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Abstract
Since 1948, Shannon theoretic methods for modeling information have found a wide range of applications in several areas
where information plays a key role, which goes well beyond the original scopes for which they have been conceived, namely
data compression and error correction over a noisy channel. Among other uses, these methods have been applied in the broad
field of medical diagnostics since the 1970s, to quantify diagnostic information, to evaluate diagnostic test performance,
but also to be used as technical tools in image processing and registration. This review illustrates the main contributions
in assessing the accuracy of diagnostic tests and the agreement between raters, focusing on diagnostic test performance
measurements and paired agreement evaluation. This work also presents a recent unified, coherent, and hopefully, final
information-theoretical approach to deal with the flows of information involved among the patient, the diagnostic test
performed to appraise the state of disease, and the raters who are checking the test results. The approach is assessed by
considering two case studies: the first one is related to evaluating extra-prostatic cancers; the second concerns the quality of
rapid tests for COVID-19 detection.

Keywords Diagnostic information · Diagnostic test performance · Quality measures · Inter-rater agreement · Shannon
information theory · Informational diagnostic channels

1 Introduction

Claude Shannon’s “A mathematical theory of communica-
tion” [67], published in 1948, is the milestone paper of the
new information age, flourished in the second half of 1900s,
which is characterized by a finely branched network that
connects each computer, smartphone, terminal, or device
we use in our daily life. Shannon’s work, which describes
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the fundamental laws of data compression and error cor-
rection over a noisy channel, marks the birth of a unifying
theory, i.e., Information Theory (IT), with profound inter-
sections with probability, statistics, computer science, and
many other fields [75]. Shannon’s paper also introduced
some novel concepts which aimed to measure the quan-
tity of information either stored in a string or transferred
through a communication process: they are, respectively,
(Shannon) entropy, related to the data compression problem,
and channel capacity, which models the flow of information
over a noisy channel, and is defined in terms of the Mutual
Information (MI) between input and output.

Communication theory was the first discipline to adopt
these information measures, but several attempts were made
to export these concepts also in many other fields, such
as statistical mechanics [38], statistical inference [48, 81],
linguistics [76], taxonomy [47], psychology [8], molecular
dynamics [34], computational biology [17], molecular
biology [27], genomics [44], neurobiology [26], pattern
recognition [49], machine learning [37], deep learning [40],
computer vision [66], perception [22], image processing
[30], and many others. In some cases, however, these
measures have been used in an uncritical way and outside
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a proper theory-safe environment, so that only questionable
and partial results were produced. In other cases, when the
problems of these external disciplines have been interpreted
in agreement with the IT spirit, an informational-theoretic
approach to the discipline was set.

This also occurred in medical diagnostics, where clinical
tests are performed to determine which disease or condition
better explains patient’s symptoms and signs, such as the
test to measure the prostate-specific antigen (PSA) level
[63], or the genetic test to identify cystic fibrosis [41], or
cellular analysis to detect cell-based diseases such sickle
anemia [3], or tests based on medical imaging to ascertain
or rule out the presence of breast cancer [59].

Entropy and mutual information have been successfully
used many times in medical diagnostics. For example,
Richman et al. [64] introduced sample entropy (SampEn) as
a method to estimate the entropy of a system represented
by a time series, and the technique has been used with
success in further researches [1, 21, 54]. In [29] Faes and
Porta illustrated a framework to quantify the dynamics
of information in coupled physiological systems based on
the notion of conditional entropy (CondEn); this method
has been used in the neural and cardiovascular time series
framework [60, 61]. In [80], Xiong et al. presented a
systematic study on the performance, bias, and limitations
of three entropy-based measures, to be applied in the context
of dynamical systems described by real-world time series,
including non-stationarities and long-range correlations.
More recently Wiener-Granger causality (WGC) [36, 78],
where a variable X Granger causes a variable Y if the
information in the past of X improves the prediction of Y ,
was used to analyze time series. Here, IT methods play an
important role in the definition of many of the time domain
model-free measures of causality [28, 62, 69].

Another relevant application area for IT techniques is
medical imaging registration, classification, segmentation
and features extraction. Maes et al. [50] reviewed the break-
through impact of the mutual information maximization
criterion in the analysis of multispectral and multitemporal
images, where proper image alignment is required to com-
pare corresponding regions in each image volume. Uthoff
and Sieren [74] used feature selection methods to quantita-
tively gauge intensity, texture, and shape of breast lesions;
the method is based on three information measures, derived
from mutual information, and combined to assess the added
benefit of including a feature into the classifying set. A
comprehensive review of various image segmentation tech-
niques, also including entropy-derived measures, is given in
[18].

Focusing on accuracy measured for diagnostic tests and
the agreement between raters, we have to note that the
disease is a hidden and objective status of the patient and the
physician makes assumptions on it by interpreting the result

of the test. Thus, the test is a means to extract information
from the patient to diagnose the disease. Therefore, the most
accurate diagnostic test will be the one that can extract
as much information as possible: the more knowledge
flows from the disease to the reader, the more accurate the
diagnostic test. The information is implied at the beginning
of the diagnostic process and plays a fundamental role.

In this context, physicians have to cope with two primary
goals: the first one is to appraise the Diagnostic Test
Accuracy (DTA) of a considered test. Such an evaluation
also enables clinicians to identify the most effective
diagnostic test among a set of possible choices, for instance,
comparing digital versus film mammography in diagnosing
breast cancer [59]. The second one is to establish an
Agreement Measure (AM) to compare evaluations of the
same diagnostic outcome produced by different raters or
validate new rating systems or devices. For the sake of
example, the agreement between ultrasound and automated
breast volume scanner can be used to assess breast cancer
findings [33].

