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Abstract: Gold nanoparticles conjugated with collagen molecules and fibers have been proven to im-
prove structure strength, water and enzyme degradation resistance, cell attachment, cell proliferation,
and skin wound healing. In this study, high-power impulse magnetron sputtering (HiPIMS) was
used to deposit ultrathin gold films (UTGF) and discontinuous island structures on type I collagen
substrates. A long turn-off time of duty cycle and low chamber temperature of HiPIMS maintained
substrate morphology. Increasing the deposition time from 6 s to 30 s elevated the substrate surface
coverage by UTGF up to 91.79%, as observed by a field emission scanning electron microscope.
X-ray diffractometry analysis revealed signature low and wide peaks for Au (111). The important
surface functional groups and signature peaks of collagen substrate remained unchanged according
to Fourier transform infrared spectroscopy results. Multi-peak curve fitting of the Amide I spectrum
revealed the non-changed protein secondary structure of type I collagen, which mainly consists of
α-helix. Atomic force microscopy observation showed that the roughness average value shifted from
1.74 to 4.17 nm by increasing the deposition time from 13 s to 77 s. The uneven surface of collagen
substrate made quantification of thin film thickness by AFM difficult. Instead, UTGF thickness was
measured using simultaneously deposited glass specimens placed in an HiPIMS chamber with colla-
gen substrates. Film thickness was 3.99 and 10.37 nm at deposition times of 13 and 77 s, respectively.
X-ray photoelectron spectroscopy showed preserved substrate elements on the surface. Surface
water contact angle measurement revealed the same temporary hydrophobic behavior before water
absorption via exposed collagen substrates, regardless of deposition time. In conclusion, HiPIMS is
an effective method to deposit UTGF on biomedical materials such as collagen without damaging
valuable substrates. The composition of two materials could be further used for biomedical purposes
with preserved functions of UTGF and collagen.

Keywords: collagen; high-power impulse magnetron sputtering (HiPIMS); ultrathin gold film (UTGF)

1. Introduction

Currently, collagen is one of the main materials for commercially available wound
dressings. Most collagen comes from natural sources, such as bovine, porcine, human
blood, and marine organisms, due to its relatively low cost [1]. If pure collagen is not treated
by cross-linking agents, then it may be easily hydrolyzed or degraded because its tissue
strength is weaker than that of the skin and the surrounding environment. However, most
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cross-linking agents are chemical agents, such as polyethylene oxide, genipin, glutaralde-
hyde, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), and EDC
plus N-hydroxysulfosuccinimide [2–4]. Concerns about toxicity residues exist due to redox
chemical reactions and environmental pollutants generated during the preparation process.

In tissue engineering applications, collagen often incorporates other functional addi-
tives, such as growth factors, polymer fibers, antibiotics, metal nanoparticles, and active
cells [4–7], to provide different functions. For example, the addition of growth factors can
promote the activation of stem cells, and the addition of antibiotics can increase the bacterici-
dal function. Recently, gold nanoparticles (AuNPs) conjugated with collagen scaffold have
been shown to improve stability and resistance against degradation [8], immobilization
of peptides for easy incorporation [9], biocompatibility enhancement [10], and prevention
of intraluminal thrombosis [11], which can be beneficial for bone growth, myocardium or
vascular regeneration, and skin repair [4].

Among the conventional AuNP preparation processes, the physical method is more
favored. Physical vapor deposition (PVD) can be divided roughly into evaporation and
sputtering. Common evaporation techniques, such as molecular beam epitaxy (MBE), have
been proven to produce metal nanoparticles by rapidly heating the target to manufacture
evaporated molecules and to collect by condensation method. Metal nanoparticles could
be further added in raw biomedical materials and shaped into desired configuration [10].
Different sizes and shapes of nanoparticles could be achieved by properly adjusting the
evaporation time and power supply of vacuum evaporation [12]. However, direct surface
modification of biomedical materials by MBE or pulsed laser ablation is difficult because
of substrates breakdown in such an environment. In addition, MBE is an expensive and
time-consuming process. Another PVD called electron beam (E-beam) evaporation has
the problems of high working temperature, unstable film thickness, uncontrolled surface
coverage, and poor thin film adhesion. E-beam is also expensive, and the difficulty of
deposition control further restricts the direct application on biomedical materials. Generally,
thin film quality is difficult to be controlled by evaporation and adhesion is less strong
than sputtering. Collagen is prone to thermal damage thus common treatment with
substrate heating should be avoided. The associated heating brought by the arriving ions
accompanied by sputtering could increase substrate temperature. Additional substrate
heating is a common, but not necessary, process of ion beam deposition, direct current
sputtering, or radio frequency sputtering [13]. Unlike traditional sputtering, high-power
impulse magnetron sputtering (HiPIMS) has higher peak power, higher target surface
ionization, stronger magnetic field, and a longer turn-off time (Toff) of duty cycle. HiPIMS
can produce desired thin films and film adhesion without substrate heating or substrate
bias [14]. The goal of this study is to deposit ultrathin gold films (UTGF). Thus, the
whole processing time is assumed to be short. The impact on substrate properties, surface
characteristics, microscopic structure, and temperature is low during HiPIMS deposition.
A literature review on biomedical material modification by HiPIMS mainly focused on
hard substrates, such as bone implants and dental implants, to increase hardness, corrosive
resistance, and biocompatibility [15–21].

