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Abstract: Background: COVID-19 lung segmentation using Computed Tomography (CT) scans
is important for the diagnosis of lung severity. The process of automated lung segmentation is
challenging due to (a) CT radiation dosage and (b) ground-glass opacities caused by COVID-19.
The lung segmentation methodologies proposed in 2020 were semi- or automated but not reliable,
accurate, and user-friendly. The proposed study presents a COVID Lung Image Analysis System
(COVLIAS 1.0, AtheroPoint™, Roseville, CA, USA) consisting of hybrid deep learning (HDL) models
for lung segmentation. Methodology: The COVLIAS 1.0 consists of three methods based on solo
deep learning (SDL) or hybrid deep learning (HDL). SegNet is proposed in the SDL category while
VGG-SegNet and ResNet-SegNet are designed under the HDL paradigm. The three proposed AI
approaches were benchmarked against the National Institute of Health (NIH)-based conventional
segmentation model using fuzzy-connectedness. A cross-validation protocol with a 40:60 ratio
between training and testing was designed, with 10% validation data. The ground truth (GT) was
manually traced by a radiologist trained personnel. For performance evaluation, nine different
criteria were selected to perform the evaluation of SDL or HDL lung segmentation regions and
lungs long axis against GT. Results: Using the database of 5000 chest CT images (from 72 patients),
COVLIAS 1.0 yielded AUC of ~0.96, ~0.97, ~0.98, and ~0.96 (p-value < 0.001), respectively within
5% range of GT area, for SegNet, VGG-SegNet, ResNet-SegNet, and NIH. The mean Figure of Merit
using four models (left and right lung) was above 94%. On benchmarking against the National
Institute of Health (NIH) segmentation method, the proposed model demonstrated a 58% and 44%
improvement in ResNet-SegNet, 52% and 36% improvement in VGG-SegNet for lung area, and lung
long axis, respectively. The PE statistics performance was in the following order: ResNet-SegNet
> VGG-SegNet > NIH > SegNet. The HDL runs in <1 s on test data per image. Conclusions: The
COVLIAS 1.0 system can be applied in real-time for radiology-based clinical settings.

Keywords: COVID-19; computed tomography; lungs; segmentation; hybrid deep learning

1. Introduction

On 30 January 2020, the International Health Regulations and Emergency Committee
of the World Health Organization (WHO) declared COVID-19 or Coronavirus a “public
health emergency of international concern” or “pandemic”. As per the WHO’s statistics
dated 28 July 2021, more than 196 million people have been infected with Acute Respiratory
Distress Syndrome (ARDS), and nearly 4.2 million have lost their lives due to this virus [1].
This SARS-CoV-2 virus affects the respiratory system, damages lungs, travels through
the entire body, and causes myocardial infarction or coronary artery syndrome [2,3] or
worsening diabetes [4] or causing pulmonary embolism [5]. It was seen that comorbidity
had a severe influence on COVID-19 [6]. As of today, even though vaccination is showing
the signs of pandemic control in some parts of the world, it is still the highest concern
for health professionals. The objective is to flatten the curve and evaluate the COVID-19
lung severity at an early stage prior to worsening symptoms and admission of patients in
ICU [7].



Diagnostics 2021, 11, 1405 3 of 36

Computed Tomography (CT) is often used for assessing COVID-19 severity in the
lung regions and is considered an important component of the computer-aided diagnosis
for lung image analysis [7–9]. For a complete diagnosis of the COVID-19 severity, one
must first identify the region of interest in these CT scans. There are two main challenges
associated with the processing of CT scans: first and foremost, the challenge is the large
volume of patients in diagnostic centers with each having 200 slices to be processed. This
makes the task of processing scanned images tedious and time-consuming [10]. The second
issue with current automated or semi-automated systems is reliability, accuracy, and clinical
effectiveness [11]. One of the major causes for unreliable accuracy and low performance is
the intensity-based segmentation methods which are influenced by local or global statistical
methods. Furthermore, it does not take advantage of the cohort’s knowledge. Thus, there
is a clear need for an automated and accurate joint left and right lung identification system
in CT scans.