DTA for dichotomous diagnostic tests has historically
been based on the evaluation of sensitivity (SE), specificity
(SP), as well as their derived measures, such as likelihood
ratios [31, 77]. The main drawback of this approach is
that it does not offer a single statistical measure that can
summarize the global quality of a dichotomous diagnostic
test [58]. The multi-valued case has been handled by
selecting a different threshold for SP and then evaluating the
area under the curve (AUC) of SE in a Receiver Operating
Characteristic (ROC) analysis. In this case too, it is not clear
how to compare different tests when they have the same
AUC, but a different shape of the ROC curve or what is
the best threshold to come back to the dichotomous case,
when, for example, a multi-valued ranking scale is used,
such as the Breast Imaging-Reporting and Data System (BI-
RADS) or the Prostate Imaging-Reporting and Data System
(PI-RADS).

As for the agreement measures, many different tech-
niques have been introduced so far, but Cohen’s κ

(kappa) [19] is undoubtedly the most popular agreement
method between two raters and proved its effectiveness in
the last sixty years. Nonetheless, this method suffers from
some severe issues: namely, its value is strongly dependent
on the prevalence of the disease [68].

Apart from the effectiveness of the methods introduced in
the literature to tackle DTA and AM, all the techniques used
in practice miss the information’s strategic and operative
involvement. Since the final purpose of carrying out a
diagnostic test is to gain information about the patient’s
condition, this seems to be a significant shortcoming.

This manuscript is aimed at reviewing the last half-
century of information theory in assessing the accuracy of
diagnostic tests and the agreement between raters, focusing
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on diagnostic test performance measurements and paired
agreement evaluation, presenting all the advancements
in the field up to the most recent ones. We, first of
all, introduce some of the central notions in Shannon’s
information theory together with the medical diagnostic
setting in Section 2. Then, we consider the information
measures introduced to gauge the accuracy of diagnostic
tests (Section 3) and those meant to evaluate the inter-
rater agreement (Section 4). Section 5 discusses a recent
unified approach to both quantify the accuracy of diagnostic
tests and, alternatively, assess the agreement between two
raters in both dichotomic and multi-valued cases. The
effectiveness of this approach is tested in Section 6 by
means of two clinical case studies: the first one deals with
three raters of a diagnostic test to detect extra-prostatic
cancers; the second is related to rapid tests for COVID-19
detection. Finally, Section 7 presents some final remarks
and indicates future developments for the topic.

2 Information theory andmedical
diagnostics

From the theoretical point of view, the correct approach
to handle information measures is referring to Shannon’s
Information Theory (IT) [67], which constitutes the math-
ematical apparatus underlying all current telecommunica-
tion systems, based on a rigorous and quantifiable notion
of information, over which we obtain some information-
derived measures, such as entropy, mutual information (MI)
and informational divergence (ID). It is worth noting that
Shannon entropy, based on the logarithmic function, has
been proved by Khinchin [42] to be the sole measure of
information that satisfies some reasonable postulates nec-
essary to define an information measure [2] in a coherent
setting.

Before discussing the results presented in medical
diagnostics literature during the last fifty years, let us
introduce the main actors of Shannon IT, starting with the
informational divergence [45], described for the first time
a few years after Shannon’s work [67]. It has the merit
of being the mathematical root over which we can deduce
mutual information and entropy in a natural way.

2.1 Informational divergence, mutual information
and entropy

Let P = {p1, p2, . . . , pK } and Q = {q1, q2, . . . , qK} be
probability distributions; then

D(P//Q)
def=

K∑

i=1

pi log
pi

qi

. (1)

is the informational divergence (ID), or Kullback-Leibler
divergence, between the two PDs. ID is always greater than
or equal to 0 and the strict equality holds if and only if P ≡
Q [20]. Since D(P//Q) = 0 iff P ≡ Q, the divergence
can be interpreted as an asymmetric pseudo-distance among
probability distributions; it is not a distance because it lacks
symmetry and the triangular inequality does not hold in
general [20].

Let us now consider the probability distributions PX and
PY , associated with the random variables X and Y , and the
corresponding joint probability distribution PXY . Then the
ID

D(PXY //PXPY ) =
∑

x,y

p(x, y) log
p(x, y)

p(x)p(y)

def= I (X, Y )

(2)

can be interpreted as the (oriented) distance from the
condition of independence, since PXY ≡ PXPY implies ID
equal to 0. The quantity I (X, Y ) is the mutual information
between the random variables X and Y . It is symmetric
(I (X, Y ) = I (Y, X)), and always non-negative, as it is
a special kind of informational divergence. So we can
interpret MI as a measure of stochastic dependence between
two random variables. From the informational point of view,
if I (X, Y ) = 0 then X and Y do not exchange information;
on the contrary, if MI is greater than 0, it measures the
quantity of information exchanged between the two random
variables.

If Y = X we obtain

I (X, X) =
∑

i,j

p(xi, xj ) log
p(xi, xj )

p(xi)p(xj )

def= H(X)

= −
K∑

i=1

p(xi) log p(xi) ≥ 0 (3)

and the quantity defined on the right is the famous Shannon
entropy H(X), which expresses the expected value of
the random variable I(X) = − log Pr{X}, which is the
self-information [20]. Entropy is the average quantity of
information associated with a random variable, and it is
simple to verify [20] that

0 ≤ H(X) ≤ log K (= 0 iff PX is degenerative) (4)

(= log K iff PX is uniform)

I (X, Y ) = H(X) − H(X/Y ) = H(Y) − H(Y/X) ≥ 0

I (X, Y ) ≤ min{H(X), H(Y )} (5)
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2.2 Themedical diagnostics setting

We can now translate the definitions just seen in terms
useful for applications in the field of medical diagnostics.
We have a state of disease, or pathologic state for a patient,
which is described by the random variable D; it takes
its value in the set D = {d1, d2, . . . , dK}. Similarly, we
have a random variable R which represents the report; it
is the outcome of a diagnostic test, which is interpreted
by a clinician we call rater. R takes its value in the set
R = {r1, r2, . . . , rM}. We usually assume there are only two
mutually exclusive states D of disease for a patient (K = 2),
either the disease is present (D = 1) or absent (D = 0) [58,
83]; pD(1) = p(D = 1) and pD(0) = p(D = 0) are
the corresponding probabilities. As for the report R, we can
have several cases. The first one is the dichotomous case,
in which there are only two kinds of responses: R = 1
indicates the presence of the disease, and we call it positive;
R = 0 indicates the absence of the disease, and we call it
negative; pR(1) = p(R = 1) and pR(0) = p(R = 0) are
the corresponding probabilities. Another important case is
the multi-valued one, as in the breast imaging-reporting and
data system (BI-RADS) report, where we can set a 5-point
malignancy scale: 1 = negative; 2 = benign; 3 = probably
benign; 4 = suspicious; 5 = highly suspicious. The last case
is that in which the quantity describing the output of the test
is continuous, which is the continuous case.

