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Background: Microscopic patches as quite promising platforms in transdermal drug delivery suffer from
conventional injections. In other hand, a wide range of pharmacokinetics, ranging from fast oral admin-
istration to sustained drug delivery, can be implemented with the help of microneedle arrays (MNAs).
Aim of Review: Hence, in this paper, we overviewed different kinds of MNAs such as solid/coated, hollow,
porous, hydrogel/swellable, and merged-tip geometry followed by introducing different types of material
(silicon, glass, ceramics, dissolving and biodegradable polymers, and hydrogel) used for fabrication of
MNAs. Afterwards, some conventional and brand-new simple and customizable MN mold fabrication
techniques were surveyed. Polymeric MNAs have received a great deal of attention due to their potential
biocompatibility and biodegradability in comparison to other materials. Therefore, we also covered dif-
ferent kinds of polymers such as hydrogel/swellable, dissolving and biodegradable analogues used for
nces and
, China
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Dissolving polymers
Biodegradable polymers
Table 1
Different types of MNAs along with their advantages a

Type of MNAs Properties

Solid/coated Contain no drugs, or drug can
absorbed on its surface, synth
by metals

Hollow Can be loaded with drugs, fab
by self-assembly and moldin
materials

Porous Large variety of pore sizes ca
achieved for drug loading, po
and pore size can be controll
during synthesis

Hydrogel/
swellable

Minimally-invasive devices u
controlled drug release

Merged-tip MN Uses elasto-capillarity-driven
assembly for construction a m
merged-tip system
the development of MNAs as potential candidates in drug delivery systems (DDSs). Finally, we discussed
different challenges and future perspectives in the aspect of MNAs-based drug delivery platforms.
Key Scientific Concepts of Review: This review may provide guidelines for the rational design of polymeric
MNAs-based DDSs for promising programmable drug release and enhanced therapeutic effect.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Microneedle arrays (MNAs) are known as a new platform for
the treatment of skin disorders and drug delivery [1,2]. This
method surprisingly increases the concentration of collagen in
the skin while at the same time regulating the collagen and elastin
fibers in the damaged area [3,4]. Nowadays, microneedling is one
of the best collagen making methods that has produced amazing
results with a very low cost [5]. Percutaneous collagen induction
therapy (PCI), is a mechanical stimulation technique for repairing
structural damage to the skin that results in repairing of damaged
tissues [6]. The purpose of using MNAs is to improve the appear-
ance and function of the skin [7,8].

Introducing needles into the skin increases the release of
growth factors from fibroblasts, blood platelets, and improves the
function of transforming growth factor-a and -b [9]. This process
results in increased production of collagen and elastin by fibrob-
lasts. Keratinocytes are also transported to the epidermis where
they proliferate, thereby increasing the thickness of the epidermis
[10,11]. In this method, a device called dermaroller creates pores
and fine channels in the skin, forcing the skin to make high
amounts of collagen, and if there is a defect such as scars or skin
cracks, these problems would be potentially resolved [12,13].

The wide surface of skin is easily accessible and therefore
selected as an easy and non-invasive way of drug delivery [14].
Topical drug delivery from the surface of the skin has many bene-
fits, including the possibility of using high concentrations of a drug
on the skin, reducing systemic use of a drug and associated side
effects, the possibility of prolonged presence of a drug on the sur-
face and reducing frequency of drug use [15]. Despite these bene-
fits, the skin has only been able to transmit less than a dozen
available drugs systemically, because human skin is almost imper-
meable to drugs [16]. There are different types of MNAs that can be
used for drug delivery through the skin [16]. Although there are
differences in the flexibility of the tools and how to use them in
nd disadvantages.

Advantageous

be
esized

Increase the permeabili

ricated
g of soft

Higher stiffness, hydrop
can be achieved by usin

n be
rosity
ed

High drug loading capab
different moieties, simp

sed for Significant biocompatib
simple, cheap, controlle

self-
icro

Can be tunable, simulta
volume control, no need
controllable cavity volu
flexibility and fabricatio
drug delivery, they all follow a similar principle, transferring the
drug through the skin tissue in a micro-controlled manner.

