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Abstract: Women manifest a higher prevalence of several chronic pain disorders compared to men.
We demonstrated earlier that estrogen rapidly attenuates nociceptin/orphanin FQ (N/OFQ) peptide
receptor (NOP)-mediated thermal antinociception through the activation of membrane estrogen
receptors (mERs). However, the effect of mER activation on NOP-mediated attenuation of tactile
hypersensitivity in a neuropathic model of pain and the underlying mechanisms remain unknown.
Following spared nerve injury (SNI), male and ovariectomized (OVX) female rats were intrathecally
(i.t.) injected with a selective mER agonist and nociceptin/orphanin FQ (N/OFQ), the endogenous
ligand for NOP, and their effects on paw withdrawal thresholds (PWTs) were tested. In addition,
spinal cord tissue was used to measure changes in phosphorylated extracellular signal regulated
kinase (ERK), protein kinase A (PKA), protein kinase C (PKC), and protein kinase B (Akt) levels. SNI
significantly reduced PWTs in males and OVX females, indicating tactile hypersensitivity. N/OFQ
restored PWTs, indicating an antihypersensitive effect. Selective mER activation attenuated the effect
of N/OFQ in an antagonist-reversible manner. SNI led to a robust increase in the phosphorylation of
ERK, PKA, PKC, and Akt. However, mER activation did not further affect it. Thus, we conclude that
activation of mERs rapidly abolishes NOP-mediated tactile antihypersensitivity following SNI via an
ERK-, PKA-, PKC-, and Akt-independent mechanism.

Keywords: nociceptin/orphanin FQ receptor; neuropathic pain; spinal cord; spared nerve
injury; analgesia

1. Introduction

Opiates acting at the µ-opioid receptor have been the most effective and most commonly used
analgesics to treat severe pain conditions, e.g., neuropathic and inflammation-induced pain. However,
they are associated with many adverse side effects, including tolerance, dependence, and constipation [1].
The nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP), a G protein-coupled receptor (GPCR),
is a relatively newly discovered member of the opioid receptor family [2,3]. Preclinical studies have
shown that activation of the NOP receptor is associated with fewer deleterious side effects than that of
other opioid receptors [4–6]. The NOP, as well as its endogenous ligand N/OFQ, is expressed in the
dorsal horn of the spinal cord and other pain processing areas of the brain [2,3,7]. Upon activation, NOP
couples to inhibitory G proteins (Gi/o) to initiate a signaling cascade that facilitates G protein-coupled
inwardly rectifying potassium (GIRK) channel function, causing neuronal hyperpolarization and
ultimately leading to decreased nociceptive signaling [8]. Sex-related differences in pain have been
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reported, with women having a higher prevalence of several pain disorders, e.g., fibromyalgia, migraine
headaches, and temporomandibular joint disorder (TMJD), compared to men [9–12]. Preclinical studies,
including our own, have also revealed estrogen-induced reduction of GPCR-mediated analgesia in
females [13–17]. We recently reported that NOP-mediated thermal antinociception in an acute pain
model was quickly diminished following the activation of membrane estrogen receptors (mERs) GPR30,
Gq-mER, and ERα, but not ERβ [18]. However, selective contribution of each mER to the attenuation of
NOP-mediated tactile antihypersensitivity in a neuropathic pain model is not known. Therefore, this
study investigated the effect of spinal mER activation on NOP-mediated tactile antihypersensitivity
following spared nerve injury (SNI). Since mERs have been shown to activate several kinases [18,19]
that may modulate GIRK function, we also measured spinal levels of activated PKA, PKC, Akt, and
ERKI/II in response to spinal mER activation.

2. Materials and Methods

2.1. Animals

Adult Sprague Dawley male and ovariectomized (OVX) female rats (250–274 g) were obtained
from Envigo (Envigo, Indianapolis, IN, USA). Animals were housed in the Meharry Medical College
Animal Care Facility (ACF), which is qualified by the American Association for the Accreditation of
Laboratory Animal Care (AAALAC), under a 12-h light/dark cycle (lights on 7:00–19:00). Food and
water were available ad libitum. The experimental protocols were accepted by the Institutional Animal
Care and Use Committee of Meharry Medical College and abided by the conventional guidelines of the
National Research Council Guide for the Care and Use of Laboratory Animals and the International
Association for the Study of Pain (IASP). All efforts were made to minimize stress to animals and the
number of animals used. A total of 655 animals were used to complete the behavior and molecular
experiments in this study.

