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Abstract: Molnupiravir is a β-d-N4-hydroxycytidine-5′-isopropyl ester (NHC) compound that exerts
antiviral activity against various RNA viruses such as influenza, SARS, and Ebola viruses. Thus, the
repurposing of Molnupiravir has gained significant attention for combatting infection with SARS-
CoV-2, the etiological agent of COVID-19. Recently, Molnupiravir was granted authorization for
the treatment of mild-to-moderate COVID-19 in adults. Findings from in vitro experiments, in vivo
studies and clinical trials reveal that Molnupiravir is effective against SARS-CoV-2 by inducing
viral RNA mutagenesis, thereby giving rise to mutated complementary RNA strands that generate
non-functional viruses. To date, the data collectively suggest that Molnupiravir possesses promising
antiviral activity as well as favorable prophylactic efficacy, attributed to its effective mutagenic
property of disrupting viral replication. This review discusses the mechanisms of action of Molnupi-
ravir and highlights its clinical utility by disabling SARS-CoV-2 replication, thereby ameliorating
COVID-19 severity. Despite relatively few short-term adverse effects thus far, further detailed clinical
studies and long-term pharmacovigilance are needed in view of its mutagenic effects.

Keywords: COVID-19; SARS-CoV-2; repurposing; repositioning; antiviral; Molnupiravir; NHC;
N4-hydroxycytidine

1. Introduction

The recent COVID-19 pandemic has exerted a significant impact on global health
and the economy. The etiological agent causing this disastrous pandemic is known as the
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The term “coronavirus”
is no stranger to many as the emergence of coronaviruses causing SARS and Middle
East Respiratory Syndrome (MERS) have left an indelible impression over the past two
decades. Afflicting more than 530 million individuals accompanied by 6.3 million deaths
worldwide, SARS-CoV-2 infection continues to progress at a very rapid rate on a global
scale [1]. The zoonotic origin of SARS-CoV-2 has been postulated to be bats, similar to its
previous counterpart, SARS-CoV [2]. Despite exacting a lower estimated case fatality rate
(3.4%) compared to its predecessors (9.6% for SARS-CoV, and 40% for MERS-CoV), SARS-
CoV-2 shows greater transmissibility along with the rapid emergence of new variants [3].
To facilitate public health and research activities, WHO has reclassified the variants of
SARS-CoV-2—there are variants of concern (VOC), variants of interest (VOI), and variants
under monitoring (VUM), which are named after the Greek alphabets [4]. The more recent
VOCs are delta and omicron with Pango lineages B.1.617.2 from India, and B.1.1.529 first
detected in South Africa, respectively [4]. On the other hand, VOIs fall under the “previous
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circulating” category, encompassing the epsilon, zeta, iota, eta, theta, kappa, lambda, and
mu variants [4].

It is noteworthy that COVID-19 may lead to certain critical complications, such as
pneumonia, septic shock, multiple organ failure, and the more pronounced acute respi-
ratory distress syndrome or ARDS [5]. In such a time of urgent need, drug repositioning
attempts represent a suitable strategy to develop antiviral therapy against COVID-19. Drug
repositioning—also known as drug repurposing, drug recycling, or drug reprofiling—is
described as an alternative approach to find new uses for a previously established drug to
treat disease(s) other than its initially intended one [6]. The benefits of drug repositioning
undoubtedly include lower costs since the drug has already undergone rigorous safety and
pharmacokinetic profiling, with a shorter drug development time for its new repositioned
target [7]. Currently, there is an approved nucleoside analog-based antiviral agent against
COVID-19, i.e., Remdesivir [8]. A number of existing drug candidates have been proposed
and/or evaluated as antivirals against SARS-CoV-2, e.g., Lopinavir-Ritonavir, Ivermectin,
and others in the pipeline [9].