If we restrict our attention to the dichotomous case, the
four possible combinations of the considered diagnostic
test outcome together with the standard of reference result
can be represented by a 2 × 2 table known as confusion
matrix, which contains the number of true positives (TP),
true negatives (TN), false positives (FP) and false negatives
(FN) reports. By using these quantities, we can define the
following measures:

SE
def= p(R = 1/D = 1) = T P

T P+FN
FNR

def= p(R = 0/D = 1) = FN
T P+FN

Sensitivity False negative rate

FPR
def= p(R = 1/D = 0) = FP

FP+T N
SP

def= p(R = 0/D = 0) = T N
FP+T N

False positive rate Specificity

(6)

where p(r/d) = p(R = r/D = d) is the conditional
probability that the report R is r , given that the disease
variable D equals d. Regardless of the patient condition, the
diagnosis provided by the diagnostic test is either R = 1 or
R = 0. Thus, p(R = 1/D = d) + p(R = 0/D = d) = 1
for all the conditions d ∈ {0, 1}. The value p(D = 1) is the
pre-test probability of the disease, while p(D = 1/R = r)

is the post-test probability of the disease when the outcome
of the diagnostic test is r ∈ {0, 1}.

3 Diagnostic informationmeasures and test
accuracy

During the last fifty years, the literature about Shannon
information theory in clinical diagnostics has been mainly
devoted to gauging the quantity of diagnostic information
extracted from clinical tests in specific medical fields.

The first contribution that applied IT techniques to
dealing with medical diagnostics seems to be a paper
by Good and Card dated 1971 [35]. That work was
aimed at maximizing the expected utility of a diagnostic
process, where the utility considers both the patient’s
condition and the various costs associated with the
diagnostic process. Since utilities are generally difficult
to estimate, the authors suggested some substitutes for
them, called quasi-utilities, and they also identified as
possible candidates the informational divergence (there
called dinegentropy), the mutual information (there called
mean information transfer), and the expected weight of
evidence. This paper has the merit of introducing, for
the first time, “the concept of the patient and doctor as
forming a communication or information channel.” The
authors used the ID D(q//π) to evaluate the stochastic
distance between q = {q1, q2, . . . , qm}, which is an
estimation, during a diagnostic process, of the probabilities
m mutually exclusive diseases d1, d2, . . . , dm, and the initial
estimates π of the same probabilities, or the vector of
initial probabilities. The physician has to estimate the vector
q “by means of tests, calculations and judgements.” The
authors themselves also suggested choosing the test that
maximizes D(q//π). Later, they unraveled the connection
with the Shannon communication channel and showed that
maximizing D(q//π) “comes to the same thing as the
maximization of the mean information transfer” [35, page
181]. In the authors’ language, this is equivalent to the
mutual information I (D, F/K), where K is a conditional
variable corresponding to the knowledge of the physician,
D is the probability distribution of the diseases p(di) =
πi , and F is a vector associated with the chosen test. So,
I (D, F/K) has to be maximized by the physician “by
choice of the test.” Moreover, since MI is the information
transmission rate and the expected weight of evidence is the
logarithm of a likelihood ratio, the measures are related to
the quantity of information extracted by the diagnostic test
in both cases.

After this first contribution, there have been several
other attempts to introduce Shannon-like methods in
medical diagnostics. Another important attempt was the
one suggested by Metz, Goodenough, and Rossmann [52],
who in 1973 used the mutual information in conjunction
with ROC curves. The authors proposed to gauge the
imaging system performance by using ROC curve data
and, successively, to evaluate radiographic images. This
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approach relates each point of the ROC curve as 1-SP varies
with the mutual information I (D, R) between the random
variables D, which represents the two states of disease of the
patient, and R, which corresponds to the diagnostic report
of the reader. This method can be used in two ways: the
first one quantifies the maximum amounts of information
available on two different ROC curves to compare the
quality of the two systems used to generate the curves
themselves. The second way measures the quantity of
information obtained by a rater operating at any two points
of the same ROC curve or a single point on two ROC curves;
in this case, the authors measure the information extracted
in a diagnostic process by using mutual information. This
approach is similar to that of Good and Card [35] even
though [52] did not cite it.

In 1978 Okada [56] used MI and a custom-tailored
weighted entropy for a slightly different goal: reducing
the amount of clinical data by eliminating relatively
insignificant items.

The paper [52] by Metz, Goodenough, and Rossman has
been a source of inspiration for many subsequent works in
several areas of clinical diagnostics. For example, Diamond
et al. used the mutual information I (D, R) to gauge the
diagnostic effectiveness of different test combinations in
the clinical diagnosis of coronary artery disease [24]. The
method was compared with an alternative approach which
evalutates the average value of the difference between the
probability of the disease before and after testing, i.e., �p =
|p(d/r) − p(d)|. An essential contribution of this paper is
that of recognizing the dependency of mutual information
from the prevalence of disease; the issue was solved in
the Appendix by integrating MI for all the prevalences
to obtain an average value to be used for coronary
angiography. The subsequent work of Diamond et al. [25]
used mutual information to evaluate the information content
of the electrocardiographic ST-segment response to exercise
relative to the diagnosis of angiographic coronary artery
disease.

