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Abstract Liquid chromatography coupled to mass spec-

trometry (LCMS) is widely used in metabolomics due to its

sensitivity, reproducibility, speed and versatility. Metabo-

lites are detected as peaks which are characterised by mass-

over-charge ratio (m/z) and retention time (rt), and one of

the most critical but also the most challenging tasks in

metabolomics is to annotate the large number of peaks

detected in biological samples. Accurate m/z measurements

enable the prediction of molecular formulae which provide

clues to the chemical identity of peaks, but often a number

of metabolites have identical molecular formulae. Chro-

matographic behaviour, reflecting the physicochemical

properties of metabolites, should also provide structural

information. However, the variation in rt between analyti-

cal runs, and the complicating factors underlying the

observed time shifts, make the use of such information for

peak annotation a non-trivial task. To this end, we con-

ducted Quantitative Structure–Retention Relationship

(QSRR) modelling between the calculated molecular

descriptors (MDs) and the experimental retention times

(rts) of 93 authentic compounds analysed using hydrophilic

interaction liquid chromatography (HILIC) coupled to high

resolution MS. A predictive QSRR model based on Ran-

dom Forests algorithm outperformed a Multiple Linear

Regression based model, and achieved a high correlation

between predicted rts and experimental rts (Pearson’s

correlation coefficient = 0.97), with mean and median

absolute error of 0.52 min and 0.34 min (corresponding to

5.1 and 3.2 % error), respectively. We demonstrate that rt

prediction with the precision achieved enables the sys-

tematic utilisation of rts for annotating unknown peaks

detected in a metabolomics study. The application of the

QSRR model with the strategy we outlined enhanced the

peak annotation process by reducing the number of false

positives resulting from database queries by matching

accurate mass alone, and enriching the reference library.

The predicted rts were validated using either authentic

compounds or ion fragmentation patterns.

Keywords QSRR � LCMS � Metabolomics � Peak
annotation � Metabolite identification � Lolium perenne

1 Introduction

Metabolomics aims to provide a systems-level measure-

ment of all the metabolites in biological samples. Multiple

analytical platforms must be employed to achieve this goal

because of the enormous physicochemical diversity of

small molecules and their broad dynamic range in cellular
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concentration. Due to its high sensitivity, high sample

throughput, accurate detection of mass-over-charge ratio

(m/z) and compact instrumentation, mass spectrometry

coupled to chromatography has become the dominant

analytical platform in metabolomics. Signals detected from

these platforms, such as liquid chromatography mass

spectrometry (LCMS), are described as the pair of m/z and

retention time (rt). Thousands of peaks can be routinely

detected and quantified from crude extracts of biological

samples, largely thanks to the advances in mass spec-

trometry and the progress in developing data analysis

software. For example, soft ionization methods such as

electrospray ionization (ESI) enable direct analysis of polar

and thermally labile biomolecules in their intact form

(Fenn et al. 1990), while among data processing tools,

XCMS (Smith et al. 2006) and MZmine (Pluskal et al.

2010) are tools of choice in the public domain.

A common practice in LCMS based metabolomics is to

first identify significant peaks (mass-over-charge ratio m/z

denoted hereafter as mz for describing peaks) of biological

relevance via computational and statistical ranking

approaches and then to carry out structural inference on a

few selected peaks. Inferences on peak identity are made

by matching the measured m/z and rt of the top ranking

peaks (mz/rt) with that of authentic compounds usually

maintained in an in-house reference library. However, such

practices run into serious limitations in metabolomics as

there are far fewer reference standards than the number of

peaks that can be detected from biological samples (Dunn

et al. 2013; Kind and Fiehn 2010; Wishart 2011). The

number of unknown peaks compromises the systems

approach to interpret the quantitative variation and to

address biological problems (Patti et al. 2012), thus peak

annotation on a large scale is an imperative task in

metabolomics.

Highly accurate m/z measurement enables the prediction

of the elemental composition of unknown peaks. This

accurate mass measurement, together with additional mass

spectral features such as isotopic patterns, is often utilized

for chemical annotation of detected peaks (Kind and Fiehn

2006; Draper et al. 2009; Iijima et al. 2008). However,

compounds with the same exact mass but different struc-

tures cannot be differentiated by accurate mass alone. For

instance, the amino acids leucine (Leu) and isoleucine (Ile)

have the same mass of 131.0946 Da (monoisotopic mass)

but different structures. To characterize these two amino

acids the information collected from either multi-stage MS

or chromatography must be exploited. Chromatographic

retention time, reflecting the chemical properties (hydro-

phobicity, polarity, molecular shape etc.) of detected peaks,

can provide further information to infer the chemical class

and possible chemical structure of peaks (Kuehnbaum and

Britz-McKibbin 2013). Nevertheless, rt values measured

by LC–MS on the same compound often vary considerably

depending on the experimental conditions such as column

packing, flow rate and mobile phase composition. Experi-

mental rt values are therefore difficult to harness for the

annotation of unknown peaks and for information sharing

between research groups. Continuing improvements on

resolution and reproducibility in chromatography, which

promise to provide reliable measurement of rts, would

permit the systematic use of rts for the structural inference

of peaks. Peak annotation based on accurate mass has been

extensively investigated, and research has recently been

called upon to utilize the chromatographic side of infor-

mation for compound identification (Spagou et al. 2010;

Boswell et al. 2011; Hall et al. 2013). One of the critical

steps towards the systematic utilization of rt for peak

annotation is to associate peak rt with the structural and/or

physiochemical properties of the measured chemical

components.