2.2. Implantation of Cannulae

OVX female animals were given a 2-week recovery period prior to surgery. As described [20],
animals were anesthetized with an intraperitoneal (i.p.) injection of ketamine (72 mg/kg) and xylazine
(4 mg/kg). Using aseptic surgical procedures, the head and left hind leg were shaved, and the skin was
disinfected with alternating scrubs of ethanol (70%) and betadine (10%). Their heads were then secured
in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA). An incision was made above the
head/neck area, and the atlanto-occipital membrane was removed to expose the dura. A stretched,
sterile PE-10 cannula (Intramedic, Clay Adams, Sparks, MD, USA; dead space volume 10 µL) was
implanted into the subarachnoid space through a small opening in the dura. The cannula was pushed
to a length of 9.0 cm to reach the lumbosacral enlargement. The cannula was secured by dental cement,
and the wound was closed with suture clips. The position of the cannula was confirmed at the end of
the experiment by administering 10 µL of 2% lidocaine (i.t.), which temporarily paralyzed the animals’
hind limbs, and through a visual examination of Chicago sky blue dye (Sigma, St. Louis, MO, USA)
spread. In this study, no animals were excluded due to incorrect cannula positioning. Animals used
for immunoblotting were not administered lidocaine or blue dye to minimize sample contamination.
Instead, cannula placement was confirmed by the observation of a drug effect and visual inspection
during dissection for sample collection.

2.3. Spared Nerve Injury

For the modeling of neuropathic pain, the spared nerve injury (SNI) of the sciatic nerve has been
previously described [21]. Following intrathecal (i.t.) cannulation, a small longitudinal incision was
made proximal to the left knee, and the skin and underlying muscle were retracted by blunt dissection
until the sciatic nerve was exposed at the trifurcation into the sural, tibial, and common peroneal
nerves. The tibial and common peroneal nerves were tightly ligated and severed, leaving the sural
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nerve intact. The overlying muscle was then sutured, and the overlying skin was secured with suture
clips. Animals in the sham group had their sciatic nerve exposed and muscle/skin sutured, as in the
SNI procedure, but received no further manipulation. Animals were kept warm on a heating blanket
until they regained consciousness and returned to ACF. They were allowed to recover for 7 days before
nociceptive testing. Animals were monitored daily for any sign of neurological deficits and overall
health. Animals displaying any neurological impairment were euthanized. Twenty-four animals were
excluded due to neurological impairments.

2.4. Paw Withdrawal Assay

Tactile hypersensitivity was assessed on day 7 following surgery using an automated dynamic
plantar aesthesiometer (Model 37400; Ugo Basile, Comerio, Italy). Animals were placed in a plastic
cage with a wire mesh floor and were allowed to acclimate for at least 30 min before behavior testing.
The machine applied a metal filament (0.5 mm diameter) to the lateral plantar surface (the region
innervated by the “spared” sural nerve) of the left hind paw and applied an increasing force until the
paw was withdrawn or the preset cutoff was reached (50 g). The force applied was originally below the
detection threshold, and then increased at a rate of 2.5 g/s. The force required to provoke withdrawal
was recorded automatically. Three baseline mechanical thresholds were recorded at 2-min intervals,
and the testing continued for 20 min post-drug injection.

2.5. Drugs

Each drug was injected intrathecally (5-s time span) via the implanted cannula with a 50-µL
Hamilton microsyringe in a volume of 10 µL at time “0”, unless stated otherwise. The dose (10 nmol) of
N/OFQ, the endogenous ligand for NOP, was selected based on our previously reported dose-response
curves, which produced a robust antinociceptive effect in the tail flick assay [13]. E2BSA (β-estradiol
6-(O-carboxymethyl) oxime/bovine serum albumin (BSA)), a membrane impermeant analog of estradiol,
was administered to target all membrane estrogen receptors. The E2BSA dose (0.5 mM) was chosen
based on our previous study [18,20] and other [22,23] studies. Doses of propylpyrazoletriol (PPT),
an ERα-selective agonist, and diarylpropionitrile (DPN), an ERβ-selective agonist (100 nM), were
selected based on previous reports [18,24]. G-1 is a selective agonist for the GPR30 receptor: The 0.25-nM
dose was based on the binding affinity of G-1 to GPR30 [25]. STX (10 nM) is a Gq-mER selective agonist
with ~20× higher affinity than E2 [26,27]. G-15 (1 µM), a GPR30 antagonist, was injected 5 min prior to
G-1. N/OFQ, G-1, G15, PPT, and DPN were acquired from Tocris (Ellisville, MO, USA), whereas E2BSA
was acquired from Sigma-Aldrich (St. Louis, MO, USA). Dr. Martin Kelly at Oregon Health Sciences
University kindly provided STX. Drugs were dissolved in phosphate-buffered saline (PBS) (E2BSA),
double-distilled boiled water (N/OFQ), <1% ethanol (G-15, PPT, DPN), or <10% dimethyl sulfoxide
(DMSO) (G1 and STX). Prior to intrathecal administration, E2BSA was centrifuged at 13,000× g for
30 min in a 0.5-mL Microcon Cartridge (Millipore, Temecula, CA, USA) to remove any unbound E2, as
previously described by Stevis et al. in 1999 [28]. We successfully used the above-described ligands
at exact doses in our previously published study [18]. Proper vehicles were used to control for the
drug as well as volume effects, which were not significantly different from pre-drug baseline paw
withdrawal latencies.