Artificial Intelligence (AI) has provided fast pace research and development in nearly
all walks of life especially in healthcare imaging [12]. The reason for such growth is the
ability of AI techniques to mimic the brain using deep neural networks [12–14]. Machine
learning is the most fundamental class of AI and has dominated the medical imaging
industry [15], covering many fields of healthcare such as cancer classification and diagnosis
of several kinds of cancers such as breast [16], liver [17,18], thyroid [19–21], skin [22,23],
ovarian [24], and lung [25]. ML has also been applied to risk stratification for coronary
artery disease [26,27], atherosclerosis imaging [28,29], and stroke [30], diabetes [31,32], and
arrhythmia classification [33].

A subclass of ML is deep learning (DL), or conventionally called solo DL (SDL).
Many researchers have proposed AI-based studies on COVD-19 which involves SDL tech-
niques. [34,35]. It offers substantial benefits compared to ML-based solutions [11,36]. DL
provides a complete automated feature extraction and classification simultaneously using
the so-called dense layers. Despite the merits of DL, it poses challenges and uncertain-
ties such as optimization of the learning rate, deciding the number of epochs, avoiding
overfitting, handling large image size configurations, and operating in a multiresolution
framework. One way to overcome challenges in SDL is by fusing two kinds of DL systems,
called hybrid DL (HDL). It offers the advantages such as (i) extraction and refinement
of a large number of features, (ii) application of diversity in classifiers, and (iii) ability
to apply transfer learning for weights reusability. The proposed study uses the spirit of
HDL to design COVID Lung Image Analysis System (COVLIAS) 1.0, which computes the
segmentation of the left and right lungs jointly. The proposed framework uses two kinds
of HDL models which combine Visual Geometry Group (VGG), Segmentation Network
(SegNet), and Residual Network (ResNet) architectures. The model combines the strengths
of both VGG and SegNet models and offers a new VGG-SegNet framework.

Similarly, Resnet-Segnet includes the power of both ResNet and SegNet. These models
use 40:60 training to testing ratio protocol, then benchmarking our novel design against
the NIH-based Fuzzy-Connectedness (FC) lung segmentation method [37]. Finally, we
compute nine different ways for conducting the performance evaluation of the lung region
and boundary estimation system.

The layout of this study is as follows: Section 2 presents the methodology with
the architecture of the COVLIAS 1.0 (Figure 1) using HDL and SDL. The experimental
protocol is shown in Section 3, while results and comprehensive performance evaluation
are presented in Section 4. The discussions and benchmarking are presented in Section 5.
Finally, the paper concludes in Section 6.
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Figure 1. COVLIAS 1.0: Global system for lung segmentation and evaluation. AI: Artificial Intelligence; CV: Cross-
Validation; GT: Ground Truth; LAE: Lung Area Error; LLAE: Lung Long Axis Error; CC: Correlation coefficient; ROC:
Receiver operating characteristic; BA: Bland–Altman.

2. Methodology
2.1. Patient Demographics, Image Acquisition, and Data Preparation
2.1.1. Demographics

The dataset consists of 72 Italian patients, where 46 patients were male and 26 were
female. The mean height and weight were 172.72 cm and 79 kg, respectively. A total of
60 patients were tested for PCR, while 12 could not be tested for PCR.

2.1.2. Image Acquisition

All chest computed tomography (CT) scans were performed during a single full
inspiratory breath-hold in a supine position on a 128-slice multidetector-row CT scanner
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(Philips Ingenuity Core, Philips Healthcare, the Netherlands). No intravenous or oral
contrast media were administered. The CT examinations were performed at 120 kV,
226 mAs (using automatic tube current modulation—Z-DOM, Philips), with 1.08 spiral
pitch factor, 0.5-s gantry rotation time, and 64 * 0.625 detector configurations. One-mm
thick images were reconstructed with soft tissue kernel using 512× 512 matrix (mediastinal
window) and lung kernel using 768× 768 matrix (lung window). CT images were reviewed
on the Picture Archiving and Communication System (PACS) workstation equipped with
two 35 × 43 cm monitors produced by Eizo, with a 2048 × 1536 matrix. Figure 2 shows the
raw sample CT scans of COVID-19 patients with varying lung sizes and variable intensity
patterns, posing a challenge.