Lopinavir-Ritonavir is one of the first co-formulated HIV-1 protease inhibitors [10]. It
was reported to have brought substantial improvements over the previous standard therapy
with nucleoside reverse transcriptase inhibitors (NRTIs) [11]. The combination of Lopinavir-
Ritonavir has been investigated for its efficacy for COVID-19 treatment, in view of its
formation of stable complexes with viral 3-chymotrypsin-like protease (3CLpro) or main
protease (Mpro) which regulate the proteolytic activity for viral replication [12]. Ivermectin,
an anti-parasitic drug, has gained attention as a potential repurposed drug against COVID-
19. It was first developed and commercialized as a veterinary drug in 1981 due to its
promising nematicidal, acaricidal, and insecticidal activities [13]. Ivermectin is an FDA-
approved drug for treating onchocerciasis and Strongyloides infection in humans [14,15].
The proposed modes of SARS-CoV-2 inhibition by Ivermectin include: the disruption
of host importin heterodimer complex (IMPα/β1), inhibition of viral entry via the host
angiotensin-converting enzyme 2 (ACE2) receptor, and disruption of the viral 3CLpro
enzyme—thereby reducing the efficiency of viral replication [15].

Notably, RNA-dependent RNA polymerase (RdRp) represents a preferred target for
developing drug inhibitors against RNA viruses, and SARS-CoV-2 is no exception. This is
attributed to the highly conserved nature of RdRp domains within the Coronaviridae family,
especially with respect to the predecessor SARS-CoV. Comparative genomic analysis reveals
high homology of RdRp domains between SARS-CoV and SARS-CoV-2 with 96.3%, 98.8%,
and 97.5% similarity in NSP12, NSP7, and NSP8, respectively—rendering RdRp a highly
suitable target for drug repositioning [16–18]. In particular, Remdesivir, a broad-spectrum
nucleoside analog inhibitor of RdRp, was the first intravenous antiviral drug against
COVID-19 approved by the US Food and Drug Administration (FDA) [19]. Although
initially developed against Ebola virus, Remdesivir also exhibits positive antiviral activity
against multiple viruses, such as filoviruses, paramyxoviruses, coronaviruses (e.g., SARS-
CoV), and others [20,21]. Given the favorable clinical trial outcomes coupled with the
close RdRp similarity between SARS-CoV-2 and SARS-CoV, this therapeutic agent has been
approved for the management of severe COVID-19 patients.

More recently, Molnupiravir, a newly emerged repositioned synthetic nucleoside-
derived RdRp inhibitor, has also gained attention for the treatment of COVID-19. This drug
is also known as β-d-N4-hydroxycytidine-5′-isopropyl ester (NHC) or Emory Institute of
Drug Development-2801 (EIDD-2801) [22]. The first synthesis of Molnupiravir was reported
by the Drug Innovation Ventures at Emory University back in 2018—later acquired by
Ridgeback Biotherapeutics and partnered with Merck for further development [23,24].
Molnupiravir has been proven effective in multiple antiviral treatments against influenza A
virus (IAV), Venezuelan equine encephalitis virus (VEEV), Ebola virus, SARS-CoV, and most
recently SARS-CoV-2 [25,26]. Remdesivir acts as a nucleoside analog that interferes directly
with RdRp activity. However, the mechanism of Molnupiravir is via its interactions with
the RNA building blocks instead. Molnupiravir works primarily as a mutagenesis agent
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that induces RNA mutations by incorporating the incorrect nucleo-base into the viral RNA
genome leading to catastrophic errors [27]. The RdRp then replicates and generates new
virions with the errors brought forward, thereby effectively hampering viral replication
capacity of the new virions [27].

The UK Medicines and Healthcare Products Regulatory Agency recently approved
Molnupiravir as an oral antiviral drug against COVID-19 for adults in emergency and
urgent settings [28]. This agent has the potential to ameliorate disease severity and con-
tribute to lower morbidity and mortality among COVID-19 patients. Hence, this review
aims to highlight consolidated knowledge on the molecular mechanisms underpinning the
inhibition of SARS-CoV-2 replication of by Molnupiravir.

2. Antiviral Action of Molnupiravir

Previous studies have revealed the efficacy of Molnupiravir against multiple virus
infections. Given that viral RdRp plays a substantial role in many RNA viruses, it is of
interest to unravel the mechanisms of action of Molnupiravir against SARS-CoV-2. In view
of the relative conservation of RdRp in coronaviruses, especially between SARS-CoV and
SARS-CoV-2, it is worthwhile to describe the antiviral mechanisms of Molnupiravir in the
context of the SARS-CoV-2 replication cycle.