In paper [65] by Rifkin, the author analyzed the increase
of information available for a diagnostic test when one
increases the number of outcomes associated with the test
results.

Somoza and Mossman [55, 70–73] instead investigated
how to choose the best cutoff in diagnostic tests with a
continuous response characterized by a ROC curve. Their
approach, which extended [52], selected the best cutoff by
maximizing the mutual information of the diagnostic test on
the ROC curve. The authors used this technique to evaluate
the measure of Rapid Eye Movement (R.E.M.) latency as a
diagnostic test for depression [70].

In 1990, Asch et al. [6] criticized the use of mutual
information, as introduced in [52]; they stated that MI is not
able to correctly detect the “prognostic information” that

results from the application of a clinical test. They provided
an example in which they try to evaluate the information
conveyed by a positive test result as a consequence of a
change from p(D = 1) = 0.1 of the pre-test probability
of disease to p(D = 1/R = 1) = 0.9 of the post-
test probability of disease, knowing that we have obtained
a positive test result. They evaluated this information by
computing the difference H(D) − H(D/R = 1), which
corresponds to an unweighted sub-component of ordinary
mutual information. Since the a priori and a posteriori
probabilities are complementary, they obtained a difference
equal to 0. They imputed this to a flaw of information theory
since “patients are not indifferent to a chance of disease of q

and a chance of 1−q.” They proposed, as an alternative, the
use of the difference p(D = 1/R = 1)−p(D = 1), already
discussed in [24], but not mentioned in its bibliography.
With abuse of language, they called this approach “Linear
information theory” although it deviates from classical
Shannon information theory, it wasn’t supported by any
formal framework, and the word “information,” which in
their paper denoted a difference between probabilities, was
not properly used. The contribution was harshly criticized
by Diamond which stated that the example they provided
does “not represent a failure of the theory; it represents a
failure to appreciate what the theory is about” [23]. This
commentary had a reply [7] with a dispute about the concept
of “average change of probability” �p.

The issue of evaluating the information conveyed by a
diagnostic test once a test result is obtained was repurposed
by Benish several years later [9]. He suggested replacing the
old formula H(D) − H(D/R = 1), criticized in [6], with
the informational divergence D((D/R = 1)//D), which
solves the pitfall discussed in that paper; it corresponds to
measuring the stochastic distance between the post-test and
the pre-test probability of disease, knowing that we have
obtained a positive test result. The author stressed that it
“is not a measure of the absolute amount of information
that a test provides.” The ID function was proposed in
the same year by Lee [46] to select diagnostic tests to
rule in or rule out a disease; in this context, the authors
suggested the evaluation of D((R/D = 1)//(R/D = 0)))

or D((R/D = 0)//(R/D = 1))).
The “absolute amount of information that a test

provides,” cited in the paper [9] by Benish, has been
discussed in two subsequent contributions by the same
author [10, 11], where it is shown that I (D, R) “quantifies
the expected value of the amount of information the test
provides.” Even though this concept is not new at all —
e.g., we cited [24, 35, 52] as prior examples– one has
to admit that [11] is the first paper that extensively and
systematically described, discussed, and put into a correct
environment the problem of measuring the information
carried out by a diagnostic test. In this contribution, we can
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also find a quotation of the channel capacity, defined as the
maximization of MI across all possible distributions of the
pre-test probability of disease; here MI is also used as an
index of the performance of a diagnostic test, as the title
itself suggests. The use of I (D, R) as the correct tool to
manage medical diagnostics information has been supported
even from an axiomatic perspective in another paper by
Benish [12].

Several other contributions followed these seminal
papers, focusing on the practical application of IT meth-
ods to actual clinical cases, especially mutual information.
For example, in [57] the topic studied is the problem of
quantifying the performances of two tests for major depres-
sive disorder, which are the dexamethasone suppression test
(DST) and the thyroid-stimulating hormone test (TSH). In
contrast, in [4] the authors need to evaluate the effectiveness
of GDx nerve fiber analyzer parameters in the diagnosis of
glaucoma. In another work [79] the MI is used to extract the
most informative mammographic features for breast cancer
diagnosis, while the authors of [5] use MI to detect occlusal
caries lesions.

Recently, some authors have further developed the old
idea — advocated by Good and Card [35] and successively
taken up by several other authors — of simply measuring
the bare amount of information flowing from the disease
to the physician through the use of a diagnostic test. This
approach is interesting from the theoretical perspective, but
it does not offer the physician an operative tool to compare
two diagnostic tests whose accuracy is usually specified
through sensitivity and specificity. Moreover, the physician
would need a method to measure the global test accuracy
using a single number. The first one to pursue this goal was
Benish [13], who applied the information theory concept of
channel capacity to diagnostic test performance, deriving an
expression for channel capacity in terms of test sensitivity
and specificity, and finding the prevalence of disease that
allows this maximization. It is worth noting that Benish
has been the most contributor, during the last 20 years, in
the field of application of Shannon information theory to
medical diagnostics [9–14].

Subsequently, Girometti and Fabris [32] independently
developed an IT framework for diagnostic test accuracy
by defining a diagnostic channel that connects the patient
disease D with the outcome X of the diagnostic test
interpreted by the rater X (see Fig. 1). While this idea is not
new, it properly contextualizes MI usage and formalizes the
notion of the diagnostic channel.

The same paper also introduced a normalized measure
of the test performance in the interval [0, 1] — based on
MI as a function of sensitivity and specificity — called
the information ratio (IR) of the diagnostic test, which
expresses a global measure of the test accuracy and is
independent form the prevalence of the disease. Since

Fig. 1 The diagnostic channel connects the patient disease D with the
outcome (random variable) X of the diagnostic test interpreted by the
rater X; it is formed by the chain patient condition D ⇔ diagnostic test
performed by X ⇔ X, and it is briefly indicated as D ⇔ X

prevalence is an important variable that can dramatically
change the quantity of information measured by the
test, and then the quality of the same test, it has been
proposed to integrate MI over all the prevalences (e.g.,
see [24, Appendix]) and normalizing the Area Under the
Curve (AUC) with respect to the maximum area available
for the standard of reference. A similar method is also
discussed for the case of multi-valued diagnostic tests with a
variable threshold such as BI-RADS. Section 5 will present
this approach.