There have been many reference papers describing AuNPs for biomedical applica-
tion [4,8–11]. However, the paucity of UTGF research for biomedical materials is the main
motivation of the current study. Furthermore, no reports of UTGF deposition on collagen
by HiPIMS have been published so far. Direct surface modification via the deposition
of UTGF on biomedical substrates could preserve the properties of both materials. This
study aims to deposit UTGF on type I collagen substrates, which is expected to promote
cell adhesion, proliferation, and angiogenesis, as well as accelerate wound healing. The
surface morphology, microstructures, and water contact angles (WCAs) were determined
to explore the surface characteristics by tuning the process parameters. In this study, the
research team mainly focused on the deposition, gross behavior, and surface characteristics
of UTGF by HiPIMS as the foundation of further applications.
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2. Materials and Methods

Two kinds of collagen substrates were used: substrate A (Sunmax Collagen Dental
Membrane, Sunmax Biotechnology Co., Ltd., Tainan, Taiwan), made from highly purified
porcine dermal type I collagen matrix, compressed to a semi-translucent membrane with a
thickness of 0.01 cm; and substrate B (HealiAid®, Maxigen Biotech Inc., Taipei, Taiwan),
made from bovine Achilles tendon-based type I collagen fabric and having a thickness of
0.25 cm, which is pliable, absorbable, designed for cleaning the skin for wound treatment,
and has more water-absorbing capacity. To clarify, substrate A was a membranous type
of materials, and the surface was more appropriate for surface roughness measurement
and UTGF crystal structures observation to minimize confounding localization factors.
However, the manufacturing process of substrate A involved high pressure and the natural
fiber alignment of collagen was altered. For substrate B, the native fibrillar structure
was preferred for tests of surface wettability and elemental chemical states. The collagen
substrates were pretreated with argon plasma bombardment at a working pressure of
0.75 Pa for 5 min using a RF power supply set at power of 50 W to eliminate contamination
on the substrate surface.

The schematic of the HiPIMS system is shown in Figure 1 and the process parameters
for UTGF deposition on collagen substrates is in Table 1. A vacuum chamber with a
single rectangular magnet was used for HiPIMS. Collagen substrates were fixed on the
holder, and pure gold target (99.99%, 11.4 cm × 33.5 cm, purchased from Solar Applied
Materials Technology Co., Tainan, Taiwan) was used for sputtering. The closest distance
between the target and the rotating substrates was 6 cm, the substrate rotational speed
was set as 20 RPM, and the power supply was provided by TruPlasma Highpulse 4002
(G2TRUMPF Hüttinger Sp. z o. o.). A high peak current density and duty cycle could
damage the substrate by overheating. Based on a few preliminary test rounds, the peak
current and peak power were maximized, and collagen substrate damage was prevented at
the same time. The performance of UTGF on collagen according to deposition time was
then studied. The deposition time was based on test rounds on other substrates with the
desired UTGF thickness.

Figure 1. The schematic drawing of the HiPIMS system.

Surface and cross section morphology was observed by using a cold field emission
scanning electron microscope (FE-SEM, Hitachi S-4800, Tokyo, Japan). Bare substrates
were deposited with platinum for the FE-SEM study due to insulating nature, and UTGF-
deposited specimens were studied without platinum film coating. Platinum deposition
parameters were vacuum of 10 Pa, deposition time of 10 s, and current of 10 mA by a
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DC sputtering machine (Hitachi E-1010 Ion Sputter, Tokyo, Japan). The elemental com-
position of the specimen was determined using an energy-dispersive spectrometer (EDS,
HORIBA EMAX400, Kyoto, Japan) installed on the FE-SEM (10,000 times magnification and
accelerating voltage of 15 kV). The crystal structures of UTGF were determined using an
X-ray diffractometer (XRD, Bruker D8 Discovery, Billerica, MA, USA) with Cu Kα radiation
in the range of 2θ: 10–90◦, grazing angle of 0.1◦, step size of 2θ: 0.04◦ and a counting
time of 0.6 s per step. The software used for phase identification was JADE Standard
2020 (Materials Data, Livermore, CA, USA). The surface topography of UTGF-deposited
substrate A was studied by using atomic force microscopy (AFM, Bruker, Dimension Icon,
Billerica, MA, USA) in tapping mode with a scanning area of 1 × 1 µm2 and demonstrated
in reconstructed height images. Surface roughness values, including roughness average
(Ra) and maximum roughness depth (Rmax), were measured.