Figure 2. Raw lung COVID-19 CT images were taken from different patients in the database.
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2.1.3. Data Preparation

The CT data of 72 COVID-positive patients’ data are used in the proposed study.
Each patient consisted of 200 slices, out of which 65–70 slices consisting of visible lung
region were selected by the radiologist [LS]. A total of 5000 images were used in the
proposed study. A total of 2000 images were used to train the AI-based segmentation
models, whereas 3000 images were used to test and validate the models.

To prepare the data for segmentation, a binary mask was generated manually by trac-
ing in the selected slices under the guidance of a trained radiologist [LS] using ImgTracer™
(Global Biomedical Technologies, Inc., Roseville, CA, USA) [38–40]. Figure 3 shows the
raw lung COVID-19 CT scans with ground truth boundary (white) overlay using manual
tracing. Figure 4 shows the white binary mask of the lung region computed using manual
ImgTracer™.

Figure 3. Raw lung images with ground truth boundary (white) overlay on grayscale CT scans.
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Figure 4. White binary mask of lung region used for AI-based model training.

2.2. Architecture

The COVLIAS 1.0 system incorporates three models: deep learning-based (SDL) and
two hybrid-based (HDL). We benchmark these models against the conventional NIH-
based model using fuzzy connectedness. In all, the proposed study incorporates four
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kinds of models such as (a) SegNet, (b) VGG-SegNet, (c) ResNet-SegNet, and (d) NIH-
conventional model.

2.2.1. SegNet

SegNet is a semantic segmentation model shown in Figure 5 and has been imple-
mented by Badrinarayanan et al. before [41], while we adapted SegNet for comparison
with HDL. SegNet is a trainable segmentation architecture that consists of (i) an encoder
network (the left half of Figure 5), (ii) a corresponding decoder network followed by (the
right half of Figure 5) (iii) a pixel-wise classification layer (the last block of Figure 5).
The architecture of the encoder network is topologically identical to the 13 convolutional
layers. It uses a technique to down-sample encoder output, which involves storing the
max-pooling (filter size of 2 × 2) indices. The max-pooling layer is placed at the end of
each block on the encoder side, which increases the depth of the following layer by two
times (64–128–256–512).

Figure 5. SegNet architecture.

Similarly, in the second half of the architecture, the up-sampling happens where the
depth of the layer decreases by two (512–256–128–64). The up-sampling process involves
recalling the max-pooling indices at the corresponding encoder layer. Finally, in the end,
there is a K-class softmax classifier used to predict the class for each pixel. This gives
reasonably good performance and is space-efficient.

2.2.2. VGG-SegNet

The VGG architecture consists of blocks, where each block is composed of 2D con-
volution (Conv) and max-pooling layers (Figure 6). VGGNet was born out of the need to
reduce the # of parameters in the convolution layers and improve training time [42]. This
architecture consists of 16 convolution layers compared to 13 in SegNet. It helps the model
to learn high-level features to improve the results. The blocks used in the VGG-SegNet
architecture consist of (i) encoder, (ii) decoder part, and followed by (iii) a pixel-wise
softmax classifier.

The distribution of the blocks in the encoder (the left half of Figure 6) is 2 × (2 Conv +
max-pool) + 3 × (4 Conv + max-pool), and the decoder (the right half of Figure 6) is the
reverse of the encoder part with up-sampling, thereby decreasing the depth of the layers.
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Figure 6. VGG-SegNet architecture.