2.6. Immunoblotting

Lumbosacral spinal cords of anesthetized (0.04 kg/mg Beuthanasia) SNI and sham rats were
collected ~10 min following in vivo i.t. E2BSA, N/OFQ, or E2BSA + N/OFQ treatment. Drug effects
on paw withdrawal thresholds (PWTs) were behaviorally confirmed at 3 time points in the paw
withdrawal assay. Tissues were kept in 0.5 mL of RNAlater (Ambion, Austin, TX, USA) at −80 ◦C
until further analysis. Tissue homogenates were prepared in 0.5 mL of radioimmunoprecipitation
assay buffer (RIPA) lysis buffer (Santa Cruz Biotech, Dallas, TX, USA) containing tris-buffered saline
(TBS), 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), and 0.004%
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sodium azide. Phenylmethylsulfonyl fluoride (PMSF), sodium orthovanadate, and protease inhibitor
cocktail were added to RIPA (10 µL/mL) immediately before use. Total protein contents were evaluated
using a Lowry [29] assay-based detergent-compatible (DC) reagent kit (Bio-Rad, Hercules, CA, USA).
SDS-PAGE was run with the NuPAGE gel system (Life Technologies, Grand Island, NY, USA): Samples
were processed per the manufacturer’s guidelines, heated at 65 ◦C for 10 min, and loaded onto
the gel. Proteins were transferred onto PVDF membrane and processed for immunoblotting using
selective primary antibodies against PKA, pPKA (Upstate, Lake Placid, NY, USA), PKC, pPKC (Pierce,
Rockford, IL, USA), ERK I/II, pERK I/II (Cell Signaling Technology Inc., Danvers, MA, USA), Akt,
pAkt (1:1000, Cell Signaling Technology, Danvers, MA, USA), and actin (1:1000, Sigma, St. Louis,
MO, USA). All incubations were carried out in closed containers on Belly Dancer orbital shakers
(Stovall, Greensboro, NC, USA). Blots were first blocked with 5% nonfat dairy milk in tris-buffered
saline containing 0.05% Tween 20 (TBST; Santa Cruz) for 1 h and were then incubated with primary
antibody for 12–48 h on a shaker at 4 ◦C. After washing, the blots were incubated for 1 h at room
temperature with horseradish peroxidase (HRP)-conjugated secondary antibody (bovine antirabbit
IgG-HRP, 1:7500, Sigma, St. Louis, MO, USA), washed, and developed using Super Signal West Dura
Extended Duration® (Thermo Scientific, Waltham, MA, USA) for 5 min. Immunopositive bands
were imagined with a Gel Doc System (UVP, LLC, Upland, CA, USA), and images were stored for
densitometry analysis using LabWorks 4.6 (UVP) software (Bio-Rad, Hercules, CA, USA). The data
were normalized against actin and are presented as normalized phosphoprotein/total protein.

2.7. Data Analysis

Data were analyzed using SPSS (SPSS Inc., Chicago, IL, USA) and Prism (Graphpad Software,
Inc., San Diego, CA, USA). Data were first checked for normal distribution using the Shapiro–Wilk
normality test in Prism. The analysis indicated that the dataset, across all groups, was indeed normally
distributed (minimum W = 0.778; passed normality test). All behavior measures were submitted to an
ANOVA corrected for repeated measures with proper between-group (sex, drug) and within-group
(time) factors and dependent variables (PWTs). The number of animals in each group was 3–6. The area
under the curve (AUC) was calculated through the trapezoid method using Prism (Graphpad Software,
Inc., San Diego, CA, USA) for time course plots to attain a single measure of the total drug response.
The data acquired from western blotting studies and the AUC were analyzed by one-way ANOVA.
A Bonferroni post hoc test was employed for intergroup comparisons where needed and only when
ANOVA yielded a significant main effect. A p-value < 0.05 was considered significant. Data were
plotted as mean ± S.E.M. using Prism (Graphpad Software, Inc., San Diego, CA, USA).