MNA technology

MNA technology is known as a safe drug delivery approach
which can be used as an alternative platform to hypodermic needle
technology. Indeed, micro-projections arrays from different mate-
rials are assembled in the form of MNAs having fine needles of dif-
ferent diameter and length with different types and materials. This
minimally invasive and pain-free technology can serve as a poten-
tial DDS, which can be applied in programmable drug release [16].

A number of studies have shown that MNA can deliver a large
number of drugs as well as provide greater safety for patients
and operators [17,18]. Determining a logical relationship between
the use of MNAs and their design and fabrication parameters
brings us to the most desirable results in the experiment. Three
basic parameters in the design of the MNAs are: release strategy
(type of MN), the constituent material, and the method of manu-
facture [19,20]. There are different types of MNAs, namely, solid/-
coated, hollow, porous, hydrogel /swellable, and merged-tip
geometry [21]. The properties of each MNA along with its advanta-
geous and disadvantageous are tabulated in Table 1.

Fabrication of MNAs

There are several materials which have been used in MNA fab-
rication (Table 2). Given the extensive amount of utilization and
materials that may be applied, simple, cheap, and affordable meth-
ods in the construction of MNAs for pre-clinical and clinical pur-
poses are required. There are a number of pivotal design criteria
to take into consideration when designing and developing MNAs.
Multiple factors such as needle height, tip radius, mechanical stiff-
ness, and aspect ratio controls the insertion of MNAs into skin and
following drug release. MNAs may be constructed for direct utiliza-
Disadvantageous Ref
(s)

ty of drugs Needs two step application, broken
needles result in irritation, the high cost
of fabrication method, non-
biodegradability of metals

[43]

hilic behavior and resistance
g proper materials

Needs precise and expensive
manufacturing technology, strong
leakage or uncontrolled drug release,
blocking the narrow channels

[44]

ility, functionalization with
le fabrication methods

Low strength and penetration ability,
pore blockage, drug release

[45]

ility, degradability, safe,
d drug release

Low mechanical strength, not suitable for
very wet wounds

[46]

neous drug loading and
for micromolding,

mes and fracture approaches,
n simplicity

– [47]
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Table 2
Different types of material used for fabrication of MNAs along with their application.

Material Application Ref (s)

Silicon 1. Electroporation2. Transdermal drug
delivery3. Deep brain drug infusion

[48-
50]

Glass 1. Recordings of force2. Microinjection3.
Facial atrophic acne scar

[51-
53]

Ceramics 1. Transport interface2. Controlled release
of a model vaccine3. Transdermal drug
delivery

[54,55]

Dissolving and
biodegradable
polymers

1. Influenza vaccination2. Transdermal drug
delivery3. Transdermal delivery of insulin4.
Transdermal iron replenishment therapy5.
Transdermal delivery of neurotoxin6. Patch
and cream

[1,56-
60]

Swellable hydrogel
polymers/
proteins

1. Transdermal drug delivery2. Intradermal
vaccination3. Regenerative internal/
external surgical closure4. Glucose-
responsive insulin delivery5. Sensing of
specific circulating nucleic acids

[61-
65]
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tion or application as a sample for MN mold manufacturing. The
latter strategy can be used in successive replica molding of MNAs
from extensive agents as well as device manipulating in a clinical
setting. Generally, some conventional fabrication techniques used
in the production of MNAs along with their advantages and disad-
vantages are tabulated in Table 3.

Reports to date employing these approaches, nevertheless, have
only been able to produce MNAs which show several but not all of
the geometric factors necessary for high-quality MNAs. Therefore,
presentation of other customizable strategies for fabrication of
MNAs in the research and clinical setting are required to overcome
disadvantages of previous fabricated MNs. It may be proposed that
using cross-over lines (COL) technique or optimizing the
Table 3
Different methods for fabrication of MNAs along with advantages and disadvantages of ea

Methods Description Advantageous

Micromilling Uses cutting tools to fabricate microscale
arrays

Cost effective s
versatility abou
and material ch

Direct laser
micromachining

Molding of materials into desired
morphology and dimension by laser

Simple, quick,
contaminations
metals,

Chemical wet etching Chemical process for removing the
surface layers

Simple equipm

Electrical discharge
machining

A device like MNA is fabricated by
applying electrical discharges

Fabrication of c
Material hardn
distortion, wel
parts

Drawing lithography A strategy (thermal, magnetorheological,
UV, air blowing) for the construction of a
MNAs directly from 2D planar polymers

Fabrication of u
stepwise contr
electro-MN

UV-lithography A fabrication strategy based on the
pattern parts of a thin film of an agent

Cost effective,
size

Deep reactive-ion
etching

Plasma process for production of
microstructure of silicon

Modifications c
protective laye
high sidewall a

Projection-based direct
light processing

A layer-by-layer strategy for fabrication of
MNAs

Simple and rap

Fused filament
fabrication (FFF) or
fused deposition
modeling (FDM)

Joint a filament of a material with the
same material by heat or etc.