4 Informational inter-rater agreement

The literature about IT methods to evaluate paired
agreement is much more limited. To our best knowledge,
Klemens was the first one to measure agreement by
applying a Shannon-like method. He used a normalized
weighted MI as an index of inter-rater agreement [43] and,
for each couple of readings i, j , the weights wij were such
that wij = 1 if i = j , and wij = 0 if i �= j . This
approach is equivalent to taking into account only the cases
in which the raters completely agree and decoupling the
agreement component of MI from the disagreement part. He
then normalized this skewed MI with respect to the sum of
the entropies H(X) and H(Y). The paper by Kang et al.
[39] uses instead MI to quantify the information shared
between outcomes of multiple healthcare surveys. However,
this approach dissected MI among the agreement and the
disagreement components, too, and it distorted the spirit
and the axiomatics of the Shannon’s MI function, which
averages all the components.

Only recently, Casagrande et al. [15] proposed the
use of the classical Shannon orthodox approach also in
the agreement context (see also [16]). This is done by
introducing an agreement channel, which connects X and Y

as the terminals of the chain X ⇔ diagnostic test performed
by X ⇔ patient condition D ⇔ diagnostic test performed
by Y ⇔ Y , which corresponds to the concatenation of the
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two diagnostic channels X ⇔ D and D ⇔ Y (see Fig. 2);
we briefly indicate the agreement channel as X ⇔ Y , and
it constitutes the framework to evaluate AM using the so-
called informational agreement (IA), which is a normalized
measure in the interval [0, 1], that can directly be compared
with Cohen’s κ .

5 An IT-based unifying approach

In this section, we recall the main elements associated
with the model we need to measure the performance of a
diagnostic test and the agreement between two raters. The
starting point is the definition of a diagnostic channel and
an agreement channel.

5.1 Measuring the quality of a diagnostic test

Based on the literature of the last fifty years, we can now
state that mutual information has definitely been accepted as
the correct method to measure the quantity of information
extracted by a diagnostic test [11–13, 24, 32, 35, 52, 73].
Concerning the medical diagnostics setting Section 2.2, the
information exchanged between D and R is measured by

I (D, R) =
∑

d∈D
r∈R

p(d, r) log2
p(d, r)

p(d)p(r)
(7)

with the logarithm taken to the base 2. Using the Bayes rule
p(d, r) = p(d)p(r/d), which is p(r) = ∑

d∈D p(d, r) =∑
d∈D p(d)p(r/d), we have

I (D, R) =
∑

d∈D
r∈R

p(d)p(r/d) log2
p(r/d)

p(r)

=
∑

d∈D
r∈R

p(d)p(r/d) log2
p(r/d)∑

d ′∈D p(d ′)p(r/d ′)
(8)

In the dichotomous case, the prevalence of the disease
PD

def= p(D = 1) equals 1 − p(D = 0), because p(d) is

a probability. Hence, p(r) = ∑
d ′∈D p(d ′)p(r/d ′) can be

rephrased as p(r/D = 0) + p(D = 1)(p(r/D = 1) −
p(r/D = 0)). Moreover, p(r = 1/d) = 1−p(r = 0/d) for
any d, thus, due to SE and SP definitions in terms of p(r/d)

(see Eq. 6), the mutual information between D and R equals

I (D,R) = PD(log2 (1 − SE) + SE(log2 SE − log2 (1 − SE)))

+(1 − PD)(log2 (1 − SP) + SP(log2 SP − log2 (1 − SP)))

−((1 − SP) + PD(SE + SP − 1)) log2[(1 − SP)

+PD(SE + SP − 1)] − (SP + PD(1 − (SE + SP))) log2[SP+PD(1 − (SE + SP))].
(9)

Equation 9 proves that the mutual information between
the rater and the disease exclusively depends on SE, SP,
and PD . On the one hand, this measure is subject to the
prevalence, which is not always known and may be biased;
on the other hand, once SE and SP are measured, we
can evaluate the mutual information itself for any possible
prevalence by using Eq. 9. In order to stress this last aspect,
we may refer to the mutual information between D and R

— i.e., I (D, R) — also as MISE,SP(PD) or, whenever both
SE and SP can be deduced from the context, as MI(PD).

In order to define a prevalence-independent metric for
rater performances, we can account for all the possible
mutual information values for any prevalence, which is done
by integrating MI over all the prevalences of disease in the
interval [0, 1] [24, 32]

MI
def=

∫ 1

0
MI(PD) dPD (10)

This corresponds to evaluating the AUC of the MI curve
over all the prevalences. The MI curve associated with the
case SE = 1 and SP = 1 is the one having the greatest
admissible AUC. This MI curve is the standard of reference
(SR) and its AUC equals MI1,1 = 1/ ln 4. Figure 3 depicts
the standard of reference MI1,1 together with the curves
MI0.5,1 (SE = 0.5 and SP = 1) and MI1,0.5 (SE = 1 and
SP = 0.5) as the prevalence of the disease varies in the
closed interval [0, 1]. Note that when the curves intersect, as

Fig. 2 The diagnostic channel connects the patient disease D with the
outcome (random variable) X (Y ) of the diagnostic test interpreted by
the rater X (Y); it is formed by the chain patient condition D ⇔ diag-
nostic test performed by X ⇔ X, and it is briefly indicated as D ⇔ X.