3. Results

3.1. N/OFQ Reversesd Tactile Hypersensitivity following SNI, and E2-BSA Rapidly Attenuated the Effect
of N/OFQ

First, in OVX animals, SNI led to a significant reduction in PWTs throughout the time course
compared to the sham group (F(130,429) = 2.18; p < 0.05), which was indicative of nerve injury-induced
tactile hypersensitivity (Figure 1a). Intrathecal administration of N/OFQ significantly increased
PWTs compared to the vehicle-injected group at all time points (p < 0.05), which was indicative of
NOP-mediated antihypersensitivity. E2BSA co-administration with N/OFQ led to a significant reduction
in PWTs compared to the N/OFQ-injected SNI group, which was indicative of a complete reversal of
N/OFQ-induced antihypersensitivity. In the sham group, N/OFQ increased PWTs from baseline levels
at time points 4–20 (p < 0.05), which was indicative of antinociception. Co-administration of E2BSA
with N/OFQ reduced PWTs to baseline levels in both groups at all time points (p < 0.05). The effect of
E2BSA in N/OFQ-treated groups was blocked by the mER antagonist cocktail ICI-182,780/G-15, while
the antagonist cocktail or E2BSA did not have an effect when injected alone (Figure 1a). AUCs were
calculated from time course plots to obtain a single measure of the overall drug response. The time
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course plots showed they were affected similarly (F(10,43) = 46.51; p < 0.05; Figure 1b), with SNI
significantly reducing the AUC, N/OFQ causing a significant increase, and E2BSA reversing this
increase in the sham and SNI groups compared to their respective controls (p < 0.05).
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Figure 1. Intrathecally administered (β-estradiol 6-(O-carboxymethyl) oxime/bovine serum albumin
(BSA)) (E2BSA) rapidly attenuated nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP)-mediated
antihypersensitivity in ovariectomized (OVX) rats: (a) Spared nerve injury (SNI) significantly reduced
paw withdrawal thresholds (PWTs) compared to the sham group. N/OFQ (10 nM) increased PWTs in
both the sham and SNI groups. Co-administration with E2BSA (0.5 mM) abolished the N/OFQ-induced
increase in PWTs. Pretreatment with membrane estrogen receptor (mER) antagonist (ICI 182,780 and
G-15 cocktail) restored an N/OFQ-induced increase in PWTs. (b) the area under the curve (AUC)
analysis confirmed these effects, with a significantly reduced AUC in the SNI group, N/OFQ significantly
increasing it, and E2BSA attenuating the effect of N/OFQ in an antagonist-reversible manner. Here,
* p < 0.05 compared to veh + veh; # p < 0.05 compared to veh + N/OFQ; $ p < 0.05 compared to E2BSA
+ N/OFQ.

In male animals, we observed similar effects of N/OFQ and E2BSA on PWTs as in OVX animals
(Figure 2a). Intrathecal N/OFQ significantly increased PWTs in the sham group and reversed
SNI-induced decreases in PWTs (F(130,338) = 2.09; p < 0.05). E2BSA co-administration blocked the effect
of N/OFQ (p < 0.05; Figure 2a). The AUC was affected similarly (p < 0.05; Figure 2b).

These data were consistent with the interpretation that simultaneous activation of multiple
mERs (ERα, ERβ, GPR30, and Gq-mER) rapidly attenuates NOP-mediated antinociception and tactile
antihypersensitivity following SNI. We next investigated the selective contribution of each mER to the
observed effect by using receptor-selective ligands.
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Figure 2. Intrathecally administered E2BSA rapidly attenuated NOP-mediated antihypersensitivity
in male rats. (a) SNI significantly reduced PWTs compared to the sham group. N/OFQ (10 nM)
increased PWTs in both the sham and SNI groups. Co-administration of E2BSA (0.5 mM) abolished
the N/OFQ-induced increase in PWTs. Pretreatment with mER antagonist (ICI 182,780 and G-15
cocktail) restored an N/OFQ-induced increase in PWTs. (b) AUC analysis confirmed these effects,
with a significantly reduced AUC in the SNI groups, N/OFQ significantly increasing it, and E2BSA
attenuating the effect of N/OFQ in an antagonist-reversible manner. Here, * p < 0.05 compared to veh
+ veh; # p < 0.05 compared to veh + N/OFQ; $ p < 0.05 compared to E2BSA + N/OFQ.

3.2. Selective Activation of ERα Rapidly Attenuated NOP-Mediated Tactile Antihypersensitivity

In OVX animals, co-administration of PPT, a selective agonist at ERα, with N/OFQ quickly
attenuated N/OFQ-induced increase in PWT (Figure 3a). SNI significantly reduced PWTs as
compared to the sham group (p < 0.05) indicating tactile hypersensitivity. Intrathecal N/OFQ led to
antihypersensitivity as seen by a significant increase in PWTs which lasted the duration of nociceptive
testing (p < 0.05). In sham animals, N/OFQ increased PWT from baseline from time point 0 to 20
(p < 0.05). The ER antagonist ICI-182, 780 was able to block the effect of PPT in N/OFQ treated rats
(Figure 3a). Similar effects were seen in the AUCs (F(10,51)=462.77; p < 0.05; Figure 3b).

