of enzyme- or metabolite-ensembles that

act together in an orchestrated manner to coordinate the pathway’s

response to perturbations (Girbig et al., 2012a, b). This was

Fig. 1. Pathway topologies underlying the small example models used for

SKM analysis
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achieved by replacing the previously used univariate approach by

supervised machine learning in order to search for multivariate pat-

terns of elasticities associated with stability or instability.

The decision tree algorithm lends itself to this task because it pre-

serves the original feature space, making it possible to interpret the

detected patterns in a biological context (Quinlan, 2013). In order

to assess the performance of decision trees in classifying stable ver-

sus unstable as well as oscillatory versus non-oscillatory models,

trees were trained on balanced datasets retrieved from the small ex-

ample pathways. In order to analyse the derived decision trees, we

studied the corresponding rulesets produced by the C5.0 algorithm

for decision trees (Quinlan, 2013). These rulesets summarized all

paths through each tree in an easily readable format. After training,

the generalizability of each of the obtained decision tree rulesets was

assessed by the Laplace ratio

Lk ¼
hk � ek þ 1

hk þ 2
; (20)

where k is the ruleset index, hk is the number of hits in the test sam-

ples, and ek is the number errors on the test samples (Quinlan,

2013).

The smallest ruleset describing instability conditions for the

branched pathway contained two criteria. A closer look at this rule-

set revealed that it imposed conditions on elasticities �
vþ

2

S1
and �

vþ
6

S4

(Table 1). It correctly predicted instability with a Laplace value of

0.98. Both elasticities described the acceleration of reactions v2 and

v6 in Figure 1b by their substrates and were restricted to low values.

Consequently, the ruleset described a scenario of high saturation of

the enzymes by their substrates.

We next used the associated elasticity thresholds to compute the

corresponding ranges of possible kinetic parameters. In doing so, we

set both elasticities to fixed values and computed the matching

Michaelis constants using Equations (15) and (16). Maximum veloc-

ities were derived in a similar manner using Equations (17) and (18).

If the kinetic parameters lay within these boundaries, it was guaran-

teed that the system would still exhibit the same steady state while

fulfilling the constraints on the elasticities shown in the ruleset. As

shown in Table 2, the new parameters were distinctly reduced com-

pared with the original values in order to account for the reduced

degree of saturation described by the elasticity thresholds in the

ruleset.

In order to examine the behaviour of the unstable system around

the steady state, reactions v2 and v6 were updated by the new kinetic

parameters in the kinetic model for the branched pathway. The

Jacobian matrix of the updated model evaluated at the steady state

now contained the positive eigenvalue 0.0205, which shows that the

steady state indeed became unstable. In the original model, the

eigenvalues with maximum real parts had been a complex pair

�0:062960:0387i. Not only did this show that the new kinetic par-

ameters caused instabilities in the steady state, but the loss of the im-

aginary part also showed that they prevented oscillatory trajectories

around it.

To investigate the global response of the system to the instability,

the trajectories of the modified model were simulated starting in the

neighbourhood of the now unstable state. As shown in Figure 3, the

new stable steady state obtained by the system was not located in

close neighbourhood to the old one but showed a strong decrease in

the concentration of S1 accompanied by smaller increases in S2, S3

and S4. Computation of the rate laws of the original (unmodified)

model at these concentrations confirmed that they did not describe a

steady state in the original model.

2.4 The neuronal TCA cycle
The TCA cycle is of fundamental importance for cellular energy me-

tabolism because it is the major source for reduced nicotinamide ad-

enine dinucleotide (NADH) and ubiquinol (QH2), which are

required for the production of adenosine triphosphate (ATP) in the

mitochondrion (Fig. 4). Its reactions are tightly controlled by allo-

steric feedback regulators to enable an adjustment of the steady state

fluxes to varying ATP demands (Nelson and Cox, 2004). In neurons,

a steady supply of ATP is crucial for restoring the cellular membrane

potential after triggering an action potential. Once the system ob-

tains a functional working state that enables it to meet the ATP de-

mand of the cell, we can therefore expect this state to be robust

against perturbations from the cytosol (Koopman et al., 2012). Such

perturbations can arise, for example, due to neuronal activity and

the resulting fast fluctuations of ATP turnover.