Table 1. Process parameters for UTGF deposition on collagen substrates by HiPIMS. Target material:
pure gold bonding target.

Parameters Value

Targe voltage (V) 1391
Peak target current (A) 30
Peak current density (A/cm2) 0.106
Average target power (W) 133.1
Peak targer power (W) 41.7
Peak power density (W/cm2) 147.5
Ton (µs) 50
Pulse frequency (Hz) 100
Ar flow rate (sccm) 150
Working pressure (Pa) 0.54
Deposition time (s) for substrate A 13, 26, 51, 77
Deposition time (s) for substrate B (FTIR) 6, 12, 18, 24, 30
Deposition time (s) for substrate B (WCA, XPS) 0, 6, 12, 24, 48, 96

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy (Perkin
Elmer, Frontier™ FT–IR Spectrometer, Waltham, MA, USA) with a resolution of 8 cm−1 and
accumulated scanning of 16 times was used to analyze the functional groups and chemical
bonds of the specimen surface. The studied wave number spectrum was 650–4000 cm−1 to
cover the characteristic amide bands of collagen. The reported spectrum of type I collagen
was used to confirm the purity of collagen substrates used for this study [22,23]. Peak
changes of different wave numbers were evaluated and compared. The 1590–1720 cm−1

spectral interval, which includes amide I, was used to determine the secondary structure of
collagen. Amide I band peaks were deconvoluted with a Lorentzian line shape function
using OriginPro 9 (OriginLab Co., Northampton, MA, USA) software. The curve was then
fitted with Gaussian band shapes to study the secondary structure of protein according to
the reported method [24,25]. X-ray photoelectron spectroscopic (XPS) spectrum was col-
lected by using an ULVAC-PHI, PHI 5000 VersaProbe/Scanning ESCA Microprobe system
(Kanagawa, Japan) in the vacuum of 1 × 10−9 mbar with a monochromatized Al Kα X-ray
source. Quantitative surface survey analysis and high-resolution scanning for Au, C, N,
and O were performed. The X-ray beam size was 500 µm, and survey spectra were recorded
with pass energy (PE) of 150 eV, step size of 1 eV, and dwell time of 50 ms, whereas high-
energy resolution spectra were recorded with PE of 20 eV, step size of 0.07 eV, and dwell
time of 100 ms. (The average number of sweeps was 5–30.) At least two points on the speci-
men surface were randomly selected as the scanning area to confirm the reproducibility and
to obtain information on surface homogeneity. During analysis, the high-resolution spectra
were deconvoluted using various Gaussian–Lorentzian components with the background
subtracted in Shirley mode.

A First Ten Ångstroms 1000 (FTA 1000) WCA goniometer system (Newark, CA, USA)
was employed to measure the WCA of bare collagen substrates and UTGF deposited on
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collagen substrates. Three sites of one specimen were randomly selected, and the mean
WCA of the specimen was calculated for surface energy study. The morphology of the
specimen was photographed after water absorption by collagen substrates.

3. Results and Discussion
3.1. Gross Appearance of Untreated and UTGF-Deposited Collagen Substrates

Both collagen substrates are sterilized in gamma irradiation for medical application by
manufacturers. However, the mechanism of gamma irradiation is to break down bacterial
deoxyribonucleic acid and inhibit bacterial division [26]. For the HiPIMS process, residual
fragments of bacteria, impurities, or cross-linking agents used for collagen fabrication
are unfavorable for thin film adhesion. Pretreatment of the collagen material surface
before gold deposition in the HiPIMS chamber is therefore essential. The species of glow
discharge generated by oxygen plasma are more reactive, especially for organic materials
such as protein. Surface functional groups and chemical bonds are possibly changed after
oxygen plasma treatment. Argon plasma treatment is therefore favored to remove surface
contamination of the collagen substrates. After pretreatment with Ar plasma and initial
trial of HiPIMS gold deposition on substrate A, the appearance of the specimens was
photographed, as shown in Figure 2a. Bare substrate A is semilucent with a pale white
color. UTGF-coated specimens of deposition times 13 and 26 s retained their characteristic
transparency and revealed a dark gray color, but those of deposition times 51 and 77 s
exhibited a light gold color. Bare substrate B is white to yellow with some wrinkles. To
create feasible and functional biomedical composites, deposition time was adjusted as 6, 12,
18, 24, and 30 s for substrate B. The color of the specimens was orange to pink after 6 and 12 s,
and light gray after 18, 24, and 30 s, as shown in Figure 2b. The colorful appearance revealed
nanoscale gold on the surface due to specific surface plasmon resonance phenomenon [27].
AuNPs usually represent red or blue in color depending on the particle sizes due to localized
surface plasmon resonance (LSPR) effect. The different electron oscillation modes on the
surface of NPs and thin films created different appearances. The “golden” color of 51 and
77 s specimens was similar to bulk gold as the absorption of visible light by the thicker films.
Collagen is vulnerable in high-temperature and water-containing environments [28–30].
Vacuum in HiPIMS is generally considered harmful for vulnerable materials such as
collagen. However, some evidence revealed the safety and insignificant change of protein
in low- and even high-vacuum conditions [31,32]. The extremely dehydrated environment
achieved in vacuum is supposed to avoid protein degradation. Deformity of substrate A
was observed in a drying oven at 40 ◦C after 40 min (photos not shown here). In contrast,
both substrates A and B were grossly intact without shrinkage, melting, or perforation after
HiPIMS treatment.