In male animals, we observed similar effects of N/OFQ and PPT on PWTs as in OVX animals
(Figure 4a). SNI-induced tactile hypersensitivity was attenuated by N/OFQ (F(130,546) = 39.21; p < 0.05),
and PPT co-administration abolished the effect of N/OFQ (p < 0.05; Figure 4a). The AUCs were similarly
affected (Figure 4b; F(10,53) = 209.92; p < 0.05). The results suggest that activation of spinal ERα alone
is sufficient to disrupt NOP-mediated antinociception in sham animals and antihypersensitivity in
nerve-injured OVX and male animals.
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Figure 3. Selective activation of ERα attenuated NOP-mediated antihypersensitivity in OVX rats:
(a) SNI significantly reduced PWTs compared to the sham group. Intrathecal administration of N/OFQ
(10 nM) significantly increased paw withdrawal thresholds, whereas propylpyrazoletriol (PPT) (100 nM),
the selective ERα agonist, attenuated the N/OFQ-induced increase in PWTs. Pretreatment with mER
antagonist (ICI 182,780) restored an N/OFQ-induced increase in PWTs. (b) AUC analysis confirmed
these effects, with a significantly reduced AUC in SNI groups, N/OFQ significantly increasing it, and
PPT attenuating the effect of N/OFQ in an antagonist-reversible manner. Here, * p < 0.05 compared to
veh + veh; # p < 0.05 compared to veh + N/OFQ; $ p < 0.05 compared to PPT + N/OFQ.
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Figure 4. Selective activation of ERα in male rats rapidly attenuated NOP-mediated antihypersensitivity:
(a) SNI significantly reduced PWTs compared to the sham group. N/OFQ (10 nM) increased PWTs
in both the sham and SNI groups. PPT (100 nM) abolished the N/OFQ-induced increase in PWTs.
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Pretreatment with mER antagonist (ICI 182,780) restored an N/OFQ-induced increase in PWTs. (b) AUC
analysis confirmed these effects, with a significantly reduced AUC in the SNI groups, N/OFQ significantly
increasing it, and PPT attenuating the effect of N/OFQ in an antagonist-reversible manner. Here,
* p < 0.05 compared to veh + veh; # p < 0.05 compared to veh + N/OFQ; $ p < 0.05 compared to
PPT + N/OFQ.

3.3. Selective Activation of ERβ Rapidly Abolished the Effect of N/OFQ

Next, we explored the effect of selective ERβ activation on NOP-mediated tactile hypersensitivity.
In OVX animals, SNI significantly reduced PWT compared to the sham group (F(130,520) = 9.05; p < 0.05;
Figure 5a). Intrathecal injection of N/OFQ significantly increased the PWT in the SNI group compared to
vehicle injection (p < 0.05). Co-administration with DPN, the ERβ-selective agonist, led to a significant
reduction in PWTs compared to N/OFQ alone (p < 0.05). N/OFQ injection in the sham group also
significantly increased PWTs above baseline (p < 0.05), and co-injection of DPN blocked the effect of
N/OFQ at time points 0–20 (F(13,520) = 42.94; p < 0.05). This effect of DPN was reversed by ICI-182,780
(Figure 5a). The AUCs were affected in a similar manner (F(10,50) = 243.97; p < 0.05; Figure 5b).
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Figure 5. Selective activation of ERβ attenuated NOP-mediated antihypersensitivity in OVX
female rats: (a) SNI of the sciatic nerve significantly reduced PWTs compared to the sham group.
Intrathecal administration of N/OFQ (10 nM) significantly increased paw withdrawal thresholds, and
diarylpropionitrile (DPN) (100 nM), the selective ERβ agonist, attenuated the N/OFQ-induced increase
in PWTs. Pretreatment with mER antagonist (ICI 182,780) restored the N/OFQ-induced increase in
PWTs. (b) AUC analysis confirmed these effects, with a significantly reduced AUC in SNI groups,
N/OFQ significantly increasing it, and DPN attenuating the effect of N/OFQ in an antagonist-reversible
manner. Here, * p < 0.05 compared to veh + veh; # p < 0.05 compared to veh + N/OFQ; $, p < 0.05
compared to DPN + N/OFQ.