Uses low cost m
complex shape

Scanning-based SLA Laser beam tracks and draws each layer
into resin layer

Simple and rap
three-dimensional (3D) printers as a cost effective system to
increase the tip radius and/or aspect ratios of fabricated MNs
may open new avenues in biomedical science. For example, Nejad
et al. [22] developed a cheap and cleanroom-free production of
MNAs using molds patterned by COL technique by using laser abla-
tion (Fig. 1A and B). Krieger et al. [21] carried out a parametric
examination, revealing the printer’s abilities of printing needle
geometry with optimized tip sharpness. To increase the resolution,
they designed a two-step ‘‘Print & Fill” approach which permits the
indirect production of custom-made MNAs for mold manufactur-
ing utilizing stereolithography (SLA) 3D printing (Fig. 1C).

MNA in drug delivery

Today, stimuli-responsive platforms as smart DDS have numer-
ous applications in the field of pharmaceutical science [23]. These
systems intelligently release the drug as needed by changes in the
amount of stimulus applied to it, such as temperature, pressure,
pH, light, electric and magnetic fields. Of these smart DDSs, most
research has been done on stimuli-responsive smart systems. Poly-
meric materials/smart hydrogels are often used in the preparation
of such systems. Therefore, in practice, due to the effect of several
stimuli, system responsiveness is impaired and the potential rate
of drug release is not achieved. In addition, mathematical relation-
ships governing their accountability are often complex and diffi-
cult. Indeed, a stimuli-responsive intelligent DDSs can be
introduced in which the rate of drug release is only due to chang-
ing one stimulus like pH, while the mathematical relationships
governing it are remarkably simple. The system, which consists
of a multiple-layer composite plate structure, can be modeled in
a quasi-steady state and the effect of the fundamental factors
and characteristics of the system on its response can be investi-
gated. Based on the results of systemmodeling, it can be found that
the response of the system depends on the type of component in
ch method.

Disadvantageous Ref(s)

tart-up, high resolution, and
t characteristic geometries
oices

Require burrs removal, damage to
the micro-tools, poor surface quality

[66]

precise method to handle, no
, delicate designs on different

High power consumption, burning or
of the metal, side effects against
human, not applicable for thick
metals

[67]

ent, high rate, high selectivity Needs large amounts of chemicals [68]

omplex shapes, high tolerance,
ess is not a concern, no
l suited for delicate or fragile

Requires conductive materials, cost
effective

[69]

ltrahigh-aspect ratio (UHAR),
olling, fabrication of hybrid

Long drawing time, expensive, not
applicable in producing complex
shapes

[21,70]

production of smaller feature Increased cost for new technology,
complexity, concern about the
reliability

[71]

an be made, creates a
r on the surface, creation of
ngles

Requires suitable etch gasses,
contamination of etch processes,
requirement for dedicated machines

[72]

id fabrication of 3D structures Not high-quality MNAs, not
convenient for large scale-up
production

[73]

aterials, fabricate more
d MNAs

Resolution limitations, two-step
process

[74]

id fabrication of 3D structures Not high-quality MNAs, not
convenient for large scale-up
production

[75]



Fig. 1. A: Fabrication of MNA mold. (a) CO2 laser cutter. (b) The acrylic mold was utilized to fabricate polydimethylsiloxane (PDMS) MNA mold [22]. B: Polymer casting and
MNA fabrication approach. (a) Treating PDMS mold in oxygen. (b) Submerging the mold in polyvinyl alcohol (PVA) solution with phenol red dye. (c) Condensation of solution.
(d) Dehydration of the mold. (e) Pilling off the MN patch. (f) Fabricated PVA MN patch (g) [22]. C: MNAs fabrication based on 3D printing. (a) MNA basin design by a Form 2
SLA printer. (b) MNA master mold construction approach (i) the 3D printed MNA basin; (ii) washing, UV curing and baking; (iii) filing with UV-curable resin; (iv) UV curing
and baking; (v) MNA master; (vi) silicone casting; (vii) degassed process; (viii) demolding [21]. Reprined with permission from Refs [21,22]. Copyright (2018) and (2019),
Nature Publishing Group.
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different layers (and their physical and chemical properties), the
dimensions of the system, and other related factors. The results
can be used to design and manufacture internal or external stimuli
-responsive platforms as smart DDSs.