The agreement channel connects the random variables X and Y , that
express the raters outcomes. They are the terminals of the chain X ⇔
diagnostic test performed by X ⇔ patient condition D ⇔ diagnostic
test performed by Y ⇔ Y . It is briefly indicated as X ⇔ Y
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Fig. 3 MI0.5,1 (SE = 0.5 and SP = 1), MI1,0.5 (SE = 1 and SP = 0.5),
and MI1,1 (SE = 1 and SP = 1) as the prevalence of the disease varies
in [0, 1]

in the example of Fig. 3, one can specify the interval with the
best behavior for each curve. In this case, we have the green
curve better for PD < 0.5 and the blue one for PD > 0.5.

The information ratio IR [32] is MI normalized with
respect to the maximum value of it, i.e., MI1,1,

IR
def= MI

MI1,1
= ln 4

∫ 1

0
MI(PD) dPD . (11)

It is worth to notice that the value of IR still depends on both
SE and SP.

As far as the multi-valued case is concerned, we can
refer again to [32], where the global quality of the test is
evaluated by changing the threshold of SP, so as to obtain
an IR value for each value of 1 − SP. In Fig. 4a we can
see an example of a classical ROC curve for a 7-point BI-
RADS test. The corresponding information ratio curve IRC
is shown in Fig. 4b; we have an IR value for each threshold
1 − SP and the AUC of the curve is related with the limit
information curve LIC, drawn by fixing SE = 1 for all
values of 1 − SP, which corresponds to the curve associated
with the maximum amount of information we can gain
for each value of 1 − SP. The AUC of the LIC curve is
computed in [32] and is equal to 2 − π2/6 ≈ 0.35506. The
normalization of the IRC’s AUC with respect to the AUC of
the LIC curve gives the global information ratio GIR

GIR
def= AUCIRC

2 − π2/6
(12)

which expresses a global, prevalence-independent, normal-
ized evaluation of the quality of a multi-valued diagnostic
test. It can be thought of as the information counterpart of a
ROC curve.

5.2 Measuring the agreement between raters

The problem of evaluating the agreement between two raters
is solved by using the approach depicted in [15], which
consists in expressing it as the quantity of information
flowing through the agreement channel of Fig. 2, which is

Fig. 4 Two purely illustrative ROC and GIR curves for a 7-point malignancy scale
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the virtual channel connecting the random variables X and
Y through the information path X =⇒ rating by X =⇒
condition D =⇒ rating by Y =⇒ Y . It is so because I (X, Y )

is a measure of the stochastic dependence between X and
Y . Since I (X, Y ) ≤ min{H(X), H(Y )} (see Eq. 5), we can
normalize I (X, Y ) with respect to min{H(X), H(Y )}; this
leads to the informational agreement IA

IA(X, Y )
def= I (X, Y )

min{H(X), H(Y )} (13)

whose value ranges in the interval [0, 1]. As pointed out
in [15], contrary to what happens with Cohen’s κ , IA
correctly measures the stochastic distance between PXY and
PXPY , which is the distance of the two raters from the
condition of independence. This means that IA gauges the
(normalized) amount of information exchanged between the
two raters. Furthermore, this measure can be used in both
the dichotomic and multi-valued scale ratings.

6 Two case studies from clinical diagnostics

To assess the global quality of the approaches depicted in
Section 5, which is to measure the quality of the readings
of some raters that have to evaluate the outcomes of a
diagnostic test and the mutual agreement between a couple
of raters, we considered two case studies; the first one
deals with raters of a diagnostic test to detect extra-prostatic
cancers; the second one is related to COVID-19 rapid
detection.

6.1 Detecting extra-prostatic cancers

For this analysis, we took the original data set used with
the paper [82]. In this study, investigators assessed whether
Magnetic Resonance Imaging (MRI) of the prostate added
value to clinical models in diagnosing so-called pathological
stage ≥T3 prostate cancer, i.e., cancer with extra-prostatic
extension into surrounding soft tissue and invasion of
the seminal vesicles at pathological analysis after surgery.
Preoperative knowledge of stage ≥T3 is essential to both
plan the type of surgery — for instance, to plan whether
to perform nerve-sparing surgery– and predict the risk of
recurrent prostate cancer after primary treatment.

In the source study, three different radiologists with
8, 6, and 2 years of experience in prostate MRI (raters
R1, R2 and R3, respectively) prospectively evaluated MRI
examinations performed to stage prostate cancer before
radical prostatectomy. They attributed an MRI stage on a
rank scale (T1c, T2a, T2b, T2c, T3a, and T3b). On this
basis, we have performed three kinds of analysis. The first

one was devoted to testing the diagnostic accuracy of each
radiologist in assessing pathological stage ≥T3 under the
form of the IR. In order to achieve this goal, MRI readings
were dichotomized by assuming that the MRI stage ≥T3a
was the cutoff for the pathological stage ≥T3 diagnosis.

In the second analysis, we evaluated readers’ accuracy in
diagnosing pathological stage ≥T3 on a multi-valued basis,
i.e., by obtaining the GIR and ROC curves built upon all the
rank values attributed by radiologists in image analysis.

Lastly, we focused on assessing pairwise inter-rater
agreement — i.e., R1 vs R2, R1 vs R3, and R2 vs R3. This
has been done by computing the information agreement for
both dichotomic and multi-valued cases and Cohen’s κ for
the dichotomic case alone.

6.1.1 Results for extra-prostatic cancers

Table 1 shows the IR of the three raters with respect to
the standard of reference for the data set associated with
the search of extra-prostatic cancers; it also contains the
parameters usually computed to determine the quality of a
diagnostic test, which are essentially sensitivity, specificity,
false positive and false negative rates. Figure 5 shows
instead the variation of MI with respect to the prevalence of
the disease.

Figure 6 contains the IR profile while changing the
SP threshold, so as to generate the GIR curve and the
corresponding normalized value. The third point starting
from the left corresponds to the standard cutoff 1 − 4|5 − 6
— to be intended as surgery is required from rate 5 on — we
can appreciate that in all the three cases it has the maximum
value of IR; this means that the threshold used is the best
possible since it carries the maximum amount of diagnostic
information.

