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Abstract The flavonoids genistein, biochanin A, luteolin,
quercetin, and kaempferol are plant natural products with
potentially useful pharmacological and nutraceutical activi-
ties. These natural products usually exist in plants as glyco-
sides, and their glycosylation has a remarkable influence on
their pharmacokinetic properties. The glycosyltransferases
UGT71G1 and UGT73C8 from Medicago truncatula are
excellent reagents for the regioselective glycosylation of (iso)
flavonoids in Escherichia coli grown in Terrific broth. Ten to
20 mg/L of either genistein or biochanin A 7-O-glucoside
was produced after feeding genistein or biochanin A to E.
coli expressing UGT71G1, and similar levels of luteolin
4’-O- and 7-O-glucosides were produced after feeding
luteolin to cultures expressing UGT73C8. For the production
of kaempferol 3-O-glucoside or quercetin 3-O-glucoside, the
Phe148Val or Tyr202Ala mutants of UGT71G1 were
employed. Ten to 16 mg/L of either kaempferol 3-O- or
quercetin 3-O-glucosides were produced on feeding kaemp-
ferol or quercetin to E. coli expressing these enzymes. More
than 90% of the glucoside products were released to the
medium, facilitating their isolation.

Introduction

Polyphenolic flavonoids are common constituents of vegeta-
bles, fruits, and herbal medicines. Their health-promoting

effects have long been recognized, and flavonoids such as
genistein, biochanin A, quercetin, kaempferol, and luteolin
have been exploited for their medicinal and nutritional
activities (Arai et al. 2000; Erdman et al. 2007; Mink et al.
2007). The isoflavone genistein, biochanin A, and the
flavonols quercetin and kaempferol (Fig. 1) have been
shown to reduce the incidence of cancer (Caltagirone et al.
2000; Kao et al. 1998; Kellis and Vickerry 1984; Shenouda
et al. 2004; Way et al. 2004) and cardiovascular disease
(Arai et al. 2000; Cogolludo et al. 2007; Hertog et al. 1993;
Mink et al. 2007) and also to exhibit anti-inflammatory
activities (Gabor 1979; Kumazawa et al. 2006; Lewis 1989).
Many studies have been aimed at developing new production
platforms for such plant natural products through metabolic
engineering in plants or microorganisms (Deavours and
Dixon 2005; Leonard et al. 2005, 2006; Lim et al. 2004; Liu
et al. 2002; Willits et al. 2004; Yu et al. 2000, 2003).

Most phenolic secondary metabolites exist in plants as
glycosides, often with more than one hydroxyl group
glycosylated. Metabolic engineering by expression of
isoflavone synthase in Arabidopsis, tobacco, soybean, and
alfalfa leads to accumulation of genistein glycosides rather
than the aglycone (Deavours and Dixon 2005; Liu et al.
2002; Yu et al. 2000, 2003). Glycosylation of the aglycones
increases their solubility and stability (Hollam et al. 1995,
1996, 1999; Smith et al. 2000) and also increases their
bioavailability in mammals (Crespy et al. 2001; Graefe
et al. 2001; Hollman and Katan 1998, 1999). Furthermore,
the position of glycosylation, for example 4’-O-, 3-O-, or
3-, 4’-di-O-glucosides in the case of quercetin, significantly
impacts hydrolysis and bioavailability (Cermak et al. 2004;
Day et al. 2003; Gee et al. 2000). For example, quercetin
3-O- and 4’-O-glucosides, but not the 3-,4’-O-diglucoside,
were transported through the rat small intestine, and during
passage across the epithelium the monoglucoside was
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rapidly deglycosylated and then glucuronidated into quer-
cetin 3-O- and 7-O-glucuronide (Gee et al. 2000).