Transdermal delivery of drugs by using MNA

Although topical and hypodermic needles are used to poten-
tially target drugs through the skin, the major concern is that this
strategy is painful and the impacts are limited to the applied site.
MNA may develop a promising approach to deliver drugs across
the stratum corneum. Indeed, the capability of the polymer MNA
for punching holes to transfer drugs to the skin seems to be a great
idea. Treating the skin with MNAs may exhibit permeation of drugs
in the skin and decrease the rate of disorders without stimulating
side effects against major organs. Polymers that act as release con-
trolling agents in DDSs can be divided into three main categories:
hydrogel/swellable polymers, water-soluble polymers, and
biodegradable polymers.

Hydrogels

Hydrogels are 3D polymeric networks with crosslinks that have
the ability to absorb water or biological fluids even under pressure
[24]. These compounds are chemically or physically cross-linked
and can absorb a great amount of water [25]. The increasing atten-
tion to physical hydrogels is due to the relative ease of the process,
the lack of lattice in their synthesis, and potential mechanical
strength [25]. Also, natural hydrogels are very interesting because
of the variety, abundance, cheapness, renewability, non-toxicity, as
well as biodegradability and biocompatibility (Table 2) [26]. In the
past few decades, hydrogels have been characterized by their
unique properties in various industries such as pharmaceuticals,
biomedical and bioengineering applications [27].



F. Meng et al. / Journal of Advanced Research 26 (2020) 137–147 141
Among various applications, hydrogel-based DDSs have become
an area of interest in the biomedical and biotechnological plat-
forms. Hydrogels can protect the drug against aggressive microen-
vironmental factors [28]. Enzymes activity controllers, drug
loading and pH-sensitive drug releasing, nanoreactors capable of
precisely incorporating active groups in 3D space, intelligent
microfluidics with responsive hydrogels, and energy conversion
systems are promising applications of hydrogels in the medical
and pharmaceutical fields [29,30]. Indeed, hydrogels in the differ-
ent forms can stimulate spatial and temporal drug delivery.
Because of their tunable physical and chemical features and
biodegradability, hydrogel acts as a promising platform on which
a number of physicochemical reactions with the loaded drugs hap-
pen to control the drug release [31]. For example, Wang et al. [32]
reported the development of dual-applicable transdermal drug
delivery approach with adjustable drug release relied on thermo-
responsive poloxamer hydrogel for treatment of atopic dermatitis
(AD) disorder. Qu et al. [33] also developed the fabrication of a bio-
compatible conductive hydrogel derived from natural and syn-
thetic polymers as electro-responsive drug delivery strategy for
selective drug accumulation.

Macroscopic hydrogels such as in situ-gelling gel, microporous
gel, and shear-thinning gel can be used for drug delivery through
injection, epicardial implant, and transdermal patches. Microgels
can be used as another drug delivery approaches through pul-
monary and oral tracts. Finally, nanogels can be delivered into
the body through systematic injection (Fig. 2A) [31]. Nanogels
and microgels provide several advantages over their macroscopic
compounds. First, the dimension is much smaller than the inner
radius of classical needles. Their small size induces needle-
injectable as well as supplying a large surface area for functional-
ization. Indeed, the small dimension results in simple bio-
degradation and penetration through skin [31]. Therefore, much
attention is focused on hydrogel microparticles in tissue engineer-
ing and DDSs. These particles can be fabricated by several methods
such as batch emulsions [Fig. 2B (a)], microfluidic emulsions
[Fig. 2B (b)], lithography [Fig. 2B (c)], electrohydrodynamic spray-
ing [Fig. 2B (d)], and mechanical fragmentation [Fig. 2B (e)] [34].
Water-soluble MNAs

Water-soluble MNAs based on polymers are used to provide
short-term DDSs (from hours to days). The presence of hydrophilic
functional groups such as hydroxylamine and carboxylic acid on
the polymer chains dissolve these polymers in the aquatic environ-
ment of the living organism. Although all these polymers can be
dissolved in water, they have different dissolution rates.