The results of the standard ROC analysis are reported in
Fig. 7. It is not clear how to validate the best threshold for
the ROC curve.

As for the agreement comparison, the results are
available in Table 2; we have evaluated the IA for the
dichotomous and the multi-valued cases and Cohen’s κ for
the dichotomous case alone.

Table 1 The sensitivity, specificity, false positive, false negative rates,
and the value of IR for each of the extra-prostatic cancer raters R1,
R2, and R3 with respect to the standard of reference

R1 R2 R3

SE 0.62 0.67 0.58

SP 0.82 0.73 0.88

FNR 0.38 0.33 0.42

FPR 0.18 0.27 0.12

IR 0.142 0.112 0.167
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Fig. 5 The mutual information of each of the extra-prostatic cancer
raters R1, R2, and R3 against the standard of reference as the
prevalence of the disease varies in the interval [0, 1]

6.1.2 Discussion on extra-prostatic cancers

Table 1 shows that the IRs of R1, R2, and R3 are 0.142,
0.112, and 0.167, respectively. Since they lay within a nar-
row range, the three raters are almost equivalent, with R3

performing a little better than the others and R1 is the sec-
ond best. Figure 5 shows that this ordering holds for all the
prevalences, because the MI curve related to R3 is always
above those of the other two raters, while that associated to
R2 is below the curve of R1 for all the possible prevalences.

The IRs of all the raters are quite small in absolute terms
with respect to the theoretical maximum values for IR, i.e.,
1. While this is partially due to both the low sensitivity
(0.62, 0.67, and 0.58, respectively), which is typical for
this kind of measure, and the not so high specificity (0.82,
0.73, and 0.88, respectively) of the raters, this drift is quite
frequent in the general case for informational measures that,
being based on entropy, are able to discriminate even modest

changes in rater performances when both sensitivity and
specificity are close to 1.

Figure 6 shows the GIR diagrams of the three raters
together with the corresponding values — i.e., 0.208, 0.225,
and 0.190 for R1, R2, and R3, respectively. Also, in this
case, we can consider the quality of the raters almost
equivalent, but with a different ordering as R2 performs
better than the other two and R1 follows. It is worth noticing
that this last ordering seems to be more tuned with the one
subtended by the experience of the three raters — i.e., R1

in first place, R2 in second, and R3 in third. This seems to
suggest that the GIR analysis, based on a variation of the
threshold for specificity, is more coherent than the simple
IR analysis based on a fixed threshold.

The AUC under the ROC curves of Fig. 7 offers a
slightly different and less convincing vision of the raters’
performance, since in this case the most experienced rater
R1, having 8 years of experience in prostate MRI, is
considered the worst rater with R2 topping the other two.

The agreement analysis, interestingly, offers support
to the idea that R2 and R3 are the furthest away, as
specified in IR and GIR analysis, since for all three methods
used, (dichotomous IA, multi-valued IA and Cohen’s κ ,
see Table 2) it comes out that R2 vs R3 shows the
worst value of the agreement. Since the IA for the multi-
valued scale is by far the most refined method from the
theoretical point of view, we can accept the fact that R1

vs R2 have the best agreement, also because the other two
methods, dichotomous IA and κ , would suggest that the best
agreement is between R1 and R3, which seems not coherent
with the scale of years of experience of the raters.

In conclusion, we could suggest that R2 is the best rater
among the three, R1 comes in second place, and R3 is by far
the worst of the three. In this sense the GIR and the multi-
valued IA appear to be the best tools to use when evaluating
the quality of a reader or the agreement between readers, at
least when we have a multi-valued scale of ratings.

Fig. 6 GIR analysis of the three extra-prostatic cancer raters versus the standard of reference
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Fig. 7 ROC analysis of the three extra-prostatic cancer raters versus the standard of reference

6.2 Evaluating the effectiveness of serology tests
for COVID-19 detection

A possible application for the analysis described in
Section 5.1 is the comparison of the accuracy of COVID-
19 tests. For the sake of example, we considered the data
reported in [53] and we analyzed the comparison between
RT-PCR, which is the standard of reference for COVID-
19 diagnosis, and two automated and one rapid lateral
flow immunoassays for the detection of anti-SARS-CoV-
2 antibodies. These essays highlight SARS-CoV-2 specific
antibodies in blood samples and allow rapid identification
of the COVID-19 disease in the considered subjects. We
limited our analysis to the Euroimmun Anti-SARS-CoV-
2 ELISA IgG and IgA combined assays (Euroimmun,
Luebeck, Germany), the Maglumi™ 2019-n-Cov IgG and
IgM combined immunoassays (CLIA), and the 2019-n-
CoV IgG/IgM combined rapid test cassette (LaboOn Time)
(LabOn Time, Bio Marketing Diagnostics, or Akiva, Israel).

By using the number of true positives, RT-PCR positive,
true negative, and negative RT-PCR of the considered
combined tests, that are reported in [53, Table 1], we
calculated the sensitivities and specificities of the assays.
Then, their IRs were assessed and the tests were sorted
according to their IRs to identify the most accurate
test on average over all possible prevalences of disease.
Furthermore, we computed the mutual information of the

investigated tests and RT-PCR for the values 1/8, 2/8, . . . ,
and 7/8 of the prevalences of disease by using Eq. 9. For
each of these prevalences, we re-sorted the tests according
to their mutual information with respect to the standard of
reference and we established the more effective tests among
those analyzed for the specific value of PD .

6.2.1 Results of the analysis of COVID-19 tests

Table 3 shows the values of IR for the tests ELISA,
CLIA and LaboOn Time, together with the corresponding
sensitivity, specificity, false positive and false negative rates.

Figure 8 shows the corresponding MI curves as a function
of the prevalence of disease. Note that the ELISA and CLIA
curves intersect for PD ≈ 0.55.

Table 4 reports the mutual information of the con-
sidered COVID-19 antibodies tests versus the standard
of reference as the prevalences of the disease varies in
{1/8, 2/8, . . . , 7/8}.