In male animals, activation of ERβ using DPN resulted in comparable effects (Figure 6a). N/OFQ
reversed the SNI-induced reduction in PWTs (F(130,507) = 6.96; p < 0.05), and DPN co-administration
blocked the effect of N/OFQ (p < 0.05; Figure 6a). Similar effects were observed in the AUCs (Figure 6b;
F(10,48) = 242.87; p < 0.05).
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Figure 6. Selective activation of ERβ in male rats rapidly attenuated NOP-mediated antihypersensitivity:
(a) SNI significantly reduced PWTs compared to the sham group. N/OFQ (10 nM) increased PWTs
in both the sham and SNI groups. DPN (100 nM) abolished the N/OFQ-induced increase in PWTs.
Pretreatment with mER antagonist (ICI 182,780) restored an N/OFQ-induced increase in PWTs. (b) AUC
analysis confirmed these effects, with a significantly reduced AUC in SNI groups, N/OFQ significantly
increasing it, and DPN attenuating the effect of N/OFQ in an antagonist-reversible manner. Here,
* p < 0.05 compared to veh + veh; #, p < 0.05 compared to veh + N/OFQ; $, p < 0.05 compared to
DPN + N/OFQ.

3.4. Selective Activation of GPR30 Rapidly Attenuated the Effect of N/OFQ

Next, we determined the effect of GPR30 activation on NOP-mediated antihypersensitivity.
In OVX animals, SNI significantly reduced PWTs compared to the sham group (F(130,598) = 14.88;
p < 0.05), and N/OFQ injection increased PWTs, indicating a reversal of SNI-induced hypersensitivity.
Co-administration of G-1, a selective agonist of GPR30, with N/OFQ completely blocked
N/OFQ-mediated increases in PWTs (p < 0.05). In sham animals, N/OFQ also increased PWTs
from baseline levels at time points 0–20 (p < 0.05), which was indicative of antinociception, and
co-administration of G-1 with N/OFQ reduced PWTs to baseline levels at all time points (p < 0.05).
Blocking GPR30 with the selective antagonist G-15 restored the effect of N/OFQ (Figure 7a). The AUCs
were affected similarly; p < 0.05; Figure 7b).

In male animals, intrathecally administered N/OFQ reversed SNI-induced tactile hypersensitivity
(F(130,637) = 7.10; p < 0.05), and G-1 co-administration blocked this effect (p < 0.05; Figure 8a). The AUCs
were similarly affected (F(10,59) = 99.82; p < 0.05; Figure 8b).
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Figure 7. Selective activation of GPR30 attenuated NOP-mediated antihypersensitivity in OVX female
rats: (a) SNI significantly reduced PWTs compared to the sham group. N/OFQ (10 nM) increased PWTs
in both the sham and SNI groups. Co-administration of N/OFQ with G-1 (0.25 nM), the selective agonist
for GPR30, abolished the N/OFQ-induced increase in PWTs. Pretreatment with GPR30 antagonist
(G-15) restored an N/OFQ-induced increase in PWTs. (b) AUC analysis confirmed these effects, with a
significantly reduced AUC in the SNI groups, N/OFQ significantly increasing it, and G-1 attenuating the
effect of N/OFQ in an antagonist-reversible manner. Here, * p < 0.05 compared to veh + veh; #, p < 0.05
compared to veh + N/OFQ; $, p < 0.05 compared to G-1 + N/OFQ.
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Figure 8. Selective activation of GPR30 attenuated NOP-mediated antihypersensitivity in male animals:
(a) SNI significantly reduced PWTs compared to the sham group. N/OFQ (10 nM) increased PWTs in
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both the sham and SNI groups. G-1 (0.25 nM) abolished the N/OFQ-induced increase in PWTs.
Pretreatment with GPR30 antagonist (G-15) restored an N/OFQ-induced increase in PWTs. (b) AUC
analysis confirmed these effects, with a significantly reduced AUC in the SNI groups, N/OFQ significantly
increasing it, and G-1 attenuating the effect of N/OFQ in an antagonist-reversible manner. Here, * p < 0.05
compared to veh + veh; #, p < 0.05 compared to veh + N/OFQ; $, p < 0.05 compared to G-1 + N/OFQ.

3.5. Selective Activation of Gq-mER Rapidly Abolished the Effects of N/OFQ

The role of Gq-mER activation was determined using the selective ligand STX. In OVX animals,
SNI significantly reduced the PWTs compared to the sham group (F(130,520) = 12.45; p < 0.05; Figure 9a).
N/OFQ administered intrathecally significantly increased PWTs compared to the vehicle-treated group
(p < 0.05). STX co-administration inhibited the N/OFQ-induced increase in PWTs in the SNI group
(p < 0.05). In sham animals, N/OFQ increased PWTs above baseline at time points 0–20 (F(13,520) = 51.14;
p < 0.05), and STX co-administration blocked the N/OFQ-induced increase in PWTs (p < 0.05). Blocking
Gq-mER with ICI-182,780 restored the effect of N/OFQ (Figure 9a). Similar effects were observed on
the AUCs (F(10,50) = 160.38; p < 0.05; Figure 9b).
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Figure 9. Selective activation of Gq-mER attenuated NOP-mediated antihypersensitivity in OVX rats:
(a) SNI of the sciatic nerve significantly reduced PWTs compared to the sham group. Intrathecal
administration of N/OFQ (10 nM) significantly increased PWTs, whereas STX (10 nM), the selective
agonist for Gq-mER, attenuated the N/OFQ-induced increase in PWTs. Pretreatment with mER
antagonist (ICI 182,780) restored an N/OFQ-induced increase in PWTs. (b) AUC analysis confirmed
these effects, with a significantly reduced AUC in the SNI groups, N/OFQ significantly increasing it,
and STX attenuating the effect of N/OFQ in an antagonist-reversible manner. Here, * p < 0.05 compared
to veh + veh; #, p < 0.05 compared to veh + N/OFQ; $, p < 0.05 compared to STX + N/OFQ.