To elucidate the mechanisms responsible for perturbation re-

sponses in this system, we investigated two steady states

Stability Oscillations

linear (all)
linear (filtered)
branched (all)
branched (filtered)
cyclic (all)
cyclic (filtered)

P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 2. Distribution of dynamic steady state properties in each pathway. The

probability of observing oscillations increases after filtering for kinetically

feasible kinetic parameters

Table 2. New kinetic parameters for which the associated elastic-

ities fulfil the instability conditions in Table 1

Reaction Model Elasticity KþM K�M Vþmax

v2 New 0.1 0.41 6.57 0.62

Old 0.44 3.00 30.00 1.00

v6 New 0.1 0.03 2.44 0.11

Old 0.90 3.00 30.00 1.00

Table 1. The smallest instability inducing ruleset found for the

branched pathway

Elasticity Threshold type Threshold value

�
vþ

2

S1
� 0.11

�
vþ

6

S4
� 0.16
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representing different scenarios in terms of cytosolic ATP demand.

Although state 1 (reference state) was characterized by a moderate

extent of neuronal activity, state 2 described a phenomenon called

‘gamma oscillations’. Gamma oscillations are defined as rhythmic

brain activity with alternating epochs of enhanced and reduced neu-

ron firing in a frequency of 30–100 Hz (Fell and Axmacher, 2011;

Singer, 2013). They have been associated with cognitive processing

and memory formation (Brittain and Brown, 2014; Hanslmayr and

Staudigl, 2014).

A recently published kinetic model (Berndt et al., 2012) served as

a reference for network stoichiometry and steady-state information.

The resulting SKMs covered 24 metabolites, 20 reactions and 71

elasticities. For each steady state, 20 000 SKMs were sampled and

the proportions of stable and oscillatory models were determined.

For both steady states, the majority of observed models was stable

(99.75% for the reference state, 99.85% under gamma oscillations)

and a large proportion did not display oscillatory trajectories (oscil-

latory models in the reference state: 37.24%; gamma oscillations:

39.66%).

The system contained three reactions with only one substrate

and product each (aconitase, fumarase, proton leak). The corres-

ponding elasticities were filtered using Equation (19). Using this cri-

terion, 76.08% of all models could be corrected for kinetical

feasibility in these reactions within each steady state. In 63.3% of

the resulting models the flux control coefficients computed from the

elasticities indicated negative control of pyruvate (PYR) import on

pyruvate dehydrogenase (PDH). Consequently, an additional criter-

ion was implemented during sampling that only admitted models in

which PYR import exhibited positive control on the PDH. The pro-

portions of stable and oscillatory models remained similar after fil-

tering. Stability occurred in 99.56% of all models in the reference

state (99.84% under gamma oscillations), and oscillatory trajecto-

ries occurred in 34.96% of all models in the reference state (40.06%

under gamma oscillations).

Using these models, we next analysed whether multivariate ana-

lysis of the elasticity space could lead to more refined information

about the system dynamics than univariate comparisons of elasticity

distributions. In doing so, we compared the most distinctive

elasticities determined by the univariate Kolmogorov–Smirnoff test

(KS-test) with those elasticities that occurred most frequently in

each stabilizing decision tree ruleset (Table 3). This test enables the

comparison of two empirical distribution functions F1ðxÞ and F2ðxÞ
using the test statistic Dks ¼ sup x jF1ðxÞ � F2ðxÞj, which describes

the maximum distance between the distribution functions (Darling,

1957). Both methods identified elasticities associated with citrate

synthase (CITS) and a-ketoglutarate dehydrogenase (AKGDH) as

having strongest influence on stability. In contrast to the KS-test,

however, decision trees identified two network positions that had

exceptionally strong impact on controlling stability under gamma

oscillations but not in the reference state (elasticities marked in red

in Table 3). Both positions were associated with reactions down-

stream of the cycle that were involved in the respiratory chain and

ATP synthesis. Because such a shift in control can be expected under

increased ATP demand, this result is not a surprise in itself.

However, it shows that multivariate pattern search can provide a

more refined picture of stability control under varying environmen-

tal conditions.