Molecular descriptors (MDs) define the structural and

physiochemical properties of molecules by assigning

numeric values through mathematical and statistical

approaches (Todeschini and Consonni 2009). Structural

information such as type of atoms and bonds, number of

rings, charge and stereochemical configuration can be

encoded in MDs. The Wiener index, for example, is a

structural descriptor that can describe the topology of

molecules by counting the number of bonds between pairs

of atoms and summing up the distance between all pairs.

LogP (octanol/water partition coefficient in the logarith-

mic scale), a widely used MD, is a physiochemical

descriptor, which measures the lipophilicity of molecules

(Mannhold et al. 2009). MDs have often been used for

Quantitative Structure and Properties Relationship (QSPR)

and Quantitative Structure and Activities Relationship

(QSAR) modelling with the purpose of predicting the

biological properties and activities of compounds

(Jónsdóttir et al. 2005). MDs are also used to model

chromatographic retention time of new compounds in the

absence of standard candidates via Quantitative Structure–

Retention Relationship (QSRR) modelling (Héberger

2007). QSRR modelling has usually been carried out on a

particular class of compounds measured in respective

analytical platforms (Sarkhosh et al. 2012; Tyrkkö et al.

2012; Meek 1980). Only recently has QSRR modelling

found an application in metabolomics (Creek et al. 2011;

Hagiwara et al. 2010) because there is a demand to assign

chemical identities to many unknown peaks through

improved utilization of retention time, along with mass

spectral features.

To establish a QSRR model we need to: (1) represent

molecular structures in a computable format; (2) calculate

MDs from the structural representation; (3) collect

experimental rts of a number of authentic compounds
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based on a particular analytical platform; and finally (4)

establish the model. In this study, we used an open source

Java library CDK (Chemistry Development Kit) (Stein-

beck et al. 2003) to compute MDs from canonical

SMILES (Simplified Molecular Input Line Entry Sys-

tem)—a popular structural representation of molecules

(Weininger 1988; O’Boyle 2012); The experimental rts

for 116 authentic compounds (standards) were manually

recorded from a hydrophilic interaction LC coupled to

high resolution ESI MS (HILIC-MS) platform (Fraser

et al. 2012). Modelling of rts as a function of the theo-

retically or experimentally derived MDs was often

established by Multiple Linear Regression (MLR) and

machine learning algorithms such as artificial neural

network (ANN), regression tree and support vector

machine (SVM) (Jónsdóttir et al. 2005; Héberger 2007;

Put et al. 2003). We employed MLR and Random Forests

(RF) (Breiman 2001a) methods to establish a predictive

QSRR model because the two methods represent two

different approaches to modelling, i.e. data modelling and

algorithmic modelling (Breiman 2001b). MLR is a widely

used statistical method in QSRR whereas RF is suitable

for handling a mixture of continuous and discrete vari-

ables, which is the case for MDs.

Here, we established a QSRR model for a HILIC-MS

analytical platform, and evaluated the effectiveness of this

model to annotate peaks (mz/rt) detected in perennial

ryegrass (Lolium perenne) samples. We demonstrate that

model-based rt prediction provides additional information

for peak annotation, which cannot be ascertained by

matching accurate mass alone. A general strategy is out-

lined to iteratively improve the model, to validate the

prediction and to enrich the LC–ESI–MS-based library for

peak annotation. The promises and limitations of such

approaches are also discussed.

2 Materials and methods

2.1 Sampling and analytical methods

Both the 116 authentic compounds (Sigma-Aldrich,

Auckland, NZ, see Table S1) and the plant extracts (L.

perenne leaf blade tissue) were analysed using HILIC

coupled to high resolution orbitrap Exactive MS (Thermo,

Waltham, MA, USA). The 116 authentic compounds,

covering a wide range of polarity, were initially selected

for building a reference library. The retention times of

these compounds were recorded manually and employed

for building QSRR models in this study. Eight plant sam-

ples were taken from a large metabolomics study on the

drought responses of perennial ryegrass (L. perenne), a

major forage grass in the temperate regions of the world.

These eight samples, representing a single genotype

selected from a genetically segregating population, were

subjected to drought challenge (n = 4) and irrigated con-

trol conditions (n = 4) during the growing season, and

were all harvested at the same developmental stage. More

sample information relevant to this investigation can be

found in the supplementary materials (Data S1). This

subset of samples was selected to illustrate the application

of QSRR modelling to annotate unknown but statistically

significant peaks differentiating between the two treatment

groups.