2.1. Influenza A Virus (IAV)

The influenza A virus is a negative-sense RNA virus that consists of eight unique
RNA segments that encode 14 known proteins [29]. To produce new virions, IAV needs to
undergo a series of genomic replication processes driven by RNA polymerase enzymes,
known as RdRp. Being a negative-sense RNA virus, the RdRp synthesizes numerous
complementary positive-strand RNAs which serve as templates to generate more negative-
sense RNA viral genomes for viral replication. In addition, the negative-strand RNAs also
serve as templates to manufacture more positive-strand RNAs that constitute the mRNAs
to encode functional viral proteins [30]. In this regard, RdRp incorporates new nucleotide
triphosphates (NTPs) into the newly synthesized complementary strands. As a mutagen,
NHC permits incorporation of cytidine into the viral RNA genome, leading to increased
frequency of tautomeric interconversions of C-to-U and G-to-A, thereby culminating in
catastrophic errors in the newly produced virions [31]. In vivo studies have also provided
evidence to support the efficacy of NHC against IAV [31,32]. Excess levels of exogenous
cytidine or uridine indicate that NHC is recognized as a pyrimidine analog by IAV. This
results in significantly reduced IAV replication in the presence of NHC, accompanied by
a greater frequency of C-to-U, G-to-A, and A-to-G mutations at 400 mg/kg dosage [33].
These findings suggest the potential of Molnupiravir as an effective antiviral against IAV.

2.2. Venezuelan Equine Encephalitis Virus (VEEV)

The positive-sense single-stranded RNA Venezuelan equine encephalitis virus belongs
to the genus of New World alphaviruses. VEEV shares the trait of mosquito-borne transmis-
sion with its counterparts, i.e., Chikungunya virus (CHIKV), Eastern equine encephalitis
virus (EEEV), and Western equine encephalitis virus (WEEV) [34]. Being an encephalitis
virus that targets the central nervous system, antiviral drugs need to penetrate the blood-
brain barrier to be effective against VEEV [35,36]. NHC induces a high rate of mutations in
VEEV genomic RNA, where 2 µM drug concentration leads to at least a ten-fold increase
in new mutations, with U-to-C or C-to-U transitions being the most prevalent. It was
demonstrated that most VEEV released from the NHC-treated cells contained mutated viral
genomes that were incapable of replicating. Moreover, VEEV mutants remained highly sen-
sitive to NHC despite 20 passages [36]. In addition, 90% of mice survived lethal intranasal
VEEV challenge when treated with 500 mg/kg and 300 mg/kg doses (twice daily, b.i.d.),
with an 80% survival rate upon administration of 150 mg/kg dose (b.i.d.)—compared
to the non-NHC control group of mice that died after 6 days. Notably, virus titers were
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undetectable or very low in the brain samples of all NHC-treated mice [37]. In light of this,
Molnupiravir shows great promise for prophylactic and antiviral therapies.

2.3. SARS-CoV and SARS-CoV-2

Both SARS-CoV and SARS-CoV-2 are positive-sense, single-stranded RNA viruses
that contain approximately 30,000 nucleotides [38]. Given the high genetic identity of
RdRp between SARS-CoV-2 and SARS-CoV (99.4% sequence similarity and 96.4% sequence
identity), it is crucial to understand the mode of inhibition of RdRp in SARS-CoV as well as
SARS-CoV-2 [39]. The mode of action of NHC against SARS-CoV RdRp is no different from
its other counterparts, and several in vivo studies have proven the efficacy of NHC against
multiple coronaviruses [40,41]. Animal experiments revealed that lung hemorrhage was
significantly reduced five days post-infection (dpi) upon administration of 500 mg/kg of
NHC, suggesting that NHC is a strong candidate for oral prophylaxis against SARS-CoV
replication and related disease [40]. Notably, the study also demonstrated significantly
reduced viral titer in the lungs at 48 h after administration of 500 mg/kg NHC [40]. NHC
has been postulated to affect the thermodynamics of the secondary structure of RdRp in
SARS-CoV, leading to the inhibition of viral replication [42]. Furthermore, treatment with
6 µM of NHC yielded a 90% viral reduction in SARS-CoV-infected Vero 76 cells—confirmed
by cytopathic effect inhibition and neutral red uptake assays [42]. These results illustrate
that Molnupiravir is a strong candidate for inducing RNA mutagenesis in viruses, thereby
reducing and arresting replication capacity of SARS-CoV and SARS-CoV-2.