3.2. Surface Morphology and Microstructures of UTGF Deposited Specimens

SEM images of UTGF-coated substrates A and B of different deposition times from
the top view and oblique cross-sectional view are shown in Figure 3. The SEM images
of substrate A with deposition times 26 and 51 s (Figure 3a) revealed the preserved fibril
structure of collagen, and the width of the fibrils was about 1–1.5 µm, which was consistent
with the literature description [14,33]. A wavy appearance on the surfaces may be attributed
to the overlapping of dark and light bands of collagen fibers. The surface morphology
of deposition time (51 s) showed a flattening of the wavy surface, which suggested that
a longer deposition time contributed to the higher cohesive force of AuNPs, resulting
in continuous thin film formation. SEM images of substrate B with deposition times of
6, 12, 24, and 30 s, as shown in Figure 3b, also revealed preserved collagen fibers after
UTGF deposition. The interfibrillar space (between the yellow lines) of bare substrate
B was around 300 nm but decreased to 200 nm in the specimen of deposition time 30 s.
Under the microscopic field, the inhomogeneity of the fibrillar structure inhibited the
representativeness of interfibrillar space measurement. Compared with bare substrate B,
the specimen of deposition time of 6 s showed AuNP deposition on the fibril surfaces,
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which were smaller than 10 nm. The specimen of deposition time 30 s showed a wavy
appearance as type 1 collagen fibers, which indicated islands and discontinuous film growth
of HiPIMS gold deposition between deposition times of 6 and 30 s. The growth pattern
fitted well with the Volmer–Weber model rather than layer-by-layer growth theory in the
early phase of thin film growth [34,35].

Figure 2. (a) Photos of substrate A of different ultrathin gold films (UTGF) deposition time, all
specimens sized 2 cm × 2 cm. (b) Photos of substrate B of different UTGF deposition time, all
specimens sized 4 cm × 2 cm.

Bare substrate B has larger interfibrillar space, which benefits cellular contact, larger
surface area ratio, and water absorption capability [14,33,36]. After surface modification by
UTGF deposition, the exposed area of collagen decreased with the increasing deposition
time, but continuous film formation was not observed due to the larger interfibrillar space,
as shown in Figure 4. The SEM images of different deposition times and the ratios of
collagen on surface to collagen at deeper levels are also shown in Figure 4 and processed
with ImageJ software, version 1.53p (Rasband, W.S., ImageJ, U.S. National Institutes of
Health, Bethesda, MD, USA). The selection of the substrate exposed surface area (ESA)
was performed in grayscale mode before and after UTGF deposition. ESA percentage was
calculated by using integral images [37,38]. More than half of the bare substrate B surface
area was composed of gaps. ESA decreased as UTGF deposition time increased.

FEM-EDS analysis on collagen would be difficult at high temperatures due to colla-
gen’s heat intolerance. Thus, scanning energy (kV) and electron beam bombardment time
should be adjusted carefully [39,40]. The deposition of Au or Pt for bare collagen substrates
would further influence the analysis results. Table 2 shows the results of the EDS surface el-
ement analysis of UTGF-coated substrates A of different deposition times. A linear increase
in the Au atom percentage (0.10, 0.31, 0.72, and 0.98%) was observed as the deposition
time increased (13, 26, 51, and 77 s). The C/N atomic ratio was between 3.09 and 3.48,
which correlated with literature reports about collagen of natural origins [41]. The atom
percentage of Au was smaller than 1% even on specimens of deposition time 77 s, which
was influenced by the deeper detection depth from the surface by EDS. In consideration
of the lower surface resolution of EDS, XPS was further used to study surface element
analysis. The atom percentage of Au increased significantly by increasing deposition time
(9.70, 10.80, 14.70, 31.50, and 44.30% from specimens of 6, 12, 24, 48, and 96 s). The results
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showed that sputtered Au ions only deposited on the surface of collagen substrates without
deeper penetration via the porous structure or interfibrillar space [42]. The observation is
related to the short deposition time and low peak power of HiPIMS deposition. The SEM
image and Au (M series) mapping of UTGF-coated substrate B of deposition time 6 s are
shown in Figure 5a. The homogenous distribution of Au on collagen fibers was clearly
observed, which was not related to intermittent dark or light bands. HiPIMS Au deposition
on the substrate materials with gaps was low. Surface modification by UTGF deposition
would not affect the structure and composition of most substrates.