Plant sample preparation, extraction and experimental

setups for the HILIC-MS were the same as those previously

described (Fraser et al. 2012). Briefly, samples were

extracted with 50:50 acetonitrile–water (v/v) and separated

on a Merck polymeric bead based ZIC-pHILIC column

(100 9 2.1 mm2, 5 lm, zwitterionic stationary phase)

using a mixture of acetonitrile-formic acid (solvent A) and

water–ammonium formate (solvent B, pH 6.3) as the

mobile phases. Chromatography was performed at 25 �C
with a gradient elution programme that held at 97 % A

(0–1 min), 97–70 % A (1–12 min), 70–10 % A

(12–14.5 min), 10 % A (14.5–17 min), returned to 97 % A

(17–18.5 min) and allowed to equilibrate for a further

5.5 min prior to the next injection. Data were collected in

profile data acquisition mode (with positive ESI) over a

mass range of m/z (60–1200) at a mass resolution setting of

25,000 (at m/z 400). With the predefined resolving power

(R), the mass window (Dm) can be theoretically defined by

m/R, i.e. 400/25,000 = 0.016, which is equivalent to

20 ppm (Dm) for mass = 200.

Peak detection on the raw data collected from peren-

nial ryegrass samples was carried out using MZmine

(Pluskal et al. 2010) with the noise level being set to

5,000 (5e3) for exact mass detection. Chromatograms (for

each mass that can be detected continuously over scans)

were built by time span = 0.2 min, the minimum peak

height = 2e4 and m/z tolerance with parts per million

(ppm) = 20; Chromatogram deconvolution was per-

formed using the ‘‘noise amplitude’’ approach with min-

imum peak height = 5e4 and duration time 0.6 min;

Peaks were de-isotoped using the built-in functions (m/

z = 0.01 and rt = 0.1 min) and peak alignment across

samples was performed by the Join Aligner algorithm

implemented in MZmine. As a result, 2,859 peaks (mz/rt)

were detected in the eight samples. Local peak detection

from extracted ion chromatograms (XIC) was conducted

using a wavelet-based approach (Du et al. 2006). A uni-

variate non-parametric test (Kruskal test) was used to

identify peaks that were significantly different between

the drought-stressed and control groups. Among the sig-

nificant peaks a few were selected for the detailed dis-

cussion on peak annotation.
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2.2 Calculation and data pre-processing of molecular

descriptors

Canonical SMILES representations for the 116 standard

compounds and plant metabolites were obtained from the

PubChem database (http://pubchem.ncbi.nlm.nih.gov/) if

available, otherwise generated using chemical structural

editors, JChemPaint (http://jchempaint.github.io/) or using

the PubChem online chemical structure sketcher (http://

pubchem.ncbi.nlm.nih.gov/edit2/index.html).

The models were built in this study based on theoretical

MDs instead of experimental physicochemical properties.

MDs were calculated from SMILES structural representa-

tion using the R package ‘‘rcdk’’ (Guha 2007), which is

based on CDK—a Java library for chemo-informatics

(Steinbeck et al. 2003). A total of 346 MDs were calculated

(using rcdk 3.2) for each standard compound (in its neutral

form). These MDs represent various physical and chemical

properties of the compounds, such as hydrophobicity,

polarity and topology. The calculated MDs comprise many

different data types including continuous and discrete

values, and redundant representations of the same proper-

ties. MDs that represent protein structures and properties

were discarded. MDs with[90 % missing values or with

constant values were also removed. If a group of MDs

belonged to the same class (for example, SPC.4, SPC.5 and

SPC.6—Chi path cluster descriptors which describe

molecular connectivity) and they were highly correlated

(Pearson’s correlation coefficient, r[ 0.9), only one MD

(in this case, SPC.4 of the lowest order) was retained.

Detailed description of all MDs can be referred to in the

monograph (Todeschini and Consonni 2009) or an online

version of CDK API (http://qsar.sourceforge.net/dicts/qsar-

descriptors/index.xhtml). LogP has been found to be the

most important parameter in QSRR modelling, but it can

vary because many algorithms can be used to compute

LogP (Mannhold et al. 2009). We used XLogP computed

by CDK, whereby the implementation is based on atom

types (Wang et al. 1997; Wang et al. 2000). XLogP from

PubChem, however, is the implementation of a modified

version based on XLogP3 (Cheng et al. 2007). XLogP3

data were obtained from PubChem for the 116 reference

compounds to compare with the CDK-based XLogP. They

were largely correlated (r = 0.80) although discrepancies

can be seen (Fig. S1). CDK XLogP was chosen for QSRR

modelling in this study, as in the case of a metabolite being

not available from PubChem, its structure (in SMILES) can

be obtained using structure editors, such as JChemPaint.

2.3 Modelling approaches

After data cleaning of the calculated MDs those retained

MDs were subjected to wrapper-based feature selection,

where a subset of MDs was selected by the prediction

model itself. MLR model selection was undertaken by an

exhaustive search for the best subset with four different

model selection criteria, i.e. Mallow’s Cp, Akaike infor-

mation criterion (AIC), Bayesian information criterion

(BIC) and adjusted R2 using an R package ‘‘leaps’’ (http://

CRAN.R-project.org/package=leaps). Feature selection

and predictive modelling by Random Forests (RF) algo-

rithms were conducted using the R package ‘‘randomFor-

est’’ (Liaw and Wiener 2002). To ensure feature stability,

RF (with 500 trees in each forest) were built 100 times, and

those features with [50 % occurrence at the respective

ranking positions were selected to establish the final pre-

dictive model. Model training and resampling-based eval-

uation were carried out with utility functions from the

‘‘caret’’ package (http://CRAN.R-project.org/package=

caret). All data processing, statistical analysis, model

building and evaluation were conducted in the R statistical

computing environment (R Development Core Team

2013).