3. The General Genomic Organization of SARS-CoV-2

The general genomic configuration of SARS-CoV-2 closely resembles its beta-coronavirus
counterparts, SARS-CoV and MERS-CoV [43]. SARS-CoV-2 is an enveloped, non-segmented,
positive-sense RNA virus with a size of 65–125 nm in diameter [44]. Within the envelope
resides a 29.9-kb RNA genome, with two-thirds containing the open reading frame 1a and
1b (ORF1ab) replicase that also encodes various non-structural proteins (NSP1–16) [45]. The
remaining one-third encodes different structural proteins, namely the spike (S), envelope (E),
membrane (M), and nucleocapsid (N) proteins [45]. In addition, there are multiple ORFs at
the 3′-end, which encode several accessory proteins (Figure 1). The typical organization of the
SARS-CoV-2 genome can be denoted as: 5′-leader-UTR-replicase-S-E-M-N-3′-UTR-poly(A)
tail—with the accessory genes scattered between the structural genes (S-E-M-N) at the 3′

end [46].
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While the structural proteins play important roles in the integrity of new virions, the
NSPs are vital for viral replication. Thus, NSP3 and NSP5 impede innate immunity, causing
aberrant cytokine expression and viral polyprotein cleavages [47]. Notably, NSP12 is critical
for viral replication, and the RdRp complex (RNA replicase) plays a vital role in genome
replication and viral transcription [48]. The positive-ssRNA genome of SARS-CoV-2 can
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function as mRNA for direct protein translation, or serve as template for the production
of the negative-strand RNA via RdRp [49]. The SARS-CoV-2 RdRp structure is a complex
that comprises NSP12, NSP7, and NSP8, similar to SARS-CoV. Within the NSP12 catalytic
subunits are three right-handed structures, namely the fingers (residues 366–581 and
621–679), palm (residues 582–620 and 680–815), and thumb (residues 816–920) subdomains,
with polymerase motifs A to G spanning across the RdRp domain (Figure 2). NSP7 and
NSP8 are predicted to further stabilize the conformation of NSP12, thereby enhancing
the binding and processivity of the RdRp complex [50]. The general viral replication
process initiates via nucleotide triphosphate (NTP) binding. This is then followed by a
conformational change of the active site, leading to phosphatidyl transfer and subsequent
formation of the phosphodiester bond with the existing nucleotide chain. This process is
aided by magnesium (Mg2+) ions. Finally, the translocation of the newly bound NTP and
chain elongation occur [51].
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Given the highly conserved nature of RdRP within the coronavirus family, RdRp
constitutes an attractive target for developing drug therapies against COVID-19 [16]. With
the success of other antiviral interventions against RdRp (such as Remdesivir), it is pertinent
to elucidate the mechanisms of Molnupiravir, an N4-hydroxycytidine that inhibits SARS-
CoV-2 viral replication.

4. The Molecular Mechanisms of Molnupiravir on SARS-CoV-2

As mentioned, the RdRp is well-conserved among coronaviruses, in which it plays a
pivotal role in the replication of the SARS-CoV-2 genome. RdRp catalyzes viral RNA replica-
tion from the original template, where RdRp synthesizes the complementary negative-sense
RNA genome (minus-gRNA) from the positive-strand template. The minus-gRNA serves as
a new template for further replication of the positive-sense RNA genome or plus-gRNA [52].
Hence, RdRp is a promising target for treatment strategies against COVID-19. To date, there
are a limited number of FDA-approved RdRp inhibitors against SARS-CoV-2, including
Remdesivir [53].

The main mechanism underpinning NHC is the inhibition of RdRp by acting as a
ribonucleoside analog for RNA polymerase. Unlike Remdesivir which attenuates RNA
synthesis, NHC primarily functions as a mutagen by increasing the frequency of transition
mutations (G-to-A and C-to-U) [25,54]. A two-step model is deduced for NHC-induced
RNA mutagenesis. As NHC enters the cell, it is cleaved in the plasma, followed by
phosphorylation by host kinases into its active form, NHC-5′-triphosphate (NHC-TP) [55].
Subsequently, NHC-TP is incorporated into the synthesized minus-gRNA and sub-genomic
RNA by RdRp, instead of C or U (when referring to the plus-gRNA template). Notably,
NHC-TP predominantly competes with C for incorporation as compared to U. As a result,
the NHC-TP-containing minus-gRNA is used as a template for the synthesis of plus-gRNA
and positive-strand sub-genomic mRNA, culminating in mutations in the positive-strand
RNA products and the formation of non-functional viruses [56].