Drug release from MNAs fabricated by these polymers may be
via different mechanisms. One of these mechanisms is the dissolu-
tion of a drug in the peripheral fluid. The level of contact that MNAs
have with water - which is effective on its solubility - depends on
the shape and size of the MNAs. In addition, drug content and sol-
ubility in the body affect the rate of drug release. Another factor is
the penetration of a drug through the hydrated polymer to the sur-
face and dissolution in the peripheral fluid.

For example, Lahiji et al. [35] reported the fabrication of dissolv-
ing MNAs (DMNAs) that deliver loaded drugs in a minimally
aggressive fashion. Indeed, DMNAs are currently placed onto
patches that enhance their penetration into skin. Nevertheless,
due to extensive variations in skin flexibility and surface curvature,
the arrays prepared on the patch are normally not entirely slipped
and substantial quantities of loaded drugs are not transferred.
Therefore, they introduced the microlancer method, as a novel
microarray-based approach by which patients can self-operate
DMNAs with potential drug delivery ability (Fig. 3A). Also, the vari-
ation in the blood glucose level of diabetic mice and fluorescence
intensity of insulin after the delivery of insulin by three different
strategies of microlancer, patch and subcutaneous (SC) injection
were studied (Fig. 3B). Kim et al. [36] also reported the developed
transdermal delivery by simultaneous implementation of DMNAs
on serum-treated skin. Indeed, they found that drugs in serum
and encapsulated drugs in DMNAs are transferred into the skin
through microchannels developed by implementation, hence
promisingly enhancing the delivered level (Fig. 3C and D). Lahiji
et al. [37] also revealed that transcutaneous implementation of val-
proic acid-encapsulated DMNA stimulates hair growth (Fig. 3E and
F). Table 4 also summarizes the novel patches for skin disorder
improvement by drug-loaded DMNAs.
Biodegradable polymers

The term biodegradable polymer is used for those polymers that
are initially insoluble in water, but after being exposed to environ-
mental fluid by chemical reactions, they become soluble in water.
There are several methods for solubilizing these polymers. If the
polymer has side-chain bonding groups, these groups can be
hydrated in the body and produce hydroxyl-carboxyl groups with
other hydrolyzable groups, which are soluble polymers in water.
Alternatively, the polymer is first fabricated by crosslinking agents,
in which case the polymer is insoluble in water. After being
exposed to the peripheral fluid, the hydrophilic lattice agent is dis-
solved. In this case, the polymer is soluble in water after removal of
crosslinks. The third method is the use of water-insoluble polymers
in which the hydrated functional groups are presented in the poly-
mer body. As these groups are exposed to hydration in the chains,
the main polymer chains become smaller chains that are prone to
be dissolved in water. The main advantage of this group of poly-
mers is the high molecular weight with good mechanical proper-
ties which can be used in the development of DDSs. These
polymers eventually become smaller water-soluble components
and are eliminated from the body.

Biodegradable polymers have attracted a great deal of attention
in pharmaceutical companies due to their bioavailability and the
ability to precisely control the degradation rate of DDSs [38]. These
polymers are used in delivery of antibiotics, growth hormones and
vaccines in the form of microcapsules, films, fibers and rods. SC as
well as oral injection or implantation methods have been sug-
gested for the administration of systems prepared with biodegrad-
able polymers [1]. Shin et al. [39] applied biodegradable MNAs
(BMNAs) to enhance the penetration of the steroid. They found that
the penetration and efficacy of topical steroid was remarkably
higher in the MNAs-treated skin. Lahiji et al. [40] also developed
a scalp micro-pigmentation approach using BMNAs.