2.4 Databases

PubChem (http://pubchem.ncbi.nlm.nih.gov) was used to

query a list of candidate compounds for rt prediction.

Canonical SMILES of compounds were downloaded from

PubChem for the standards used in this study and the

testing compounds used for validation of predicted rts.

Other online databases such as METLIN (http://metlin.

scripps.edu) and Chebi (http://www.ebi.ac.uk/chebi) were

used for cross references. We also used the PlantCyc

(www.plantcyc.org) compound database, which includes

3,202 unique metabolites in the version of 2013-07-24. The

PlantCyc compound database was downloaded onto a local

computer to allow automatic calculation and searching in a

batch mode. Monoisotopic masses were calculated for all

the entries with valid chemical formulae (e.g. excluding the

arbitrary representations for polymers) in their neutral form

by custom R scripts.

3 Results and discussion

3.1 QSRR model construction and evaluation

For the 116 standard compounds a negative correlation

between XLogP and the experimental retention times (rts)

was clearly discernible (Fig. 1a), indicating that the more

hydrophilic molecules have longer retention time in the

HILIC column. Positive and negative LogP suggest either a

hydrophobic or a hydrophilic nature of the molecule. The

magnitude of the LogP value is indicative of the strength of

affinity for water. Sixteen of the analysed standard
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compounds with rt\ 5 min were excluded in the sub-

sequent modelling process to ensure models were con-

structed with only those compounds that fully interacted

with the chromatographic system. The small rt differences

between stereoisomers such as L-isoleucine (9.70 min) and

D-isoleucine (9.87 min) are due to measurement error and

beyond the resolution of the chromatographic systems

being employed. Therefore, seven redundant isomers (see

supplementary material ‘‘QSRR_peakAnnotation_R.pdf’’)

with the same structural representation in SMILES were

also excluded, leaving a total of 93 reference compounds.

An overall correlation between XLogP and rt is shown in

Fig. 1b (r = -0.69, p value\ 2.0e-14, n = 93). However,

XLogP alone may not have enough power to predict rt. For

example GABA (c-aminobutyric acid) and xanthine have

similar calculated XLogP values (-0.67 and -0.65) but

the rt of GABA was recorded as 11.55 min and xanthine

8.29 min (Table S1).

In addition to XLogP we performed a feature selection

to determine if we could identify a set of MDs that could

better explain the recorded rts of these standards. By

exhaustive searching (branch-and-bound algorithm imple-

mented in the ‘‘leaps’’ package) we conducted a model

selection to find the best subset of MDs to predict rt in

MLR. MLR models were evaluated based on four criteria

including Mallow’s Cp and Akaike information criterion

(AIC), Bayesian information criterion (BIC) and adjusted

R2. Eleven MDs (model size) were selected as the best

subset according to these four criteria (see Fig. S2). These

11 MDs (bpol, nHBDon, ATSc1, ATSp1, VP.0, fragC,

VABC, VAdjMat, WPATH, WPOL, XLogP, see Data S2

for the details on the descriptors) were then utilized to

construct the final predictive MLR model. A repeated

10-fold cross validation was applied to estimate prediction

performance of the model. As a result, the mean accuracy

of the model has an adjusted R2 of 0.64. The predicted rt

(rtPred) correlated with the measured rts of the reference

compounds (rtRef) with r = 0.85 (Fig. 2a). The absolute

prediction error (|rtPred—rtRef|) has a mean of 0.95 and a

median of 0.76 min, which is equivalent to 9.4 and 6.7 %

in terms of percent relative error, respectively. Six MDs,

XLogP, bpol, nHBDon, VP.0, fragC and WPATH were

determined to be the most significant MDs (p val-

ues\ 0.001) for predicting rt.

Because the relationship between MDs and observed rts

of compounds may be complex, alternative approaches to

MLR, which may offer a more robust method to model the

relationship and provide better prediction accuracy, were

explored. RF algorithm was employed here to construct a

collection of regression trees for the rt prediction. By

growing a forest of trees and the injection of some ran-

domness RF is robust against overfitting (Breiman 2001a)

in comparison to a single regression tree model (Put et al.

2003). Because of the randomness implemented in the

algorithm RF were built 100 times (500 trees in each

Fig. 1 a Overall negative correlation was observed between the

experimental retention time of the reference compounds (rtRef) and

XLogP (CDK-based calculation) for the 116 reference compounds

which were used for the HILIC-based LCMS library construction;

b Compounds with rt\ 5 min and duplicated stereoisomers were not

retained, leaving 93 compounds for the modelling process. A

significant correlation between rtRef and XLogP was shown (r =

-0.69, p value\ 2.0e-14)

Fig. 2 Correlation between the predicted retention time (rtPred, min)

and the experimental retention time (rtRef, min) for the 93 reference

compounds by the established models a Multiple Linear Regression

(MLR) (r = 0.85), and b Random Forest (RF) model (r = 0.97)
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forest) and only those MDs consistently ranked at the top

were selected to build the predictive model. A subset

comprising of XLogP, BCUTp.1h, TopoPSA, and nHBAcc

were then elected. These 4 MDs were used to build the

final predictive model via a repeated 10-fold cross-valida-

tion. As a result, the predicted results (rtPred) are corre-

lated with the RTs of reference compounds (rtRef) with

r = 0.97, suggesting RF outperforms MLR (r = 0.85)

(Fig. 2). The unsigned prediction error of the RF model

was a mean = 0.52 min and median = 0.34 min, which is

5.1 and 3.2 %, respectively, when expressed as percent

relative error.