With the incorporation of NHC-TP in the template, NHC-TP can form a base-pair
with either G or A, since NHC exists as two tautomers. The amino or hydroxylamine
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form of NHC mimics C to base-pair with G via three hydrogen bonds, while the imino or
oxime form mimics U to base-pair with A via two hydrogen bonds [57,58]. Although the
incorporation of G (NHC-TP: G) in the product-RNA strand will hinder RNA synthesis, the
increase in G concentrations will overcome this inhibitory effect with no mutation formed.
In contrast, the incorporation of A will result in G-to-A transition mutation due to the
[G: NHC-TP: A] base-pairing. The higher intracellular concentrations of A than G may
also explain the higher frequency of [G: NHC-TP: A] formation [58]. Furthermore, the
presence of C in the positive-strand viral RNA template will result in C-to-U transition
mutation due to [C: G: NHC-TP: A: U] base-pairings (Figure 3). Thus, tautomerization and
the resultant preference of NHC-TP to function as a C analog promotes the formation of
[G: NHC-TP: A] and [C: G: NHC-TP: A: U] base-pairings, which are necessary for NHC-
induced mutagenesis [59]. Other than inducing mutagenesis, studies suggest that NHC
may disrupt the secondary structure of viral RNA or hinder the release of virions [55,60].
Akin to Remdesivir, NHC possesses the ability to escape viral RNA proofreading by viral
exonuclease due to the stability of [NHC-TP: G] and [NHC-TP: A] base-pairings, in which
the backtracking of RdRp is not induced [58,61]. The lack of interruption in RNA synthesis
may bypass the proofreading ability as well [62].
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5. Clinical and Preclinical Studies on the Efficacy of Molnupiravir

Since the discovery of SARS-CoV-2 [63], there have been a few studies on the efficacy
and safety of NHC. Based on a randomized, double-blinded Phase I clinical trial on
safety, tolerability, and pharmacokinetics, NHC illustrated good potential for SARS-CoV-2
inhibition [64]. The participants (18–60 years old, predominantly Caucasian males with
a mean body mass index of 24.4–25.4 kg/m2) were subjected to either single-ascending
dosage (50–1600 mg NHC or placebo) or multiple-ascending dosage (50–800 mg NHC or
placebo, b.i.d.) for 5.5 days. The NHC pharmacokinetic profile revealed relatively good
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plasma absorption and safety across doses ranging from 50 to 1600 mg. The study also
suggested that food intake does not influence the therapeutic efficacy of NHC. Overall,
the reported adverse effects for single-dose and multiple-dose NHC include headache
(12.5%), diarrhea (7.1%), and rashes. There were minimal negative effects on vital functions,
electrocardiogram data, and hematological parameters, i.e., NHC is generally safe within
the stipulated dosage and study timeframe.

Interim data from a phase III clinical trial of 775 patients released by Merck Sharp and
Dohme (MSD) concluded that NHC is capable of reducing the risk of hospital admission
and death by 50%. The data reported that 7.3% (28 of 385) of NHC-treated patients were
admitted to the hospital or died as compared to 14.1% (53 of 377) of placebo-treated patients
over the course of 29 days. No further deaths were reported in NHC-treated groups after
day 29, while eight deaths were observed in the placebo-treated group. Although the
incidence of adverse events was similar in both groups (35% NHC versus 40% placebo),
there were fewer participants from the NHC group who discontinued treatment due to
adverse events from the placebo group (1.3% versus 3.4%) [65,66].

The antiviral activity of NHC has also been demonstrated by in vivo and in vitro
preclinical experiments. For instance, the numbers of infectious particles were successfully
reduced by 4.4 logs (at 24 h) and 1.5 logs (at 48 h) in NHC-treated immunodeficient mice
with implanted human lung tissue [67]. NHC administration at 12 h prior to SARS-CoV-2
infection, and at every 12 h thereafter, reduced virus titers by 100,000-fold. These studies
suggest that NHC clearly exerts a prophylactic effect, and can be a strong candidate
to treat SARS-CoV-2 infection, although early administration is preferred for superior
outcomes [67]. Similarly, Cox et al. (2021) documented a significant reduction of virus
shedding at 12 h and 36 h (peak shedding) post-infection in NHC-treated ferret models
(fed b.i.d.). Infectious particles were undetectable within 24 h of treatment, with only traces
of SARS-CoV-2 RNA detected in nasal tissues. Notably, the close proximity of NHC-treated
infected ferrets with two untreated ferrets for 3 days revealed no infectious particles and
SARS-CoV-2 RNA in the nasal lavages and intestinal tissue samples from the untreated
contacts, further suggesting the efficacy of NHC to inhibit SARS-CoV-2 replication [68].