Similarly, in male animals, intrathecal administration of N/OFQ significantly increased PWTs
in the sham and SNI groups (F(130,585) = 11.47; p < 0.05). STX co-administration blocked this effect
(p < 0.05; Figure 10a). The AUCs were comparably affected (F(10,55) = 283.77; p < 0.05; Figure 10b).
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Figure 10. Figure 10. NOP-mediated antihypersensitivity was rapidly attenuated by Gq-mER activation
in male rats: (a) SNI significantly reduced PWTs compared to the sham group. N/OFQ (10 nM) increased
PWTs in both the sham and SNI groups. STX (10 nM) abolished the N/OFQ-induced increase in
PWTs. Pretreatment with mER antagonist (ICI 182,780) restored an N/OFQ-induced increase in PWTs.
(b) AUC analysis confirmed these effects, with a significantly reduced AUC in the SNI groups, N/OFQ
significantly increasing it, and STX attenuating the effect of N/OFQ in an antagonist-reversible manner.
Here, * p < 0.05 compared to veh + veh; # p < 0.05 compared to veh + N/OFQ; $, p < 0.05 compared to
STX + N/OFQ. Taken together, these behavioral data suggest that simultaneous or selective activation
of any spinal mER rapidly attenuated spinal NOP-mediated antinociception in the sham groups and
tactile antihypersensitivity in the nerve-injured OVX female and male rats.

3.6. Activation of mERs Attenuated NOP-Mediated Tactile Antihypersensitivity via an ERK-, PKA-, PKC-,
and Akt- Independent Mechanism

PKA, PKC, ERK I/II, and Akt play a role in central sensitization and can also be activated
by estrogen [30–35] and nerve injury [36–39]. Therefore, we measured spinal levels of total and
phosphorylated ERKI/II, PKA, PKC, and Akt in sham and SNI-operated OVX and male rats treated with
vehicle or E2BSA. A densitometry analysis revealed an expected robust increase in the phosphorylation
of spinal ERK I/II (F(3,12) = 5.39; p < 0.05), PKA (F(3,12) = 21.5; p < 0.05), PKC (F(3,12) = 45.46; p < 0.05),
and Akt (F(3,12) = 18.10; p < 0.05) in the SNI groups compared to the sham controls. In addition,
phosphorylation of PKC and Akt was higher in vehicle-treated sham (p < 0.05; p < 0.05) and SNI (p < 0.05;
p < 0.05) males compared to OVX females. However, we were unable to detect any further significant
increase in phosphorylation of these molecules in response to E2BSA administration. Data from this
immunoblotting experiment are presented in a supplemental figure (Figure S1).

4. Discussion

This study is the first to demonstrate that (i) concomitant or selective activation of any of the four
spinal mERs abolishes NOP-mediated tactile antihypersensitivity in a neuropathic pain model through
a rapid mechanism; (ii) in contrast to our previous study revealing the failure of ERβ activation to
attenuate NOP-mediated antinociception using an acute assay of pain, our present results suggest that
ERβ activation effectively attenuates NOP-mediated tactile antihypersensitivity in a neuropathic pain
model; (iii) the effect of mER activation on NOP-induced tactile antihypersensitivity is identical in
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both male and female sexes; and (iv) a rapid mechanism, independent of PKA, PKC, ERK I/II, or Akt
activation, may underlie the effect of mER activation.

NOP receptor activation has been pursued as a promising analgesic treatment due to the lack
of several side effects that are associated with µ-opioid receptor-targeted drugs [5,6]. In preclinical
studies, supraspinal administration of N/OFQ has been shown [40,41] to induce pro-nociception,
whereas intrathecal administration induces antinociception [5,42]. Our findings of intrathecal
N/OFQ leading to an increase in mechanical thresholds in sham animals and inducing tactile
antihypersensitivity in nerve-injured rats are consistent with the antinociceptive effects of N/OFQ
observed in other studies, including our own [13,18,42–44]. Our present results extend the
previous findings of sex-related differences and estrogen-induced attenuation of NOP-mediated
acute antinociception [13,18] to mER (concomitant or individual) activation-induced attenuation of
NOP-mediated tactile antihypersensitivity in a rodent model of neuropathic pain. This effect was
observed in both sexes upon mER activation. However, since the physiological level of estrogen in
naïve males is low relative to females, it is not expected to cause significant activation of mER and
hinder NOP-mediated antinociception.