XLogP was found to be the most contributing predictor

in both MLR and RF models. This is in agreement with the

results reported previously (Creek et al. 2011). Their

model, also based on HILIC-MS, revealed that LogD

(similar to LogP, but pH-dependent) was the most predic-

tive variable out of six other calculated properties including

charge, the number of rotatable bonds, the number of

phosphate groups and the number of hydrogen bond donors

divided by molecular weight (HBD/MW). The QSRR

model reported by Hagiwara et al. (Hagiwara et al. 2010)

was constructed using both MLR and support vector

regression (SVR) based on XLogP, TPSA and Complexity

that were downloaded from PubChem, and a custom

computed MD, i.e. solvent-accessible surface area (ASA),

to model the interaction between the column and the

compound. The usefulness of rt prediction in assisting

compound identification without the use of reference

standards was also demonstrated in these two studies which

helped inform this research project.

The retention mechanism in HILIC is complex but

polarity has been reported to be the main factor, along with

others such as electrostatics (Cubbon et al. 2010). As iden-

tified from our results the partition coefficient (XLogP),

polarity related MDs, i.e. BCUTp.1h (describing atomic

static polarizability) and TopoPSA (topological polar sur-

face area) and nHBAcc were determined to be the main

features to model compound separation behaviour in the

ZIC-pHILIC column. Therefore, XLogP and the two polar-

ity-related MDs can be readily explained. The descriptor

nHBAcc, which calculates the number of hydrogen bond

acceptors and contributed to our model prediction, might

explain the interaction between solutes and the stationary

phase via hydrogen bonds. The interpretation of some MDs

selected by MLR (e.g. WPATH, a Wiener numbers

descriptor) is beyond our knowledge, as this is sometimes the

case in QSRR/QSPR modelling. In this situation, the pre-

dictive power and the usefulness in the application to actual

problems can still be a strong motive to establish a model

(Todeschini and Consonni 2008; Héberger 2007).

The mean unsigned error was 0.95 min from the MLR

model, and 0.52 min from the RF model. The median error

for the RF model-based prediction was 0.34 min, and this

prediction accuracy suggests it approximates the chro-

matographic resolution in the current system. The RF model

provides improved results compared to those previously

reported, where the mean and median absolute errors were

1.12 and 0.84 min (Tyrkkö et al. 2012; Creek et al. 2011). In

addition to that, we recruited MDs for QSRR modelling via

a systematic, unbiased feature selection process, rather than

based solely on prior knowledge.

The correlation between rtPred and rtRef and the mean

squared error (MSE) are useful metrics to assess the overall

goodness of fit of QSRR models, and it is of practical

interest to examine the distribution of the residuals, i.e. the

distribution of the differences between the predictions and

the experimental observations. The standard deviation (sd)

of prediction errors (rtPred-rtRef) is 0.68 (Fig. S3). In the

following discussion we chose to use rtPred ± 0.68, i.e.

rtPred within a 0.68 min window around the observed peak

retention time (rtPeak), as a criterion for judging whether a

prediction matches the experimental rt. This is approxi-

mately 11.3 % of error for a compound eluting at 6 min

and 5.7 % of error for a compound eluting at 12 min—a

narrower error range than that reported by Creek et al.

(2011), who used within 35 % of the predicted retention

times to achieve improved metabolite identification by

removing 40 % of the false identifications that occurred

with identification by accurate mass alone.

We acknowledge that this criterion is suggestive. The

evaluation of error distribution should provide a rigorous

test for the confidence of the prediction. The validity of this

criterion can be tested by future studies when more

authentic compounds or annotated metabolites become

available (the current evaluation was based on 93 com-

pounds). An iterative process is thus proposed in the

Sect. (3.3) to improve the model resolution and thus pre-

diction accuracy. Confident rt prediction can also be

compromised by the measurement error of peak rt, which is

due to time shifting among samples. Variation of rtPeak

should therefore be carefully examined in order to make a

robust inference in the process of peak annotation.

Besides these statistical considerations, it should be

noted that no attempt was made to differentiate stereoiso-

mers (Z/E or R/S) here as they tend to co-elute under the

experimental conditions used in our study. For example,

the experimental rt for authentic L-isoleucine and D-iso-

leucine was 9.70 and 9.87 min, and 12.80 and 12.85 min

for L-glutamic acid and D-glutamic acid, respectively (see

Table S1). These subtle differences in rt are probably due

to measurement error and beyond the resolution of the

chromatographic systems being employed. Therefore, only

one stereoisomer was retained for building the models, and

stereochemistry is not specified in the following discussion

on peak annotation.
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3.2 Application of the QSRR model to peak annotation

We have identified below three scenarios for the applica-

tion of the established QSRR model for peak annotation in

a metabolomics study.

In the first scenario we show that our model can help

reduce false positives considerably. Peak 166.0532/12.50

(mz/rt) was one of the significant peaks (Kruskal test,

p value \0.05) identified in L. perenne blade tissue in

response to drought (Fig. 3a). Assessment of the mass

spectra indicated that this is a singly charged species

([M?H]?) with m/z of 166.0530. We undertook chemical

formula prediction of mass 165.0457 (in its neutral form).