Availability of a range of (iso)flavonoids with different
regiospecific glycosyl substituents will facilitate research on
their biological utilization. However, regiospecific chemical
synthesis of polyphenolic glycosides is far from trivial
(Bouktaib et al. 2002; Li et al. 2002). We have previously
characterized the glycosyltransferases UGT71G1 and
UGT73C8 from the model legume Medicago truncatula
(Achnine et al. 2005; Modolo et al. 2007; Shao et al. 2005).
UGT71G1, a member of group E family 1 glycosyltrans-
ferases, regioselectively glycosylates the 7-O position of
genistein and biochanin A but produces five different
monoglucosides from quercetin, with the 3’-O-glucoside
predominating (Achnine et al. 2005; He et al. 2006). The
structure of UGT71G1 has been determined and belongs to
the GT-B fold with Rossmann-like domains (Shao et al.
2005). Two structure-directed mutants of the enzyme,
Phe148Val and Tyr202Ala, predominantly glycosylated
the 3-O position of quercetin in vitro (He et al. 2006).
UGT73C8, closely related to UGT72C1 (72% identity) in
group D of family 1 glycosyltransferases, showed enzyme
activity preference for isoflavonoids but also exhibited
high activity with the flavone luteolin (Modolo et al.
2007). However, the regioselectivity and effectiveness of
these enzymes as biocatalysts for the synthesis of (iso)
flavonoid glycosides in vivo remains to be evaluated.
Here, we report the production of milligram quantities of
the 7-O-glucosides of genistein and biochanin A, the 4’-O-
and 7-O-glucosides of luteolin, and the 3-O-glucosides of
quercetin and kaempferol in Escherichia coli cultures

expressing UGT71G1, UGT73C8, and mutants of UGT71G1,
respectively.

Materials and methods

Bacterial growth, induction, precursor feeding, and product
extraction

General chemicals and quercetin 3-O-glucoside were
purchased from Sigma-Aldrich (St. Louis, MO, USA). All
other (iso) flavones and their glycosides were purchased
from Indofine Chemicals (Hillsborough, NJ, USA).
Kaempferol 4’-O-glucoside was purchased from Extra-
synthese (Genay, France). The protein expression vector
pET28a and E. coli strain BL21(DE3) were from Novagen
(Madison, WI, USA).

The glycosyltransferases UGT71G1, UGT73C8, and
UGT71G1 mutants Phe148Val and Tyr202Ala were cloned
into pET 28a as described previously (He et al. 2006). E.
coli BL21 (DE3) strains carrying these constructs were
grown in Terrific broth (TB) or Luria-Bertani (LB) medium
at 37°C until OD600 reached 0.7. Isopropyl-1-thio-β-D-
galactopyranoside was then added to the cultures to a final
concentration of 0.5 mM, and the cultures were incubated
at 20°C for 5 h. Substrate (genistein, biochanin A, luteolin,
quercetin, or kaempferol) dissolved in dimethyl sulfoxide
(DMSO) was then added to the cultures to a final
concentration of 50 or 100 μM. E. coli cultures harboring
empty vector pET 28a vector were used as a control. Cells
were harvested at different time points after addition of
substrates. The medium and bacterial cells were separated by
centrifugation for 30 min at 4,000×g at 4°C. The medium
was acidified with 6 N HCl to pH 1, extracted twice with
ethyl acetate, and dried under nitrogen gas. Residues were
resuspended in methanol for high-performance liquid
chromatography (HPLC) analysis. The cell pellet was
resuspended in MeOH–HCl (v/v, 10:1) and extracted for
1 h in an ultrasonic bath as described previously (Willits
et al. 2004). Insoluble cell debris was removed by
centrifugation and the extract was dried under nitrogen
gas. Residues were resuspended in methanol for HPLC
analysis. For large-scale cultures, 500 mL of bacterial
culture were grown in a 2-L flask in TB medium. Bacterial
induction was as described above. Twenty-four hours after
the addition of substrate (100-μM final concentration), cells
were harvested and products were extracted and analyzed
as described above.

Soluble protein purification

UGT71G1, UGT71G1 mutants F148V and Y202A, and
UGT73C8 soluble proteins were purified from induced cell
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Fig. 1 Chemical structures of the isoflavones genistein and biochanin
A, the flavone luteolin, and the flavonols quercetin and kaempferol
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cultures using the MagneHis protein purification system
according to the manufacturer’s instructions (Promega,
Madison, WI, USA). Protein concentration was determined
with the Bio-Rad protein dye-binding assay (Bio-Rad
Laboratories Inc., Hercules, CA, USA) using bovine serum
albumin as standard.

HPLC analysis of glycosylated products

Reverse-phase HPLC analysis was carried out on a Hewlett
Packard 1100 system using a 5-μm C18 column (250×
4.6 mm, Waters spheroisorb 5 μm ODS2) with the following
gradient: A = 1% phosphoric acid, B = acetonitrile, 0–5 min,
5%B; 5–10min, 10%B; 10–25min, 17%B; 25–30min, 23%
B, 30–65 min, 50% B; 65–79 min, 100% B; 79–80 min, 5%
B. The eluate was monitored at 254 nm. The glycosylated
products were identified according to their retention times,
UV spectra, and comparison to authentic standards (Lim et al.
2004).