In order to understand possible causes for instabilities in the net-

work, decision tree patterns associated with the unstable class were

obtained. The simplest pattern contained only two conditions which

both restricted substrate activation and product inhibition of

AKGDH to low values. The pattern was highly reproducible be-

tween both states. This showed that a slow perturbation response of

AKGDH posed a threat to the stability of the observed steady states.

In order to understand the reasons for instabilities caused by the

described conditions, the eigenvectors belonging to the largest real

parts of the affected models were analysed. Eigenvectors of the

Fig. 4. Network model of the TCA cycle and connected pathways. In the TCA

cycle, PYR from the cytosol is incorporated into citrate (CIT) and converted to

CO2 by a series of oxidation steps. The energy released in this process is uti-

lized to form the reduced metabolites NADH and QH2. In the respiratory chain

complexes CI, CII and CIV these metabolites are oxidized, driving the import

of protons into the mitochondrial matrix. As a result of this process, a proton

gradient is created which then serves as a driving force for ATP synthesis.

The picture has been adapted from Berndt et al. (2012)

0 200 400 600 800 1000 1200

0
1
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Fig. 3. Concentrations of the branched pathway model approaching a new

steady state after inducing instabilities
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Jacobian matrix can give an approximation of the system’s behav-

iour in the neighbourhood of the steady state because the trajectory

of a perturbation dS in its neighbourhood can be approximated by

dSðtÞ �
Xm

i¼1

cibi
ki t; (21)

where bi and ki are the eigenvectors and eigenvalues of the Jacobian

matrix in the steady state. Each eigenvector component therefore de-

scribes the time-dependent concentration changes in one metabolite.

Analysis of the eigenvector with largest real part indicated that per-

turbations led to an accumulation of AKG, accompanied by a de-

crease in the subsequent TCA cycle metabolites (Fig. 5).

3 Discussion

In this work, we demonstrated that if the assumption of Michaelis

Menten kinetics holds true, only very specific combinations of elas-

ticities allow the steady state to be maintained with non-negative

kinetic parameters. Because of this, an easily applicable filtering cri-

terion for enzymatic reactions with a single substrate and product

was introduced, that enabled the detection of elasticity combin-

ations associated with negative kinetic parameters.

Without elasticity filtering, the large abundance of SKMs with

kinetically implausible elasticity combinations can bias the output of

the numerical simulation. For example, analysis of a set of simple

example pathways showed that even for small models with 9–11

sampled elasticities, �90% of the resulting SKMs contained elasti-

city combinations that required at least one negative value in the

kinetic parameters in order to enable emergence of the observed

steady state. Focusing only on those models with non-negative kin-

etic parameters hardly changed the numbers of stable models, but

strongly affected the frequency of oscillatory trajectories around the

steady state.

The idea of filtering the sampling space can be extended by tak-

ing into account further kinetic or dynamic restrictions on enzymes.

For instance, using the thermodynamic principle to limit the analysis

to thermodynamically feasible fluxes improves the predictive power

of metabolic models (Tepper et al., 2013). Furthermore, Monte

Carlo approaches for modelling metabolism could be refined by

incorporating such additional constraints (Murabito et al., 2014).

The filtering criterion introduced in Equation (19) offers a help-

ful starting point when sampling elasticities for reactions that can be

assumed to follow reversible Michaelis Menten kinetics. If

Michaelis Menten kinetics cannot be assumed it might still be pos-

sible to adapt the filtering criterion to reflect the underlying approxi-

mated kinetics. However, when analysing complex biological

systems, one has to be aware that the analytical derivation of similar

criteria for more complex rate laws is not possible in the same

straight-forward manner. For example, the TCA cycle model

analysed contained only four reaction with a single substrate and

product each. Although 76.08% of all models could be corrected for

kinetical feasibility in these reactions, the challenge remains to de-

tect similar criteria for the remaining reactions in order to refine the

results of the Monte Carlo sampling. Recent improvements along

this line were presented by Ivanov et al. (2014), who analytically

derived general stability criteria for certain structural motifs of irre-

versible reactions with multiple substrates or products in the absence

of regulatory interactions.

In addition to introducing elasticity filtering, we illustrated in

this work how decision trees can derive refined multivariate elasti-

city patterns associated with different dynamic steady state proper-

ties. Such patterns can also capture scenarios in which a certain

dynamic property only emerges for a small parameter interval.