When C, H, N, O, S, and P were included in the element

search list and a few empirical rules such as H/C ratios and

isotopic ratio filtering, were implemented (Kind and Fiehn

2007), C5H11NO3S was the only candidate molecular for-

mula for the accurate mass (see Data S3). However, a

search of the formula in PubChem resulted in 269 com-

pounds, preventing further annotation of this formula. The

RF-based rt prediction model was therefore used to narrow

down the candidates. After the disconnected SMILES

forms such as ‘‘C1CCS(=O)(=O)C1.C(=O)N’’ (separated

by a period ‘.’) and redundant SMILES were removed, 216

compounds remained for rt prediction. The prediction

results are summarized in Fig. 3b, only two compounds,

methionine sulfoxide (cid 847) and ethiin (cid 146416),

with a predicted rt of 12.67 and 12.59 min, respectively,

matched this peak at 12.50 min (±0.68). The two com-

pounds are also recorded in the PlantCyc compound data-

base suggesting their involvement in plant metabolism. We

conducted an independent validation experiment (Method

S1, Fig. S5) by spiking the authentic compound methionine

sulfoxide (ethiin was not available for purchase) into a

ryegrass extract, showing that the rt of the standard was

12.81 min (Data S3), thus enabling the peak of 166.0532/

12.50 to be annotated as methionine sulfoxide or ethiin.

In the next scenario of the QSRR model application we

show that the predicted rt can provide additional annotation

information to a hypothetical metabolite, whose structure

may not be available from public databases. Thesinine-

rhamnoside (C23H31NO7, neutral mass = 433.2101) is a

plant alkaloid known to occur in perennial ryegrass (Koul-

man et al. 2008). However, its structural information has not

yet been deposited in any public databases. In order to predict

the rt of this metabolite in the chromatographic system used

here, we obtained its SMILES presentation ‘‘C12([H])CCC

N1CCC2COC(=O)C=CC3=CC=C(C=C3)OC4OC(C)C(O)

C(O)C4O’’ by JChemPaint structure editor, and computed

MDs based on this structural representation. The MD pre-

dictors required by the RF model were computed as

XLogP = 1.24, BCUTp.1h = 9.47, TopoPSA = 108.69

and nHBAcc = 8. Using our model the predicted rt of this

molecule though the HILIC column is 8.90 min. We then

examined the XIC of this metabolite ([M?H]?) of m/z

434.2173 (±20 ppm) from the eight samples, and observed

that a peak eluted at 9.1 min in all of the samples (Fig. S8).

The measured mass (m/z 434.2175) was within a deviation of

0.46 ppm from the theoretical calculation, and the accurate

match between the predicted rt (8.90 min) and the experi-

mental rt (9.1 min) of the chromatographic peaks allows the

positive annotation of the peak as thesinine-rhamnoside.

Fig. 3 The smoothed XIC of m/z 166.0532 ± 20 ppm from the eight

samples. The boxplot shown (a) was based on the normalised peak

heights from wavelet-based peak detection. Histogram (b) of the

predicted retention time (pRT) of 216 PubChem compounds with the

same chemical formula of C5H11NO3S

702 M. Cao et al.

123



Further interrogation of the mass spectral data demonstrated

that the experimental isotopic pattern matched the theoreti-

cal pattern (See Data S4). As no standard compound is

available for us to validate the predicted rt a separate vali-

dation experiment was performed based on the MS2 frag-

mentation of the m/z 434.22 (Data S4—Fig. S7). The

fragmentation pattern supported the identity of the peak

(434.22/9.5) with the evidence of the presence of a typical

fragment ion (m/z 288.16), due to the loss of a rhamnose

residue (m/z 146.06) (Koulman et al. 2008).

Positive peak identification requires equivalent infor-

mation collected from authentic or chemically synthesized

compounds (Sumner et al. 2007). However, in metabolo-

mics research the number of authentic compounds is lim-

ited and artificially synthesized compounds can be

expensive or even impossible to obtain for metabolite

identification (Wishart 2011; Zhu et al. 2013). QSRR

predictive models can provide predicted rt, an information

orthogonal to accurate mass for a putative identification.

Therefore, it may be legitimate to deposit the predicted rt

along with theoretical mass into the library to facilitate

annotation. The expansion of the reference library (usually

built upon a list of authentic compounds) by adding puta-

tive annotations provides an indispensable step to address

metabolite identification problems in large scale meta-

bolomics studies.