Results

Production of genistein and biochanin A 7-O-glucoside
in E. coli

UGT71G1 is a multifunctional triterpene–flavonoid glyco-
syltransferase with specific activity for the triterpene
medicagenic acid, the isoflavones genistein and biochanin
A, and the flavonol quercetin. Recombinant M. truncatula
UGT71G1 can transfer glucose from uridine diphosphate
(UDP)-glucose to genistein or biochanin A to produce
genistein or biochanin A 7-O-glucoside in vitro (Achnine
et al. 2005; He et al. 2006; Shao et al. 2005). To investigate
the production of genistein or biochanin A 7-O-glucosides
in E. coli in vivo, we incubated induced cell cultures of E.

coli BL21(DE3) carrying the UGT71G1–pET 28a construct
with different concentrations of genistein or biochanin A
for different times. The medium and cell pellet were
extracted with ethyl acetate, and products were analyzed
by HPLC. The expected 7-O-glucosides were produced
under all conditions used and could be detected in the
culture medium after 5 h (Fig. 2, Table 1). More than 70% of
genistein substrate was converted to the 7-O-glucoside by
the E. coli cultures after 24-h incubation. The product yield
was about 20-mg/L TB culture medium after 24-h incuba-
tion with 100 μM (27.02 mg/L) genistein. In comparison to
LB culture medium, a 3.5-fold higher 7-O-glucoside yield
was achieved in TB culture medium, with twice as much
glucoside produced with 100 μM as compared to 50 μM
genistein after 24-h incubation (Fig. 2, Table 1). A similar
glucoside production pattern was observed when the culture
was incubated with biochanin A. Thirteen milligram per liter
biochanin A 7-O-glucoside was produced after 24-h incuba-
tion with 100 μM (28.42 mg/L) biochanin A substrate in TB
medium. About threefold higher levels of 7-O-glucoside
were produced in TB medium compared to LB medium
(Fig. S1, Table 1). No genistein or biochanin A 7-O-
glucoside was detected in the medium from E. coli harboring
the vector control (Figs. S2 and S3).

To evaluate production efficiency on a larger scale, we
set up 500-mL TB medium cultures, expressing the cor-
responding glycosyltransferases or the mutants described
above, in 2-L flasks. The substrates were incubated individ-
ually for 24 h in the cell cultures and the glucoside products
were analyzed by HPLC. The glucoside product yield was
about 10–16-mg/L culture medium with conversion rates
from 30% to 60% (Table 2). The efficiency was about 80% to
that of the small-batch scale. In both cases, more than 90%
of the glycosylated products were released to the medium.

To evaluate the effects of the (iso)flavonoid substrates on
the growth of E. coli, we monitored bacterial growth at
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Fig. 2 Production of genistein
7-O-glucoside using UGT71G1
as a biocatalyst in E. coli. Time
course showing levels of genis-
tein 7-O-glucoside in culture
medium of engineered E. coli
expressing UGT71G1 fed with
genistein as substrate (squares =
7-O-glucoside level in TB medi-
um, diamonds = 7-O-glucoside
level in LB medium). Insert
showed the levels of aglycone
consumed during the time course
(triangles = aglycone level in TB
medium, circles = aglycone level
in LB medium). Fifty micromolar
(13.51-mg/L final concentration)
genistein added to the bacterial
culture

Appl Microbiol Biotechnol (2008) 80:253–260 255



each time point during the culture process. There was no
effect of substrates on bacterial growth. However, TB
medium supported higher bacterial growth than LB
medium. An example of these results with genistein is
shown in Fig. 3. Soluble cellular recombinant UGT protein
was also purified from the induced cell cultures grown with
or without substrate to evaluate the effect of substrate on
protein levels. Results showed that substrate addition did
not have any significant effect on protein expression level,
with 0.4–0.59 and 0.13–0.21 μg/μl soluble recombinant
protein being obtained in TB and LB medium, respectively,
irrespective of substrate addition (Fig. S4, Table 3).
UGT71G1 mutant F148V produced similar amounts of
soluble protein in both media (data not shown).