Furthermore, one study showed that 10 µM of NHC successfully inhibited virus
production in primary human airway epithelial cells with a maximal titer reduction of >5
logs of MERS-CoV and >3 logs of SARS-CoV. Upon NHC administration at 10 µM dosage,
the mutation rate of NHC-treated MERS-CoV RNA was significantly elevated by up to
ten-fold. With NHC treatment, potent dose-dependent virus reduction was observed, i.e.,
1.5× 102 PFU/mL with 10 µM NHC versus 2.96× 104 PFU/mL with 1 µM NHC, compared
with 3.96 × 106 PFU/mL for vehicle control. Overall, error rates of 3-fold and 6-fold were
accompanied by 138-fold and 26,000-fold reductions in virus titer during treatment with
1 µM and 10 µM of NHC, respectively [40]. Additionally, a significant decrease in lung
hemorrhage was also observed in infected mice administered with 500 mg/kg of NHC [40].
Collectively, these experiments suggest that NHC confers a prophylactic effect, and that
earlier administration of NHC could significantly reduce SARS-CoV-2 replication and lung
hemorrhage, thereby improving the survival rate of COVID-19 patients. There are multiple
clinical trials (NCT04575584, NCT04939428, NCT04405739, NCT04746183) to evaluate the
efficacy and safety of NHC against SARS-CoV-2 infection [69–72].

Despite the encouraging outcomes, the mutagenic effect of NHC has raised concerns on
its potential host cell mutagenesis. One study demonstrated that there is no accumulation
of host ISG15 mutations at high NHC concentrations (up to 500 mg/kg), accompanied by
efficient removal of ribonucleotides from host DNA [40,73]. Mutagenicity assays conducted
on high concentrations of NHC displayed no significant differences in mutation rates
between NHC-treated and untreated animals. NHC was also shown to be safe from
inducing chromosomal damage in micronucleus in vitro and in vivo [74]. There was also
no increase in mutational load in SARS-CoV-2-infected and NHC-treated golden hamster
lung biopsies [75]. Nevertheless, there are contradictory reports that NHC may potentially
cause mutagenesis in human host cells. One report stated that NHC could be metabolized
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to 2′-deoxyribonucleotide form (dNHC) by host ribonucleotide reductase, leading to the
incorporation of DNA and subsequent host mutagenesis. The same study also illustrated
that the ribonucleoside form of NHC (rNHC) was mutagenic to Chinese hamster ovary
(CHO-K1) cells by converting to dNHC in a dose-dependent manner, resulting in the
loss of HPRT gene function via missense substitutions and frameshift mutations. This
phenomenon was further supported by rNHC-treated cells which induced resistance to the
toxic base analog 6-TG (which functional HPRT genes are sensitive to) at concentrations
that do not affect cell viability [76]. Animal reproduction studies have also alluded that
Molnupiravir may cause fetal harm when administered to pregnant women. Hence, the
drug is not recommended for use during pregnancy [77]. Despite the limited reports on
host cell mutagenesis, future detailed studies and long-term observations are essential for
patients administered with NHC to further evaluate its safety profile in the longer term.