Figure 3. SEM images of UTGF-coated on (a) substrates A of deposition time 26 s and 51 s, and
(b) substrates B of bare, UTGF-coated of different deposition time from a top view (upper row) and
oblique view (lower row). Spaces between yellow lines indicate the interfibrillar space of collagen.
Deposition of Pt was achieved on bare substrates. Morphology change of bare substrates in FE-SEM
chamber was not observed before high electron energy application. Melting of fibrils was noted on
the bare substrate B because of the high electron energy without the protection of UTGF. Pt deposition
failed to completely protect the bare substrate due to relatively short deposition in the ion sputter.

The XRD analysis results for UTGF-coated substrate A of different deposition times are
shown as Figure 5b. The universal broad-base peaks of 2θ: 10–25◦ of all specimens indicated
the amorphous behavior of collagen substrates and noises [43]. In comparison with the
ICSD database (gold code: 44362), only the specimens of deposition times 51 and 77 s
exhibited very weak diffraction peaks (111) of Au within the range of 2θ: 36.1–40.1◦. The
observed peaks were weak that detection by regular low glancing angle XRD equipment
was difficult. The difficulty further verified the thin thickness of UTGF achieved by the
HiPIMS system. Peaks other than (111)-preferred orientation, such as (200), (220), and (311)
in the range of 2θ: 35–80◦, were not able to be detected in this study. The XRD spectrum
of 2θ: 36–40.5◦ for UTGF-coated substrate A of deposition times 26, 51, and 77 s is shown
in Figure 5b. The short peaks with a wide base on 2θ: 38.5◦ were seen only on specimens
of deposition times 51 and 77 s. The morphology of the peaks was similar to that in the
literature [44], where Häupl et al. deposited 1.7 nm gold thin film on Cu substrate and
observed the 2θ of the peak. More recently, Yan et al. [45] measured 2θ = 40◦ for AuNPs
of 0.8–1 nm, and the results were more similar to our observation. Identical peaks of the
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preferred orientation of UTGF and Au bulk indicated the high energy status of HiPIMS Au
plasma, resulting in higher cohesive force on the substrate surface.

Figure 4. SEM images of UTGF-coated substrates B: red area indicated substrate exposure area
process by the ImageJ software. The 0 s represented substrate post Ar pretreatment and HiPIMS
vacuum without further deposition. The 6 s, 12 s, 18 s, 24 s and 30 s represented UTGF deposition
time. ESA indicated substrate exposure area in percentage.

Table 2. Surface element analysis by EDS and XPS on specimens of different deposition time.

Energy-Dispersive X-ray Spectroscopy (EDS)

UTGF Deposition Time (s) Bare 13 26 51 77

Atom (%)

C 59.30 59.00 57.33 58.96 55.88
N 14.30 17.17 18.54 17.59 16.05
O 23.80 22.87 23.83 22.73 27.08

Au 0.00 0.10 0.31 0.72 0.98

X-ray Photoelectron Spectroscopy (XPS)

UTGF Deposition Time (s) Bare 6 12 24 48 96

Atom (%)

C 61.70 57.00 57.60 55.70 46.30 40.40
N 17.40 14.20 12.10 11.90 7.90 4.80
O 20.90 19.10 19.50 17.70 14.20 10.50

Au 0.00 9.70 10.80 14.70 31.50 44.30



Nanomaterials 2022, 12, 1627 9 of 18

Figure 5. (a) SEM images of UTGF-coated substrate B at 6 s (magnification 200,000 times) and (b) EDS
mapping of Au. (c) XRD spectrum of substrate A of different UTGF deposition time. Black arrows
indicated peaks of Au (111). (d) High-resolution spectrum of 2θ: 36–40.5◦ on specimens of 26 s, 51 s
and 77 s.

3.3. Surface Roughness and Topography of UTGF-Deposited Specimens

The AFM study was based on substrate A rather than substrate B to ensure less
confounding localization factors [46,47]. The 3D surface topography is shown in Figure 6.
Bare collagen substrate had a larger range of peaks and valleys (81.7–1.2 nm), which was
due to the light weight of the bare collagen membrane and poor attachment on the AFM
holder. The characteristic wavy appearance due to dark and light band overlapping of
collagen fibers could be observed. The appearance was blurry on bare substrate A and was
enhanced on UTGF-coated specimens of deposition times 13, 26, and 51 s. The range of
peaks and valleys was from 29.9 to −1.5 nm for the 51 s specimen and from 28.1 to −0.5 nm
for the 77 s specimen, respectively. The flatter appearance of the UTGF-coated specimen
for the deposition time of 77 s indicated decreased roughness due to the fusion of surface
particles or island structures. Using the same thin film coating method and parameters on
different substrates, Malinský et al. [48] discovered that no difference in UTGF thickness
could be observed for film thickness less than 25 nm. Therefore, simultaneous UTGF
deposition on glass substrate was obtained as substrate A. The film thickness and surface
roughness were measured by AFM. The results are recorded in Table 3. The UTGF thickness
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measurement by cross section of SEM was not achieved due to the altered fine structure in
paraffin embedding specimens and difficult preparation of collagen materials. However,
the study on glass substrates confirmed the measurement.