Production of luteolin 4’-O- and 7-O-glucosides

Numerous studies have shown that luteolin [5,7,3’4’-
tetrahydroxy flavone (Fig. 1)] has potent anti-inflammatory

properties both in vitro and in vivo (Backhouse et al. 2007;
Chen et al. 2007; Karrasch et al. 2007; Kim and Jobin
2005). Luteolin inhibits the expression and production of
inflammatory associated genes and mediators such as
cyclooxygenase-2, tumor necrosis factor-alpha, and inter-
leukin-6, suggesting its possible therapeutic application for
treating inflammatory disorder (Chen et al. 2007).
UGT73C8 can glycosylate luteolin to produce the
corresponding 4’-O- and 7-O-monoglucosides in vitro
(Modolo et al. 2007). When luteolin (100 μM, equal to
28.64 mg/L) was incubated for 24 h with E. coli expressing
UGT73C8 and grown in TB medium, about 14 mg/L 4’-O-
glucoside and 8 mg/L 7-O-glucoside, respectively, was
recovered from the medium (Fig. S5, Table 1). Similar
product yield was obtained when the culture was incubated
for 48 h. The total glucoside conversion rate was about
75% in small-batch culture and 60% in the 500-mL culture
(Table 2). About 1.5-fold higher product yield was obtained
in TB medium compared to LB medium. No luteolin

Table 1 (Iso)flavone glucoside synthesis in E. coli in LB and TB culture media (100 μM substrate)

LB medium (mg/L) TB medium (mg/L)

Construct Glucoside 5 h 12 h 24 48 h 5 h 12 h 24 h 48 h

UGT71G1 wild
type

Genistein 7-O-
tglucoside

2.05±0.02 4.39±0.14 5.57±0.07 5.58±0.13 3.95±0.03 15.45±0.28 20.06±0.16 17.90±0.61

UGT71G1 wild
type

Biochanin A 7-O-
tglucoside

2.08±0.03 3.77±0.16 4.05±0.33 4.16±0.10 2.19±0.09 9.50±0.24 13.02±0.57 13.18±0.14

UGT71G1 mutant
F148V

Quercetin 3-O-
tglucoside

2.94±0.06 6.55±0.64 8.20±0.32 5.95±0.55 2.00±0.08 5.93±0.22 11.70±0.03 16.75±0.65

UGT71G1 mutant
Y202A

Quercetin 3-O-
tglucoside

4.15±0.37 9.84±0.21 10.09±0.22 7.86±0.87 1.81±0.08 6.84±0.12 12.37±0.06 19.88±1.26

UGT71G1 mutant
F148V

Kaempferol 3-O-
tglucoside

1.05±0.07 3.56±0.04 3.92±0.07 5.06±0.02 1.71±0.04 10.59±0.35 15.81±0.40 14.83±0.19

UGT71G1 mutant
Y202A

Kaempferol 3-O-
tglucoside

1.18±0.03 3.82±0.07 7.14±0.09 7.81±0.16 2.10±0.08 12.40±0.14 16.46±0.46 18.59±0.41

UGT73C8 wild
type

Luteolin 4’-O-
tglucoside

1.56±0.11 8.45±0.38 9.82±0.24 13.68±0.19 2.78±0.04 11.78±0.06 14.01±0.44 15.49±0.34

UGT73C8 wild
type

Luteolin 7-O-
tglucoside

1.00±0.02 4.76±0.04 4.96±0.03 7.95±0.07 1.26±0.01 7.02±0.05 8.04±0.15 8.91±0.21

Table 2 (Iso)flavone glucoside synthesis in E. coli in 500-mL TB culture medium

Construct Glucoside (mg/L) Conversion rate(%)

UGT71G1 wild type Genistein 7-O-glucoside 16.39±0.30 60.7
UGT71G1 wild type Biochanin A 7-O-glucoside 11.70±0.35 41.2
UGT71G1 mutant F148V Quercetin 3-O-glucoside 10.08±0.10 29.8
UGT71G1 mutant Y202A Quercetin 3-O-glucoside 11.54±0.34 34.2
UGT71G1 mutant F148V Kaempferol 3-O-glucoside 12.65±0.57 44.2
UGT71G1 mutant Y202A Kaempferol 3-O-glucoside 13.56±0.37 47.4
UGT73C8 wild type Luteolin 4’-O-glucoside 10.86±0.08 37.9

Luteolin 7-O-glucoside 6.52±0.13 22.8

The substrates (100-μM final concentration) were incubated in the cell culture for 24 h.
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glucoside was observed in the vector control culture
(Fig. S6).