In the third scenario we discuss the use of rt prediction

to annotate closely eluting peaks, which can be challeng-

ing. Peak 132.1023/8.9 was of interest as it increased in

abundance under drought conditions (Kruskal test, p value

\0.05) (Fig. S8). The rts of Leu (9.5) and Ile (9.7) were

recorded in the library (Table S1), and it is tempting to

annotate this peak as Leu based on the match in mass

(1.5 ppm) and rt (0.6 min). However, there are five chro-

matographic peaks of m/z 132.1023 and baseline separation

was not achieved for two of these (Fig. S8). The direct

application of our current model (with a 0.68 min predic-

tion window) is not useful in this kind of situations where

the predicted rts for Leu (10.0) and Ile (9.9) are within

0.1 min. The clear-cut annotation of the peaks is conse-

quently beyond the resolution of the current model, which

is, in turn, reliant on the resolution of the chromatography

employed. The rts recorded in the library were based on a

mixture of standard compounds, and the question remains

as to how the rts recorded from the mixture of pure com-

pounds relate to the measured peaks (metabolites) occur-

ring in the crude biological extracts. Therefore, spiking

experiments were performed to confirm that the peaks at

9.57 and 9.86 min correspond to Leu and Ile, respectively

(See Data S5). With that information peak 132.1023/8.9

was excluded from being Leu or Ile. We applied the same

procedures (as that used in the first scenario) to search for

other possible annotations of this peak. Based on its

accurate mass the peak can be predicted with a formula of

C6H13NO2, and 970 compounds were found in PubChem

with this formula (distinct canonical SMILES). From the

range of predicted rts 8.17–11.06 min only 18 compounds

had a predicted rt in the range of 8.9 ± 0.3 min (Data S5).

The predictions help again to narrow down the list, making

identification more feasible. A search of the PlantCyc

compound database based on accurate mass resulted in

three metabolites (Leu, Ile and b-alanine betaine). The rt

prediction for b-alanine betaine was 9.7 min, ruling it out

as a possibility for peak 132.1023/8.9. Further evidence

remains to be collected before this peak can be annotated.

Usefulness of the QSRR model to avoid false annotation

was further supported by the annotation of another statis-

tically significant peak 287.0551/7.08. Without considering

the eluting behaviour m/z 287.0551 could be annotated as

kaempferol (K) in its protonated form ([M?H]?), which is

a common flavonoid in L. perenne. However, the QSRR

model suggests the protonated kaempferol elutes at

8.0 min. Further inspection of the peak 287.0551/7.08

indicates that it was an in-source fragment ion of a

Fig. 4 Diagram of the modelling process (literal: a, b) and the

application of the established model for peak annotation (number:

1–6). a build a QSRR model based on experimental retention time (rt)

of known compounds (a reference library); b update the model by

incorporating the newly verified or putatively identified compounds.

The model can be iteratively improved. 1 search databases with the

measured accurate mass; 2 integrate and refine the query results from

various resources and compute the structural presentation (SMILES)

of the query list; 3 compute molecular descriptors and predict rt using

the model; 4 annotate peaks by adding the predicted rt and its

prediction accuracy; 5 verify the predicted rt with other evidence; 6

when no hits returned from database search by accurate mass,

hypothetical compounds occurring in biological samples can be

proposed and their structures can be sketched using a molecular editor

to generate structural presentation
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flavonoid glycoside (K-AcHex-Rha), demonstrating the

ability of the QSRR model to assist identification and avoid

false annotations.

3.3 A general strategy

We have demonstrated the power of model-based rt pre-

diction to assist the annotation of unknown peaks. Although

there are areas for further improvement, particularly with

regards to the extent to which prediction accuracy can be

achieved given the relatively low resolution of the chro-

matographic systems, we anticipate that such a model-based

rt prediction promises general applications on peak anno-

tation in LCMS-based metabolomics studies. Hence, we

have outlined a strategy for the modelling process and

application of the predictive models (Fig. 4). Further to this,

we provide recommendations for the practical use of such a

strategy to improve peak annotation.

As shown in Fig. 4 a proof-of-concept QSRR model can

be built first using the experimental rt of the authentic ref-

erence compounds, which should be selected to cover a wide

range of retention times (Step a). Putatively annotated or

verified peaks derived from the annotation process can be

recruited into the list of reference compounds to update the

model (Step b). The incorporation of the putatively identified

compounds into the reference library not only helps improve

the predictive power of theQSRRmodel but also expands the

library for future identification, with the putatively identified

metabolites tagged as ‘‘putative’’ in the library in contrast to

the ‘‘authentic’’ standards. False positives may occur in such

an expanded library but can be controlled as meta-informa-

tion is maintained and corrected whenever supporting evi-

dence becomes available. A simple database (a few

interlinked tables) can be designed for more robust annota-

tion (which is beyond the discussion of this paper).

A few quality control steps should be implemented to

start the annotation process on a list of detected peaks (mz/

rt). These should include the investigation of the XIC of the

detected ion to check data quality and ion types (proton-

ated/deprotonated, adduct ions, in-source fragments etc.) as

suggested by (Zhu et al. 2013). Accurate monoisotopic

masses (in neutral form) are used first to search public or

in-house databases by a pre-defined mass error window,

with a unit of accuracy that depends on the resolving power

of the mass analyser employed (Step 1). This may return a

list of named metabolites from the database. It remains

debatable as to which database should be used in the first

instance. As we demonstrated in this study it is computa-

tionally feasible to perform rt prediction on a large scale if

structural formulae are readily available in the databases.

More generalized databases certainly expand the list of

compounds to be tested for rt prediction, which is neces-

sary during investigation of novel leads. On the other hand,

a specialised database (organism-specific if available) can

help reduce the number of false positives. Structural for-

mula in SMILES, SDF etc. can either be obtained from

databases (Step 2) or generated from chemical structure

editors (Step 6). In this paper, we have demonstrated

modelling process and automatic calculation of MDs

required by the model (Step 3). If the model-based rt

prediction matches with rtPeak (within a defined error

range) the peak can be putatively annotated (Step 4).