Figure 6. (a) AFM surface topography on substrate A: bare and UTGF films at deposition time of 13 s,
26 s, 51 s, and 77 s. (b) AFM color variation scale on substrate A: bare and UTGF films at deposition
time of 13 s, 26 s, 51 s, and 77 s.

Table 3. Surface roughness and film thickness of ultrathin gold films.

Deposition Time (s) * 13 26 51 77

Ra (nm) 1.74 1.68 2.40 4.17
Rmax (nm) 5.46 4.98 11.08 11.70

Film thickness (nm) 3.99 5.10 7.98 10.37
* The roughness of bare substrate was not shown due to inconsistent data. Ra and Rmax measurement was
performed on the collagen substrate. Film thickness measurement was on the glass.

The thickness of UTGF was 3–10 nm, and Au (111) peaks were noted by XRD only
on films thicker than 7.98 nm, as shown in Figure 5b. The roughness of bare substrate
was not well demonstrated consistently due to fragility. The Ra values of 13 and 26 s
specimens were low and similar. Increased Ra was observed on specimens of 51 and 77 s
with a linear trend. Similar to Ra, Rmax of the 13 and 26 s specimens were not significantly
different. Rmax of 51 and 77 s were much larger than that of the 13 and 26 s specimens.
However, no linear trend was observed by increasing the deposition time. According to
gold thin film adhesion and growth theory [34,49], the observation suggested a granular
to island structure growth of 13–26 s deposition time and percolation of 51–77 s. The
difference in height for the UTGF-deposited and bare glass substrate represented film
thickness. UTGF surface coverage percentage was calculated using the same method as in
Figure 4. The relationship between deposition time and thickness or surface coverage of
UTGF-coated collagen and glass substrates is plotted in Figure 7. The comparison of UTGF
appearance and thickness on substrate A is listed in Table 4. The film thickness increases
as the deposition time increases. UTGF of 10.37 nm on the glass substrate presented a
discontinuous thin film with fluctuating microstructures, and part of the collagen substrates
exposed with preserved characteristics and functions are clinically beneficial to skin wound
recovery [1,31]. Under the same settings of HiPIMS deposition, the surface coverage
of UTGF was lower on the glass substrate than on collagen. The coverage percentage
difference between the glass and collagen substrate was as high as 22.05% at a deposition
time of 30 s, which indicates that HiPIMS would be beneficial to bonding between AuNPs
and collagen surface molecules [48].
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Figure 7. The plot of UTGF coverage rate versus UTGF deposition time. The thin red line (N)
indicated results of UTGF on substrate A. Thick red line (•) indicated results of UTGF on glass. The
blue Y-axis represented the film thickness of UTGF. The blue line (�) indicated results of UTGF on
glass simultaneously deposited with collagen substrates.

Table 4. Morphology and UTGF thickness of substrate A of different deposition time.

Deposition Time (s) Appearance UTGF Thickness (nm)

13 3.99

26 5.10

51 7.98

77 10.37

3.4. Surface Chemistry and Secondary Structure of Collagen

The ATR-FTIR spectrum presented the substrate surface modification by HiPIMS
plasma and UTGF deposition. The specific peaks of bands are described in Table 5 as
follows: amide A by NH stretching and second amine, band at 3301 cm−1; amide B by CH2
stretching, band at 2960 cm−1; amide I by carbonyl stretching, band at 1630 cm−1; amide II
by NH bend and CN stretching, band at 1547 cm−1; and amide III by CN stretching/NH
deformation, band at 1239 cm−1. The peaks of CH3 asymmetric bending at 1451 cm−1 and
CH2 twisting/wagging in the region between 1330–1343 cm−1 were also identified due
to the stereochemistry of the pyrrolidine rings of proline and hydroxyproline [23,25]. The
characteristics peaks were compatible with type I collagen in the literature [23–25,50]. No
peak shifts were found, whereas decreased intensity was observed on the UTGF-deposited
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substrate. The observation showed that the substrate was preserved well after HiPIMS
treatment, and no major change in the surface functional groups was observed. Some
reports found slight shifts of amide I and II in terms of AuNPs conjugating with collagen
colloids [10,51]. The current observation pointed out that the bonding of UTGF with
collagen substrate was not achieved by occupying functional groups or altering chemical
bonds of collagen. In the presence of oxygen ions, Au2O3 may form by overcoming the
required energy of oxide formation of the deposited material [34]. However, in the HiPIMS
system with Ar, the oxygen content is nearly zero, and no detectable corresponding peaks
supported such oxide layer formation during HiPIMS UTGF deposition.

Table 5. Peak analysis of FTIR spectrum from ultrathin gold films deposited on substrate B.