Production of quercetin 3-O-glucoside in E. coli

Quercetin has a hydroxyl group at the 3-position of its C-
ring (Fig. 1), and this may be important for its anticarcino-
genic activity (Ichimatsu et al. 2007; Shen et al. 2003).
Glycosylation of quercetin has been reported to increase its
absorption in humans (Hollman and Katan 1998, 1999;
Hollman et al. 1999). Recombinant wild-type UGT71G1
produces all five potential monoglucosides from quercetin
and UDP-glucose in vitro, with the B-ring 3’-O-glucoside
predominating (He et al. 2006; Shao et al. 2005). However,
the Phe148Val and Tyr202Ala mutants of UGT71G1
produced quercetin 3-O-glucoside as the major product in
vitro (>95% of the total products; He et al. 2006). In the
present study, feeding of quercetin to E. coli expressing
Phe148Val or Tyr202Ala mutants in TB medium led to
production of quercetin 3-O-glucoside as the only product

detected. About 8- and 17-mg/L culture medium of
quercetin 3-O-glucoside was produced from the cultures
expressing the Phe148Val mutant when incubated with
50 μM (16.91 mg/L) and 100 μM (33.82 mg/L) quercetin,
respectively, for 48 h, while production was 10- and 20-mg/L
culture with the Tyr202Ala mutant, respectively (Fig. S7,
Table 1). The conversion rate from aglycone to glucoside
was about 50% after 48 h. In comparison to LB medium,
TB medium supported two to threefold higher glycoside
production.

Production of kaempferol 4’-O- and 3-O-glucosides

Kaempferol is a common antioxidant in vegetables and
fruits. Compared to quercetin, it contains only a single
hydroxyl group (at 4’) on its B-ring (Fig. 1). Kaempferol
was converted to a mixture of two monoglucosides, the 4’-
O-glucoside and 3-O-glucoside, when fed to E. coli
expressing wild-type UGT71G1, with yields of about
20 mg 4’-O-glucoside and 3 mg 3-O-glucoside per liter of
TB culture medium, respectively. However, a single
product, the 3-O-glucoside, was formed when kaempferol
was fed to cell cultures expressing the Phe148Val or
Tyr202Ala mutants, with yields of about 16-mg/L TB
culture medium (Fig. S8, Table 1).

Discussion

The isoflavone genistein and biochanin A, the flavone
luteolin, and the flavonols quercetin and kaempferol have
beneficial health effects for humans with regards to the
prevention of cancer and cardiovascular diseases and anti-
inflammatory properties. Glycosylation of these compounds
may significantly impact their solubility, absorption, and
biological activity. This study was designed to evaluate the

Table 3 Levels of soluble recombinant UGT proteins in E. coli cells
grown with and without added substrates

μg/μL (TB) μg/μL (LB)

UGT71G1 0.48 0.15
UGT71G1 + genistein 0.57 0.19
UGT71G1 + biochanin A 0.49 0.15
UGT71G1 + kaempferol 0.45 0.13
Mutant Y202A 0.43 0.17
Mutant Y202A + quercetin 0.40 0.14
Mutant Y202A + kaempferol 0.46 0.19
UGT73C8 0.59 0.21
UGT73C8 + luteolin 0.56 0.20

The final concentration of substrate is 100 μM. The soluble protein
was purified from TB and LB medium, respectively.
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regioselectivity and effectiveness of the plant glycosyl-
transferases UGT73C8, UGT71G1, and mutants thereof for
production of (iso)flavonoid glycosides in vivo and thus to
explore the utilization of the enzymes as regioselective
glycosylation biocatalysts. Genistein, biochanin A, luteolin,
quercetin, and kaempferol were useful substrates for
assessing regioselectivity because of the presence of
multiple hydroxyl groups on these compounds. Further-
more, there is a need for production of various glycosides
of these compounds to evaluate in tests with various animal
disease models.

Our results showed that E. coli expressing UGT73C8,
UGT71G1, or mutants of UGT71G1 collectively can
regioselectively glycosylate genistein, biochanin A, luteolin,
quercetin, and kaempferol to produce a specific set of
glycosides in vivo. Regioselective glycosylation of these
compounds by chemical approaches requires sequential
blocking and deblocking of the hydroxyl groups. For
example, chemical synthesis of quercetin 3-O-glucoside first
required the selective protection of the catechol hydroxyl
groups then glycosylation of the 3-hydroxyl group followed
by deblocking of the catechol hydroxyl groups. The
procedure gave a 54% yield with contamination from
product glycosylated on the 7-hydroxyl group (Bouktaib
et al. 2002). On the other hand, direct isolation of
significant amounts of specific flavonoid glycosides from
plant sources is time-consuming since plants contain wide
and variable spectra of glycosides with different types of
sugar attachment (Harborne and Baxter 1999).