2.2.3. ResNet-SegNet

Residual Network (ResNet) [43] came into existence by overcoming the VGG architec-
ture problem of the vanishing gradient. When the network goes through backpropagation,
the gradient keeps flowing backward to the initial layers. This value keeps getting mul-
tiplied by each gradient. As a result, the gradient becomes smaller and smaller, making
the updates to the initial layers very small, also known as the vanishing gradient problem.
Consequently, this results in an increase of training time. ResNet is a superior architecture
to VGG because it has skip connections, which act as gradient superhighways or bypasses,
allowing the gradient to flow unhindered. This solves the problem of diminishing gradient.
With the help of the identity function (shown in the bottom right of Figure 7), the value of
backpropagated gradient values does not decrease because the local gradient value is one.

Figure 7. ResNet-SegNet architecture.

2.2.4. NIH Segmentation Model

Figure 8 shows the architecture of the fuzzy-connected system for segmentation of
the lung region. This system was not built in the study but simply adapted from the NIH
website [37] for benchmarking. There are three steps in the process: (i) seed point selection,
(ii) fuzzy-connected (FC) segmentation and binary mask cleaning, and (iii) grayscale
segmentation. The user can select the seed point in two lines corresponding to the left and
right lungs. FC segmentation is executed, and the results are displayed in the form of a
binary mask. Finally, the lung is segmented with the given binary mask and the original
CT COVID-19 grayscale scan leading to segmented lungs.
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Figure 8. User interactive fuzzy-connectedness Center for Infectious Disease Imaging (CIDI) lung segmentation [37].

2.2.5. Loss Functions for SDL and HDL Models

The proposed system uses CE-loss in SDL/HDL models. The CE-loss function, labeled
as LCE for all the models, can be mathematically given by Equation (1):

LCE= −[(y i× log ai) + (1− y i)× log(1− a i)] (1)

where yi is the input GT label 1, (1 − yi) is GT label 0, ai represents the softmax classifier
probability, and x represents the product of the two terms. All three of the AI architectures
shown in Figures 5–7 have been trained using the CE-loss function.

2.3. Sample Size Calculation

It is vital to understand the sample size needed for achieving the desired performance.
Generally, sample size requires calculating the number of studies adapted in our proposed
system for reaching the desired accuracy and error statistics. This is crucial because,
when the sample size is too large with respect to the desired sample size, it may incur
more computational and economic burdens both in terms of time and cost. We follow
paradigms like our previous paradigms for sample size calculation [27,44–49]. To represent
the mathematical formula for the sample size calculation, we used a z-score from the
standard z-table as shown by Equation (2):

Np = (z)2 × p̂(1− p̂)

(MoE)2 (2)

In the proposed study, we use a confidence level of 95%, a margin of error (MoE)
of 5%, and a data proportion (p̂) of 0.5. Normal distribution was assumed for the data
sample, and a confidence interval of 95% provided a z-score value of 1.96 (derived from
the standard z-table). MoE of 5% for SDL and 3% for HDL was used to ensure that the
population remains in the tolerance band. The desired sample size (n) for a large, true
population size was computed using Equation (2). Using the confidence level of 95%,
the resultant sample size resulted in 1351 samples while using MoE of 3% for HDL and
588 samples for SDL with 5% MoE. Thus, the recruited sample size for HDL and SDL was
~270% and ~750% higher than the desired sample size.

3. Experimental Protocol
3.1. Cross-Validation

A total of 5000 COVID-19 CT slices are used in the proposed system. A well-known
data partitioning method, K5-r46, was used in our system, in which the database was
partitioned into five parts (K5). Then, a 4:6 ratio was used for training to test, these 40% of
(2000 images) data are used for training, and 60% (3000 images) of data are used for testing.
An internal validation system was also used in our system with training data. For each test
patient, the binary mask was generated, and the lung area was estimated.