Peak Wavenumber (cm−1) Functional Groups Designed Bonding and Structure References

3301 Amide A NH stretching, secondary amine [22]
3093 Overtone of Amide II [23]
2960 Amide B CH2 stretching [21]
1630 Amide I CO stretching [22]
1547 Amide II NH bend/CN stretching [22]
1449 Pyrrolidine rings CH3 asymmetric bending [48]

1330–1343 Pyrrolidine rings CH2 twisting/wagging [48]
1239 Amide III NH bend/CN stretching [22]

The ATR-FTIR spectrum of the bare and UTGF-coated substrates B of different depo-
sition times was illustrated as Figure 8a. As the deposition time increased, the exposed
collagen surface decreased. For UTGF-coated specimens of deposition times 24 and 30 s,
surface functional groups of the collagen substrate decreased markedly. Compared with
Figure 6, this finding shows that a UTGF coverage of more than 90% would seriously
decrease the function of collagen substrates because a larger exposed collagen area would
be more favorable in clinical applications [8,33].

The secondary structure of protein plays a major role in normal function, and any
process on such materials should not alter the structure unless intended [52]. In pro-
teins, the amide I vibration is affected not by different side chain structures but by the
secondary structure of the backbone. Therefore, the amide I peak is most commonly used
for secondary structure study [24]. As shown in Figure 8b, the secondary structure calcula-
tions using amide I band are α-helix (1651–1652 cm−1), β-sheet (1624–1625 cm−1), β-turn
(1677–1696 cm−1), and aromatic ring vibration (1605–1606 cm−1) [40,41]. The intensity of
signals decreases after HiPIMS UTGF deposition on substrate B, but most of the secondary
structure remained α-helix, as in the natural environment [24,25]. The subgroup distri-
bution of the secondary structure was also identical after HiPIMS UTGF deposition. The
peak fitting analysis showed no bonding of the HiPIMS Au plasma species and atoms
of the collagen backbone, such as C, N, and O. Moreover, the HiPIMS process preserved
the chemical composition and physical structure of native collagen substrates. Thus, the
biomedical application of such biomaterials is more practical.

The XPS system of this study could detect different elements status of 50 Å deep
from the surface. Some authors recommended a binding energy (BE) of Au 4f7/2 for
reference [53,54], and the common value was 84.0 eV. In this study, the peak of adventitious
carbon, 284.5 eV, did not increase. The XPS spectrum of bare and UTGF-coated substrate B
is shown in Figure 9a. The charge referenced to surface contamination is adventitious C1s
(C-C peak at 284.8 eV), and the peaks of the shown spectrum are low. Deposition times
of 24 and 96 s were selected for comparison. Surface elements of bare collagen were C, N,
and O, which were compatible with the normal component of type I collagen [33,55]. In
addition to the three basic elements, Au was detected on the UTGF-coated specimens. The
surface element percentage of bare substrate B was measured as 61.7% for C, 20.9% for O,
and 17.4% for N. The C/N atomic ratio was 3.55, which was higher than that of the collagen
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of mammals and birds [41] and indicated the enforced structure of collagen substrates by
artificial processing [56,57].
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Figure 8. (a) ATR-FTIR spectrum of substrates B: bare and UTGF films at deposition time of 6 s, 12 s,
18 s, 24 s, and 30 s. Arrows and straight lines indicated amide groups. Arrowhead indicated peaks
of pyrrolidine rings. (b) ATR-FTIR spectrum of substrates B: bare and UTGF deposition time 18 s.
The blue lines were deconvolution curves and the numbers of different wavenumbers corresponded
with the different secondary structures of protein. The red lines were fitted curves and the black lines
were original data.

Figure 9. (a) Comparison of XPS broad spectrum of bare substrate B and specimens of UTGF
deposition time of 24 s and 96 s. (b) The high-resolution spectrum of Au 4f, C 1 s, O 1 s, and N 1 s on
bare and UTGF-coated substrate B.
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The high-resolution spectrum by elements of 96 s UTGF-coated specimen is plotted
in Figure 9b. The full width at half maximum (FWHM) of Au 4f7/2 was 1.09 eV, which
represents high energy resolution. BE of Au 4f7/2 was 83.41 and 83.28 eV for the 24 and
96 s UTGF-coated specimens, respectively. Au 4f spin-orbit splitting was identical to
reference [58,59], but the elevated BE of Au 4f7/2 peak should be observed for bonding
with other elements or the unstable status of AuNPs [59]. The observed negative charge
revealed no Au+ or Au3+ on the specimen, and the surface charge of Au is partially negative
(Auδ−). Electron transfer from the collagen substrate to the Au particle surface with a
strong interaction was proven. The result also excluded the oxidation of Au in HiPIMS
UTGF deposition. FWHM of C 1 s was 1.7 eV, and BE of C 1 s peak was 284.88, 284.71, and
284.12 eV for bare, 24, and 96 s specimens, respectively. The slight cathodic polarization
of C suggested C–O/C=O/C–N shifting to C–C on the surface [60]. FWHM of O 1 s
was 1.66 eV, and BE of O 1 s peak was 530.93, 531.11, and 531.32 for bare, 24, and 96 s
deposited collagen, respectively. Anodic polarization of O represented hydroxide or nitrate
formation [61]. FWHM of N 1 s was 1.87 eV, and BE of N 1 s peak was 399.37, 399.48, and
399.30 eV for bare, 24, and 96 s deposited collagen, respectively. C-NH2 could be found
in the main amino acid contents of collagen, such as glycine, proline, and hydroxyproline.
The transient positive charge of the 24 s specimen suggested NH3 formation rather than
metal nitride [62]. Overall, HiPIMS UTGF deposition on collagen substrate caused minimal
change on the surface elements, and oxidation of Au, C, or N was not observed. Compared
with the results of FTIR analysis, the main structure of collagen substrates was preserved
in the HiPIMS system, and a slight chemical status shift was supposed to be related to the
side chain reaction.