6. Other Emerging Antiviral Drugs against COVID-19

To date, several drugs have undergone clinical trials or are being evaluated for the
treatment of COVID-19. Ivermectin (IVM) and Remdesivir have attracted attention and
some controversy on their use for COVID-19 treatment. Ivermectin is an FDA-approved
anti-parasitic drug for the prevention of heartworm disease in certain animals such as
cattle, dogs, and horses. Studies have shown the efficacy of IVM against viruses such as
Zika virus and IAV [78,79]. IVM is proposed to disrupt the host importin heterodimer
complex (IMPα/β1) for the transport of SARS-CoV-2 proteins such as NSP12-RdRp during
infection, thereby hijacking viral replication [80,81]. Of note, IMPα/β1 is a vital complex
that facilitates the transport of host proteins such as STAT proteins for normal cellular
activities [80,82]. In addition, IVM is capable of inhibiting SARS-CoV-2 viral entry that
requires the attachment of viral S protein to the host ACE2 receptor. This is achieved via
the altered interaction between the S protein receptor-binding domain (RBD) and host
ACE2, allowing a conformational change of the S protein that subsequently obstructs viral
entry and hampers viral replication [83]. Furthermore, the IVM carbonyl group is thought
to form hydrogen bonds with the active site residues (Cys145 and His41) of the 3CLpro
monomer, an important viral protease required to generate vital proteins for replication,
such as NSP12-RdRp [84]. This leads to destabilization and dysfunction of the 3CLpro
complex, thereby restricting viral replicative capacity [85]. However, some studies have
indicated the lack of significant positive outcomes between IVM-treated patients and
control patients [86–88]. Moreover, IVM is associated with multiple side-effects, including
tremors, ataxia, nausea, headaches, tachycardia, coma, and even death [89].

Remdesivir is an FDA-approved antiviral drug for the treatment of COVID-19 by
targeting viral RdRp. Upon the entry of Remdesivir into the host cell, the monophos-
phoramidate nucleoside prodrug is phosphorylated into active Remdesivir triphosphate
(Remdesivir-TP). Similar to NHC, Remdesivir-TP competes with ATP for incorporation
by RdRp into the RNA genome. As such, the activity of RdRp is abrogated after a three-
nucleotide elongation, in which the steric hindrance between Ser861 and 1′-CN group
of Remdesivir attenuates the translocation of RdRp into the fourth position, resulting in
delayed chain termination and subsequent inhibition of viral replication [90]. Although
the attenuation of RNA synthesis is deemed to be the primary mechanism of Remdesivir,
higher concentrations of NTP can reduce the efficacy of chain termination. For instance,
10 µM concentration of NTP can cause up to 90% read-through, and the production of
full-length products [91]. Consequently, the lack of chain termination allows Remdesivir
to be incorporated into the initial RNA copies, serving as a template for further RNA
replication (template-dependent inhibition mechanism) [92]. Hence, the viral RNA copies
generated from the Remdesivir-TP-embedded template will not be fully functional. De-
spite the positive outcomes of Remdesivir, its associated adverse effects have raised some
concern among clinicians and the public [93]. The administration route of Remdesivir is
limited to intravenous delivery which limits its usage on larger scales.
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In comparison, NHC is associated with relatively few side-effects such as headache
and diarrhea. The oral route of NHC also allows infected patients to readily access COVID-
19 medication, thus mitigating crowding in hospitals. The prophylactic use of NHC is
beneficial especially for regions with low COVID-19 vaccination rates. Furthermore, NHC
is effective against Remdesivir-resistant viruses and against several other coronaviruses
(HKU3, HKU5, and SHC014), suggesting that NHC is not restricted by the variation in
amino acid sequence of RdRp, and possesses efficacy against a broader range of coron-
aviruses [40].

7. Conclusions

The rapid progression and sustained global persistence of COVID-19 has placed
enormous pressure to develop and harness therapeutic agents against SARS-CoV-2. In
such critical times, drug repositioning can play a pivotal role to fulfil this urgent need.
Molnupiravir (NHC) possesses antiviral activity against RNA viruses such as IAV, VEEV,
Ebola virus and SARS-CoV, and shows promise as an antiviral drug against SARS-CoV-2.
The main mode of antiviral action of Molnupiravir involves the inhibition of RdRp by
acting as a ribonucleoside analog for viral RNA polymerase. NHC mainly functions as a
mutagen by increasing the frequency of transition mutations (G-to-A and C-to-U) in the
viral genes. As a consequence, the negative-gRNA strand containing NHC-TP leads to
mutations in the complementary positive-strand RNA, thereby generating non-functional
viruses. Owing to its antiviral and prophylactic effects, Molnupiravir may be deployed as
one therapeutic solution to ameliorate SARS-CoV-2 infection, by reducing disease severity
and fatality. Finally, more comprehensive clinical trial data and long-term surveillance
are urgently warranted to support the clinical utility and safety of Molnupiravir against
COVID-19.
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