Additional (or orthogonal) evidence such as fragmentation

patterns can be used to validate these putative annotations

along with comparing experimental structural features with

that of authentic compounds (Step 5). This strategy enables

the model to be updated iteratively by incorporating the

putatively identified or verified compounds.

At present an enormous effort is required to compare the

retention behaviours of the same metabolites among dif-

ferent chromatographic systems. Therefore, despite being

challenging, the incorporation of chromatographic condi-

tions in building a predictive QSRR model deserves con-

tinued research (Boswell et al. 2011). Comparative QSRR

modelling among different chromatographic systems is

necessary to study chromatographic behaviour of the same

set of metabolites in different systems and to reveal their

invariant structural features and physiochemical properties.

Although our methodology should be readily extendable

to other chromatographic systems widely employed in

metabolomics studies, different models must be developed

for each chromatographic technique because of the different

separation mechanism involved. Likewise, a specific set of

MDs is likely to be recruited during themodelling process for

different chromatographic systems. For example, we have

discussed the annotation of peak 434.2175/9.0 as thesinine-

rhamnoside, and there is only one chromatographic peak

detected on the ZIC-pHILIC column (Data S4). But two

isomers (E/Z) of thesinine-rhamnoside, known to be present

in L. perenne, can be readily separated by reversed phase

liquid chromatography (C18 column) (Koulman et al. 2008).

This suggests that when conducting the QSRRmodelling for

the C18 column 3D MDs need to be recruited.

Even with a match on both accurate mass and retention

time it may still not be sufficient to annotate the majority of

peaks in LCMS-based metabolomics. Additional evidence

such as MSn fragmentation patterns need to be collected to

increase the rigor of structural inference on the detected

peaks (Cao et al. 2013), and integrated into a reference

library or database for identification.

4 Conclusions

We have established a QSRR model based on the RF

algorithm for the prediction of retention time of
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compounds and achieved prediction accuracy at a level that

can be readily employed for peak annotation in LCMS-

based metabolomics. We have demonstrated that such

model-based retention time prediction can reduce consid-

erably the number of false positives that often arise from a

query of accurate mass alone, and we have proposed a

general strategy to incorporate QSRR modelling into the

metabolite annotation process. We thus conclude that our

approach allows the retention time to be harnessed and

integrated into the peak annotation processes, and con-

tributes to address the most challenging problems in met-

abolomics, that is to know the unknowns.
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Tyrkkö, E., Pelander, A., & Ojanperä, I. (2012). Prediction of liquid

chromatographic retention for differentiation of structural iso-

mers. Analytica Chimica Acta, 720, 142–148. doi:10.1016/j.aca.

2012.01.024.

Wang, R., Fu, Y., & Lai, L. (1997). A new atom-additive method for

calculating partition coefficients. Journal of Chemical Information

and Computer Sciences, 37(3), 615–621. doi:10.1021/ci960169p.

Wang, R., Gao, Y., & Lai, L. (2000). Calculating partition coefficient

by atom-additive method. Perspectives in Drug Discovery and

Design, 19(1), 47–66. doi:10.1023/a:1008763405023.

Weininger, D. (1988). SMILES, a chemical language and information

system. 1. Introduction to methodology and encoding rules.

Journal of Chemical Information and Computer Sciences, 28(1),

31–36. doi:10.1021/ci00057a005.

Wishart, D. S. (2011). Advances in metabolite identification.

Bioanalysis, 3(15), 1769–1782. doi:10.4155/bio.11.155.

Zhu, Z.-J., Schultz, A. W., Wang, J., Johnson, C. H., Yannone, S. M.,

Patti, G. J., et al. (2013). Liquid chromatography quadrupole

time-of-flight mass spectrometry characterization of metabolites

guided by the METLIN database. Nature Protocols, 8(3),

451–460. doi:10.1038/nprot.2013.004.

706 M. Cao et al.

123

http://dx.doi.org/10.1002/jps.21494
http://dx.doi.org/10.1002/jps.21494
http://dx.doi.org/10.1038/nrm3314
http://www.R-project.org
http://www.R-project.org
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1021/ac051437y
http://dx.doi.org/10.1002/jssc.200900803
http://dx.doi.org/10.1002/jssc.200900803
http://dx.doi.org/10.1007/s11306-007-0082-2
http://dx.doi.org/10.1007/s11306-007-0082-2
http://dx.doi.org/10.1016/j.aca.2012.01.024
http://dx.doi.org/10.1016/j.aca.2012.01.024
http://dx.doi.org/10.1021/ci960169p
http://dx.doi.org/10.1023/a:1008763405023
http://dx.doi.org/10.1021/ci00057a005
http://dx.doi.org/10.4155/bio.11.155
http://dx.doi.org/10.1038/nprot.2013.004

	Predicting retention time in hydrophilic interaction liquid chromatography mass spectrometry and its use for peak annotation in metabolomics
	Abstract
	Introduction
	Materials and methods
	Sampling and analytical methods
	Calculation and data pre-processing of molecular descriptors
	Modelling approaches
	Databases

	Results and discussion
	QSRR model construction and evaluation
	Application of the QSRR model to peak annotation
	A general strategy

	Conclusions
	Acknowledgments
	References