Because the Monte Carlo sampling in a high-dimensional space only

allows a sparse coverage of the parameter space, one has to keep in

mind that the derived rulesets do not capture all possible scenarios

that might theoretically emerge. When applying the proposed strat-

egy to a system of interest, it is therefore important to chose a sam-

ple size that is high enough to enable the emergence of reproducible

patterns, and to assess the generalization error on independently

sampled test sets.

4 Methods

4.1 Model construction
In order to account for the impact of pathway topology on the dy-

namic properties of steady states of a metabolic network, kinetic

models were constructed using three different pathway structures

(Fig. 1). Kinetic parameters and rate laws were chosen as uniformly

as possible in order to eliminate their influence on the outcome of

the analysis. KM values were set to the 3 for forward reactions and

to 30 for backward reactions. Vmax values were homogeneously set

Table 3. The five most influential elasticities providing stabilizing

sites in the TCA cycle

KS-test Decision trees

State 1 State 2 State 1 State 2

�CITS
OAA �CITS

OAA �AKGDH
AKG �AKGDH

AKG

�AKGDH
AKG �AKGDH

AKG �AKGDH
NADH �

ATPsyn

Hþ

�AKGDH
SUCCOA �CITS

CIT �AKGDH
SUCCOA �CIII

Hþ

�CITS
SUCCOA �CITS

SUCCOA �CITS
CIT �CITS

OAA

�CITS
CIT �IDH

ICIT �CITS
OAA �CITS

SUCCOA

PY
R

IC
IT

A
K

G

SU
C

C
O

A

S U
C

FU
M

M
A

L

O
A

A

C
O

A

N
A

D
H

Q
H

2

C
yc

tre
d H

A
TP Pi

cy
t

A
T P

cy
t

Metabolite

Ei
ge

nv
ec

to
r c

om
po

ne
nt

−1.0

−0.5

0.0

0.5

1.0

Fig. 5. Eigenvector belonging to the largest positive eigenvalue in unstable

models of the reference state that fulfilled the simplest instability condition

derived by decision trees. Each eigenvector component describes the time-

dependent concentration changes in one metabolite in neighbourhood of the

steady state. Concentrations that increased due to a perturbation are shown

in blue; decreasing metabolites are shown in red. Instabilities arise due to ac-

cumulation of AKG and a depletion in the subsequent metabolites
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to 1 (Supplementary Material for details). All reactions were mod-

elled using reversible Michaelis Menten kinetics. A positive feedback

term was included to increase the range of possible dynamic behav-

iours. Models were implemented in Matlab using the Systems

Biology Toolbox 2 for Matlab (Schmidt and Jirstrand, 2006).

Steady states were computed using the SBsteadystate function of the

Toolbox. SKMs were constructed using the MATLAB Toolbox for

SKM (Girbig et al., 2012a). Elasticity filtering was conducted during

Monte Carlo sampling by testing for each set of randomly sampled

elasticities whether they fulfilled the criterion in Equation (19).

For TCA cycle analysis, the kinetic model by Berndt et al. (2012)

served as a reference for network stoichiometry and steady-state infor-

mation. Two steady states were computed for SKM analysis which

represented different degrees of workload imposed on the cell. The

first state (also called reference state) represented a situation where

cytosolic O2 consumption was 50% of its maximum value. This cor-

responded to a moderate work amount of ATP consumption by the

cell (Berndt et al., 2012). In contrast, the second state (gamma oscilla-

tions) represented a scenario of strong workload and was computed

by setting cytosolic O2 consumption to 90% of the maximum value.

4.2 Model analysis
For each steady state, the numbers of stable and unstable SKMs were

counted in the unbalanced dataset of 104 randomly sampled models

with and without filtering for biological feasibility. Oscillatory and

non-oscillatory models were analysed in a similar manner.

Decision tree training was performed using the 5.0 library in R

(Kuhn et al., 2014) in the RULES mode. In total, 105 SKMs were

created as independent test samples. Because our aim was to derive

reliable conditions for stability and instability, we selected only

those rulesets with Laplace ratio>0.95 that were derived from five

trees trained on 20 000 training samples each.
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