6.2.2 Discussion on the COVID-19 tests

As far as the analysis of the COVID-19 antibodies tests
is concerned, the IRs reported in Section 6.2.1 suggests
that, if there are no preferences to the ability to identify
positive cases with respect to the capability of discharging
the negative ones, whenever the prevalence of the disease

Table 2 Agreement between each pair of extra-prostatic cancer raters R1 vs R2, R1 vs R3, and R2 vs R3, both in the dichotomous and in the
multi-valued case, expressed by the IA. The last column contains Cohen’s κ values

Raters IA dichotomous IA multi-valued Cohen’s κ

R1 vs R2 0.259 0.361 0.558

R1 vs R3 0.490 0.337 0.741

R2 vs R3 0.222 0.263 0.487
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Table 3 Sensitivity, specificity, false positive, false negative rates and the value of IR for the Euroimmun Anti-SARS-CoV-2 ELISA IgG and IgA
combined assays, Maglumi™ 2019-n-Cov IgG and IgM combined immunoassays (CLIA) and LaboOn Time kit

ELISA CLIA LaboOn Time

SE 0.844 0.631 0.719

SP 0.875 1.000 1.000

FNR 0.156 0.369 0.281

FPR 0.125 0.000 0.000

IR 0.392 0.417 0.504

is unknown, LaboOn Time is preferable to the other two
tests for all the values of prevalence, with CLIA in second
position among the three.

Moreover, Table 4 indicates that CLIA performs better
than ELISA for all the preferences in {1/8, 2/8, 3/8, 4/8},
but the latter is more accurate than the former for the
prevalences 5/8, 6/8, and 7/8. This is also visible in Fig. 8
where the mutual information curves of these two tests and
RT-PCR intersect on PD ≈ 0.55.

7 Discussion and conclusions

Information theory has been used in many areas, such as
computer science, physics, biology, linguistics, taxonomy,
psychology and many others. It has been applied also
in medical diagnostics, for example, to study systems
represented by a time series, or to describe the dynamics of
information in coupled physiological systems, or to extract
features in medical imaging registration, classification and
segmentation.

Fig. 8 The MI curves of the considered COVID-19 antibodies tests as
a function of the prevalence of disease

As for the problem of assessing the accuracy and
agreement of diagnostic tests, many intriguing results
have been obtained in the last fifty years. Nevertheless,
even though these contributions are based on consolidated
mathematical tools [67], they have not been considered for
daily clinical practice, which instead keeps employing, in
both DTA and AM contexts, more classical approaches.
This discrepancy may be due to several reasons.

In some cases, the proposed methods merely used
Shannon functions, such as entropy, mutual information,
and informational divergence, as flat formulas to derive
different custom-modified measures to express DTA or
AM. This approach, when not supported by any axiomatic
framework, led to both questionable and difficult-to-be-
interpreted results.

In other cases, even though the suggested measures
remained inside the orthodoxy depicted by Shannon,
their advantages with respect to the mainstream statistical
approaches, such as the commonly used Cohen’s κ ,
remained obscure to the vast audience of physicians
partially because of the lack of the necessary software
tools to broadly test and, possibly, adopt them. Perhaps, the
most important motivation for not using Shannon-derived
measures for DTA and AM in medical diagnostics is that
they have seldom been operatively compared with the tools
daily used in clinical diagnostic.

The path depicted in [15, 16, 32] tries to overcome all
these limitations. Clinical tests are modeled as a channel
(the diagnostic channel) that routes information about the
disease from patients to their diagnosticians and, because
of this, Shannon-theory can be applied to evaluate a
normalized measure of the information acquired by using
the tests themselves in both dichotomic and multi-valued
cases [32]. Analogously, the agreement channel between
pairs of raters is used to gauge the quantity of information
virtually exchanged by raters themselves in their evaluations
and, as a consequence, their agreement [15, 16]. The
comparisons of the proposed measures against the standard
dogmatic statistical tools, such as Cohen’s κ , Scott’s π , or
Bangdiwala’s B, suggested that the former perform better
than the latter in both cited tasks.
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Table 4 The mutual information of three COVID-19 antibodies tests versus the standard of reference, i.e., RT-PCR, as the prevalences of the
disease varies in the set {1/8, 2/8, . . . , 7/8} (see Section 6.2)

Tests PD = 0.125 PD = 0.250 PD = 0.375 PD = 0.500 PD = 0.625 PD = 0.750 PD = 0.875

ELISA 0.197 0.323 0.393 0.415 0.389 0.316 0.190

CLIA 0.280 0.392 0.433 0.425 0.374 0.286 0.161

LabOn 0.329 0.465 0.519 0.514 0.457 0.353 0.202

So, why are these Shannon-oriented measures still far
away from being widely adopted? On the one hand,
software tools that allow non-experts in information theory
to evaluate these metrics are still missing; this aspect
discourages physicians from using the discussed approach
in their research manuscripts and standard practices and it
delays the penetration of the information theory tools in
the clinical community. On the other hand, the absence of
any absolute qualitative reference scale for the new metrics
plays a role in this lack of interest too. In other terms, no
scale that establishes whether one can consider an IR, GIR,
or IA value to be “good” or “bad” has been proposed yet.
It is worth noticing that, even in the context of classical
statistical tools, these scales are either missing or, in the
best case, totally arbitrary and devoid of any objective
foundation, such as the widespread-adopted linear scale
proposed in [51] to rate Cohen’s κ — i.e., [0, 0.2)(“none
to slight”), [0.2, 0.4) (“fair”), [0.4, 0.6) (“moderate”),
[0.6, 0.8) (“substantial”), and [0.8, 1.0) (“perfect or almost
perfect agreement”).

We feel confident in foretelling that the mentioned
obstacles to the adoption of the IT-based evaluation
approach in the clinical domain will be removed in the
next years, which will release new advances in medical
diagnostics.
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