The enzyme system we describe here allows us to
overcome many of the problems associated with efficient
production of specific glucosides. Importantly, the glyco-
sides are released to the medium, facilitating their isolation.
Given that commercially available flavonoid glycosides are
currently at least ten times more expensive than their
corresponding aglycones expressing regioselective glyco-
syltransferases in E. coli in vivo is an economically feasible
approach to the production of glycosides. The conversion
rates in small-batch scale were from 50% to 80%. However,
in larger-scale production (500-mL cultures,) the efficiency
was reduced to 80% of the small-batch scale. Clearly,
further optimization of the conditions will be needed for
industry-scale production to increase the product yield.

Nucleotide-activated sugar is the essential component in
small molecule glycosylation. One of the major problems
for large-scale application of glycosylation is the provision
of UDP-glucose to the in vitro system. Although different
approaches including chemical methods (Kretzschmar and
Stahl 1998), enzymatic synthesis (Bulter and Elling 1999),
and regeneration using UDP-glucose pyrophosphorylase
and pyrophosphatase for synthesis of nucleoside diphos-
phate sugars (Heidlas et al. 1992; Ichikawa et al. 1992;
Wong et al. 1992) have been reported, these approaches are

either laborious, difficult, or require sugar phosphates,
phosphoenolpyruvate, and nucleotide 5’-triphosphate and
are therefore of high cost. Since UDP-glucose is a natural
intermediate in cell wall synthesis in bacterial cells, using
glycosyltransferases engineered in bacteria to synthesize
small molecule glycosides should be an efficient approach
to overcome the difficulty associated with the preparation
of nucleotide sugars.

Similar studies on production of flavonoid glycosides in
E. coli have recently been reported (Lim et al. 2004; Willits
et al. 2004). E. coli expressing UGT73B2 from Arabidopsis,
with 24% sequence identity to UGT71G1, produced primarily
quercetin 7-O-glucoside from quercetin, along with the 3,7-O-
diglucoside as a minor product. The conversion rate was 25–
40% after 15-h incubation with the substrate (Willits et al.
2004). Several additional UGTs from Arabidopsis, with
amino acid identities to UGT71G1 from 17% to 46%, also
converted quercetin aglycone to different glycosides in E.
coli. Mono or diglucosides were produced with yields from
0.19- to 10.90-mg/L culture (Lim et al. 2004). In our study,
17–20 mg/L quercetin monoglucoside was obtained. The
glycosides produced in the cell culture system were also
reported to release to the medium (Lim et al. 2004; Willits
et al. 2004). Although the mechanisms of aglycone uptake
and glycoside secretion by the bacteria are not known, several
efflux pump systems have been reported suggesting that the
uptake and secretion of small molecules are active processing
(Kruse et al. 2002; Livshits et al. 2003; Van Dyk et al. 2004;
Zakataeva et al. 1999). DMSO have been commonly used as
a solvent of flavonoid substrates in enzyme activity assay in
vitro or in cell culture feeding studies in vivo. Our studies
showed that the bacteria continued to grow to high density
during the time course and the soluble enzyme were well
expressed suggesting that the DMSO concentration we used
(0.05%) did not have significant toxicity to the cells.

In the present paper, we extended our study to evaluate the
utilization of two structure-directed mutants of UGT71G1
for glycosylation activity in E. coli. The Tyr202Ala mutant
produced higher amounts of both quercetin and kaempferol
glucosides than did the Phe148Val mutant. Amino acids
Phe148 and Tyr202 are located at one end of the acceptor
binding pocket and are close to each other in the three-
dimensional structure of UGT71G1 (Shao et al. 2005).
These mutations would reduce the size of the amino acid
and, in turn, increase the volume of the binding pocket and
allow the 3-hydroxyl of the substrate to move closer to the
C1 reaction center on the UDP-glucose for favorable
glycosylation. Mutations of Phe148 to valine or Tyr202 to
alanine change the regiospecificity for quercetin glycosyl-
ation from predominantly 3’-OH to 3-OH (He et al. 2006).
Our study showed that these structure-directed mutants can
be used in vivo in E. coli to regioselectively synthesize
small molecule glucosides. Advances in our understanding
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of structure–activity relationships for plant small molecule
glycosyltransferases will provide more opportunities for the
design of novel catalysts to produce bioactive glycosides.
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