3.5. Surface Wettability

The results of the WCA study of bare and UTGF-coated substrate B are shown in
Figure 10a. The water droplet on the post-pretreatment substrate was absorbed quickly, thus
revealing the substrate’s hydrophilic behavior. The 24 and 96 s specimens showed transient
hydrophobic behavior, which fitted the Wenzel wetting model of rough surface [63]. Water
filled the exposed space between the gaps of UTGF and was absorbed rapidly by collagen
within 1 s in all specimens. Collagen is a well-known hydrophilic material with high
water absorption capacity [33]. Deformity of the surface with water-absorbed collagen
could further alter the adherence of UTGF, and wettability was further changed. A box
chart of WCA measurement of initial contact is presented in Figure 10b. The WCA of bare
substrates could not be measured due to the immediate water droplet absorption. The
average WCA of the substrates post-argon pretreatment was 38.6◦ with large diversity.
The measured WCA of UTGF from the literature was not uniform [64,65]. Hydrophilicity
was often observed in the presence of AuO on the surface due to certain film process
and contamination, and hydrophobicity was rarely seen and always related to surface
roughness and micro-nanostructure [66]. The WCAs of 6, 12, 24, 48, and 96 s specimens
were 116.3, 120.0, 125.3, 127.4, and 124.8◦, respectively. The transient hydrophobicity of
UTGF by HiPIMS was related to the substrate surface topography and revealed the absence
of gold oxidation or surface contamination.
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Figure 10. (a) Photos of WCA measurement on bare and UTGF-coated substrates B. 0 s represented
substrate underwent vacuum treatment in HiPIMS chamber without sputtering. 24 s and 96 s
represented HiPIMS gold deposition time. Bare substrate absorbed water immediately as dropped.
Specimen of 0 s showed hydrophilicity and specimen with UTGF revealed hydrophobicity as dropped
and during water absorption. Deformity of 0 s specimen was observed and all specimen absorbed
water within 1 s. (b) Box chart of WCA on bare and UTGF-coated substrate B. The diamond dots
represented a different measure of each sampling.

4. Conclusions

It is worth knowing that HiPIMS was adopted for the first-time deposition on organic
materials, namely collagen for this study. Collagen is assembled by three parallel polypep-
tide strands and plays a cardinal role in the skin extracellular matrix. The structure of
collagen is important for normal strength, function, and biological behaviors, and denatu-
ration of collagen substrates occurs in high temperature environments. UTGF deposition
by the HiPIMS system on the two types of collagen substrates without damaging the gross
morphology, surface functional groups, secondary structure, and element chemical status
was successfully achieved and proven by surface analysis. The FTIR spectrum confirmed
the unchanged amide A, B, I, II, III, and the pyrrolidine rings of proline and hydroxyproline,
regardless of the deposition time. Amide I peak analysis also showed α-helix as the major
secondary structure of collagen, as the bare substrates. The significant difference in Au
atom percentage by EDS (0.98% in 77 s) and XPS (44.30% in 77 s) surface element analysis
revealed that HiPIMS Au plasma only changed the composition of the superficial layer
of substrates. High-resolution XPS spectrum confirmed electron transfer from substrate
to Au by the presence of Auδ−. Through the combination of collagen and UTGF without
destruction, both materials could demonstrate functions desired for biomedical purposes
as well.

Based on the Volmer–Weber model, the initial growth of UTGF on collagen with
the short deposition time of HiPIMS can preserve the interfibrillar space of substrates.
With increasing deposition time from 6 to 30 s, the coverage of substrate surface area
percentage significantly increased from 72.59 to 91.79%. The exposed interfibrillar space
and porosity of collagen substrates were further decreased by UTGF deposition. Along with
the high WCAs of UTGF, even in the shortest deposition time, the transient hydrophobicity
and narrow exposed space were assumed to prohibit cell and bacterial adhesion in the
composite of collagen and UTGF. The advantages of UTGF, such as degradation resistance,
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antibacterial activity, and antioxidant function, would benefit fragile collagen in biological
environments such as exposed skin wounds.
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