We have previously shown that spinal administration of estrogen abolishes N/OFQ-induced
antinociception in acute thermal pain as well as thermal hyperalgesia models [13,18]. In addition,
we reported an mER activation-induced, ERK-dependent, nongenomic pathway underlying
estrogen-induced rapid attenuation of NOP-mediated antinociception [18]. This pathway was inducible
by ERα, GPR30, and Gq-mER, but not by ERβ. However, our present findings reveal that all four mERs,
including ERβ, effectively attenuated N/OFQ-induced tactile antihypersensitivity. This contrasting
effect of ERβ under two different pain conditions cannot be explained with the current set of data.
However, we believe that the sensitized state of the central nervous system (CNS) following nerve
injury may facilitate mechanisms enabling ERβ to produce the observed effect.

Our results revealed that concomitant activation of all spinal mERs using E2BSA led to rapid
attenuation of N/OFQ-induced tactile antihypersensitivity. Our previous study [18] demonstrated
that ERK activation was required for the attenuation of NOP’s antinociceptive effect in an acute pain
model. In the present study, SNI expectedly increased the activation of PKA, PKC, ERK I/II, and
Akt: However, mER activation failed to further increase these levels. In contrast, a recent report has
shown mER-induced increases in the activation of PKA, PKC, and Akt, leading to the attenuation of
NOP-mediated inhibition of proopiomelanocortin (POMC) neurons in female rats [45]. We believe
that in the present study, nerve injury maximally activated ERK I/II, PKA, PKC, and Akt. Hence, mER
activation failed to further increase them. Secondly, the measurement of kinase activation in pain
processing neurons in the spinal dorsal horn may have yielded mER-induced changes that were likely
diluted and thus were not observed in the immunoblot analysis of whole lumbosacral spinal tissue in
the present study. This will require further investigation.

We did observe higher activation of PKC and AKT in vehicle-treated control male animals
compared to OVX animals. There has been no prior report of such differences: In fact, there was no
difference in PKC activation in our previous study. Therefore, these observations remain unexplained
at this time: However, sex-related differences might still exist in PKC and AKT activation, and further
experiments, including intact male and female groups, will be required to address this issue.

Finally, we report that selective activation of individual mERs was just as effective as
the concomitant activation of all four mERs (ERα, ERβ, GPR30, and Gq-mER) in attenuating
N/OFQ-induced tactile antihypersensitivity. It has been demonstrated that estrogen can modulate
nociceptive regulatory mechanisms. The rapid actions of estrogen in various cell types are
well-documented [26,46–49] and are typically attributed to membrane estrogen receptors [50–52].
The activation of mERs initiates a host of intracellular signaling cascades in various systems [26,53,54],
but those involved in mediating the rapid modulation of spinal pain and analgesia remain largely
unknown. ERα and ERβ mRNA have been colocalized with NOP in the spinal dorsal horn, providing
the cellular basis for their interaction [55]. GPR30 has been established as a main mediator of rapid
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estrogenic effects [56–58]. GPR30 is mainly a membrane-dwelling receptor [59,60] and has been localized
in the spinal dorsal horn [46], which suggests a likely interaction with NOP and a possible mechanism
for GPR30 activation-induced attenuation of N/OFQ’s effect. Gq-mER is also a membrane-bound
receptor [27]. Although its distribution in the spinal dorsal horn has not been studied yet due to a lack
of selective antibodies, a recent study reported that NOP-mediated inhibition of proopiomelanocortin
(POMC) neurons in the hypothalamus was attenuated by STX [45]. Our results are consistent with this
finding as well as with a similar effect of STX reported in our previous study [18].

Interestingly, the effect of mER activation in male animals was similar to that in females. These
findings are consistent with our previous findings [18]. In addition, mERs are also present in the
spinal dorsal horn of male rats [61] and are therefore expected to be activated by intrathecally injected
agonists to effectively attenuate NOP-induced tactile antihypersensitivity. Physiologically, however,
the low level of circulating estrogen in males is not expected to activate mERs to produce a significant
effect on NOP-induced antihypersensitivity.

5. Conclusions

Overall, our findings highlight mER activation-induced, rapid attenuation of NOP-mediated
tactile antihypersensitivity in a neuropathic model of pain. A blockade of mERs may present an
effective strategy to improve GPCR-mediated analgesia in women.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/9/6/147/s1,
Figure S1: Activation of mERs attenuated NOP-mediated tactile antihypersensitivity via an ERK-, PKA-, PKC-,
and Akt-independent mechanism.
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