The use of MNAs has been used as a promising and effective
transdermal drug delivery approach. Kim et al. [41] developed Der-
matophagoides farinae extract (DfE)-loaded MNAs and examined
their potential as a unique allergen-specific immunotherapy (SIT)
strategy (Fig. 4A). Indeed, several approaches such as microneedle
immunotherapy (MNIT) (10 lg) and SC immunotherapy were used
in the treatment of AD. They found that MNIT provides more
potential therapeutic outcomes than another strategy [41]. BMNAs
loaded with peptides can be used to treat melanoma. For example,
Kim et al. [42] revealed that hyaluronic acid/peptide-loaded BMNA
can be used as a potential platform for melanoma immunotherapy
(Fig. 4B).
Challenges and future perspective

For the fabrication of stimuli-responsive MNAs, a variety of
polymeric materials are utilized. However, due to conformational



Fig. 2. A: Different kinds of hydrogels and delivery routes per each [31]. (B) Fabrication of hydrogel microparticles (HMPs) through (a) Batch emulsions. (b) Microfluidic
emulsions. (c) Lithography. (d) Electrohydrodynamic spraying. (e) Mechanical fragmentation methods [34]. Reprined with permission from Refs [31,34]. Copyright (2016) and
(2019), Nature Publishing Group.
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changes of biomaterials in response to environmental stimuli, the
mechanism of drug release in polymeric MNAs have become more
complex and only a few sets of a pre-clinical and in vivo model
have been reported. These complexities and design of specific
alignment of polymeric systems provide some challenges for
semi-industrial scale production. In addition, low biocompatibility,
low degradability and toxicity in some cases prevent the potential
of polymeric systems being certificated by the Food and Drug
Administration (FDA) and clinical approval. The use of polymeric
MNAs in modern medicine and nanomedicine improves and facil-
itates some kinds of alternative therapies to improve the conven-
tional treatments.

The most widely used approach in alternative medicines might
be the improvement of MNAs-based drug delivery platforms. This
type of MNAs with diverse properties may draw a step towards
brighter futures to improve the quality of DDSs and underlying
therapeutic approaches. One of the new approaches in the field
of alternative medicine, especially in the drug release systems, is
the use of stimuli-responsive materials. Indeed, these systems
can play a pivotal role in efficacy of targeted drug delivery and
potential extracellular delivery. Sources of stimulation can be
internally related to the normal reaction of the tissue, such as
hypoxic activity, pH, or enzymatic activities or external agents,
such as magnetic field, temperature, and ultrasound (US).

For example, in the future by using polymers, the researchers
can fabricate a hydrogel-based MNA that could control the pro-
grammable drug release. Researchers using US technology and
the self-healing power of hydrogels would be able to provide MNAs



Fig. 3. A: (a) and (b) Microlancer. (c) The positioning of the hole. (d) Activation of the system. (e) Drug release and desolvation. B:(a) Plasma glucose level in diabetic mice over
time. (b) Plasma insulin concentrations over time. (c) Insulin labeled FITC signal comparison of Microlancer and (d) patch [35]. C: Schematic illustration of simultaneous
application of DMNA and serum. D: Distribution images of Alexa Fluor 568 dye (white arrow and dots) in serum and Alexa Fluor 488 dye (white arrow) loaded into DMNA
patches (black arrow and dots) [36]. E: (a) Microscopic images of DMNAs. (b) Rhodamine delivery inside skin. (c) FITC delivery. F: Protein expression of b-catenin, PCNA,
loricrin, and K14 [37]. Reprined with permission from Refs [35–37]. Copyright (2015), Nature Publishing Group; Copyright (2017), ACS; Copyright (2018), Elsevier.
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to control the drug release at a predetermined time and tissue. This
kind of hydrogel MNAs can control the drug release over a long
period of time. US technology can temporarily disrupt the struc-
ture of the hydrogel and release a high dose of a drug.

The development of DMNAs and BMNAs will lead to the pro-
duction of more efficient products in the future. This is possible
by recognizing the capabilities and limitations of these polymers
in various applications, especially DDSs. Polymeric MNAs-based
drug delivery depends on the physical and chemical properties of
the polymer. Indeed, particle size, polymer morphology, and selec-
tivity of species can determine the output of the MNAs in develop-
ment of DDSs. By modifying and controlling these factors, MNAs
can be upgraded to a potential platform in advancement of DDSs.
For example, in cases where rapid drug release and polymer degra-
dation are considered after complete drug depletion, low-
molecular-weight biodegradable polymers with hydrophilic
groups may be required.

Also, the shape and morphology of MNA may play an important
role in the drug release profile. For example, DMNAs or BMNAs
with different shapes can be fabricated by using natural or
synthetic-based material by anisotropic wet etching and a molding
approach. The height, pitch, tip radius, penetration capability, and
drug loading level of MNAs are very important factors in designing
and development of MNAs.



Table 4
Drug-loaded DMNAs and their potential use in treatment of skin disorders.

Drug Application Ref(s)

Protein Delivery Treatment of skin disorders [56]
Human growth hormone Wound healing [76]
Soluble and particulate antigens Vaccine/Treatment of skin disorders [77]
Fibroblast growth factor Local therapy of skin wounds [78]
Green tea extracts Antibacterial [79]
Cosmeceutical relevant peptides Treatment of skin disorders [80]
Methylene blue Photodynamic antimicrobial chemotherapy of infected wounds [81]
Transdermal delivery of collagen I Treatment of skin disorders [82]
Cell delivery Wound healing [83]
Adenosine Improve skin wrinkles, dermal density, elasticity and hydration [84]
STAT3 siRNA Melanoma [85]
ROS-responsive MN Acne Vulgaris [86]
Cosmeceuticals relevant nucleoside and peptides Improvement of wrinkles [12]
Bleomycin Inhibiting hypertrophic scar [87]
Triamcinolone Treatment of keloids [88]
Methotrexate Treatment of psoriasis [89]

Fig. 4. A: (a) Variations in clinical morphology of skin. (b) Score of AD (SCORAD). (c) Trans-epidermal water loss (TEWL). (d) H&E-staining of skin. (e) Epidermal thickness. (f)
Whole cell count. (g) Eosinophil count [41]. B: (a) Fluorescence microscopic images captured from skin 1 and 24 h after the administration of MNAs transferring FITC-labeled
peptide. (b) Tumor growth [42]. Reprined with permission from Refs [41,42]. Copyright (2018), Elsevier; Copyright (2019), ACS.
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Currently, MNAs are manufactured in clean and expensive fac-
tory rooms using plastic injection molds or lithography on stainless
steel patterns. An important breakthrough in this field is the devel-
opment of 3D printing capabilities for the use of materials such as
fully functional electronic and biological polymers. The ability to
print 3D arrays in biodegradable plastic can dramatically reduce
the cost of MN patches and make them available anywhere. Also,
there are some ways to incorporate proteins into the polymer
matrix so that they can withstand the high heat present in the
printing process.

Non-biodegradable polymeric particles in various aspects of
medicine including targeted drug release, wound healing dress-
ings, and antimicrobial medical coatings are used. However,
chronic poisoning and inflammatory reactions are among the side
effects of using these materials. These side effects have led to uti-
lization of biocompatible materials with degradable capacity.
Based on their low toxicity, dissolving and biodegradable poly-
meric material have been introduced as suitable alternative mate-
rials to non-biodegradable polymeric counterparts in
nanomedicine due to the specific drug release pattern and
increased biocompatibility. The gradually releasing nitric oxide
can coagulate the blood vessels and increase blood flow to the
injured area, which in turn improves the growth of healthy tissue
by increasing the amount of oxygen-rich blood in the wound.

Nitric oxide not only increases blood flow but also shows some
kind of antibacterial effects. But in severely damaged tissues, the
body’s natural mechanism for releasing this gas is kindly disrupted.
For this purpose, sodium nitrite chemical with special activating
gel can be delivered into the injury site by using MNAs. For exam-
ple, the gel could consist of water and carboxylic acid (naturally
occurring in fats and citrus fruits). When this acid comes in contact
with sodium nitrite, the chemical reaction produces nitric oxide.
The potential MNA platform can be designed to deliver a large
amount of nitric oxide for up to several minutes continuously to
initiate wound healing, then releases less gas within 24–48 h,
and maybe several days.
Conclusion

The smart polymer-based MNAs, can be used in transdermal
drug delivery to the selective site in the body, despite being thinner
than conventional needles. 3D MNAs can be fabricated based on
the technology of additive manufacturing or 3D printing as cost-
effective and simple approaches. They are specifically designed
for painless injections and can be used for a broad range of diag-
nostic and therapeutic agents from blood sampling for early detec-
tion of some disease to drug and vaccine injections. Doing more
research based on polymeric MNAs at two pre-clinical and clinical
levels would result in development of some therapeutic
modalities.
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