3.2. Lung Quantification

The lung area is measured by counting the number of white pixels in the lung region
and converted to mm2 dimensions using the resolution factor of 0.05 mm to a pixel. If
N represents the total number of the image in the database, Aai(m, n) represents lung
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area for in the image “n” using the AI model “m”, Aai(m) represents the mean lung area
corresponding to the AI model “m”, Agt represents the corresponding mean area of the GT
binary lung mask, then mathematically Aai(m) and Agt can be computed and are shown
in Equation (3):

Aai(m) = ∑N
n=1Aai(m,n)

N

Agt =
∑N

n=1Agt(n)
N

 (3)

3.3. Accuracy Computation

The accuracy of the AI system is measured by comparing the predicted output and
the ground truth pixel values. These values were interpreted as binary (0 or 1) numbers as
the output lung mask was only black and white, which was then summed up and divided
by the total number of pixels. Assuming TP represents true positive, TN represents true
negative, FN represents false negative, and FP represents false positive. The accuracy of
the AI system can be given as shown in Equation (4) [50]:

ACC (%) =

(
TP + TN

TP + FN + TN + FP

)
× 100 (4)

4. Results and Performance Evaluation
4.1. Results

COVLIAS 1.0 was designed to run 40% training and 60% unseen data sets from
5000 scans. The output of the system reported the binary mask for the left and right lung
jointly. These masks were then used for computing the segmented region, given the CT
grayscale COVID-19 scans. Figure 9 shows the segmented mask (column 2), segmented
lung region (column 3), and overlay image of segmented lung mask of green color over
the grayscale image (column 4). Figure 10 shows the accuracy (Equation (4)) and the loss
functions (Equation (1)) using the three AI models such as SegNet, VGG-SegNet, and
ResNet-SegNet. The accuracy and loss values were then plotted as a stacked line chart to
show the increase in the accuracy and decrease in the loss of the training model.

4.2. Performance Evaluation

As part of the performance evaluation, three metrics and nine evaluation criteria were
considered. First are the visualization comparisons, second is the lung area metrics, and
third are the long axis metrics. Section 4.2.1 presents the visualization of boundary error
and lung area error (LAE). It has two sets of visualization components (i) visualization of
the model boundary against the ground truth boundary with different boundary colors;
and (ii) visualization of the superimposition of the model lung region against the GT lung
region with different colors; Section 4.2.2 presents the performance evaluation based on
the LAE and consists of (i) cumulative plot of the LAE; (ii) Bland–Altman plot for the LAE;
(iii) JI and DS for the lung region and (iv) ROC curves for AI-based model performance.
Section 4.2.3 presents the performance evaluation based on the lung long axis error (LLAE)
and consists of the following components: (i) cumulative plot of the LLAE; (ii) correlation
coefficient of the LLAE; and (iii) Bland–Altman plot for the LLAE.

The lung masks were then converted into lung boundary images using a region-to-
boundary convertor. The lung boundary was superimposed over the original COVID-19
lung CT grayscale scans to visualize the lung, shown in Figure 11. Note that the top three
AI models (1 SDL and 2 HDL) performed well (row-1, row-2, and row-3), as can be seen
visually, unlike the NIH conventional model (row-4).
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Figure 9. Results from the four AI models with grayscale CT slice. Row 1 to Row 4 is four models: SegNet, VGG-SegNet,
ResNet-SegNet, and NIH.
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Figure 10. Accuracy and loss from the three AI models SegNet, VGG-SegNet, and ResNet-SegNet.



Diagnostics 2021, 11, 1405 14 of 36

Figure 11. Results from the four AI models and NIH with a grayscale CT slice. Row 1 to Row 4 is four models: SegNet,
VGG-SegNet, ResNet-SegNet, and NIH.

4.2.1. Visualization of Lung Boundary and Regional Lung Error

Figure 12 shows the overlay of the AI-model boundary (green) and GT-boundary (red)
with a grayscale COVID-19 CT slice in the background. Four models are shown in the
rows in the following order: SegNet, VGG-SegNet, ResNet-SegNet, and NIH. As we go
down the rows, the boundaries are bumper-to-bumper and show the nearly negligible
difference between three AI models and GT, while the pronounced error for the NIH model.
The white arrows indicate the region of mismatch between the NIH model and ground
truth. The top three rows (SegNet, VGG-SegNet, and ResNet-SegNet) show more closeness
between the AI-model borders (green) and the ground truth borders (red).
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Figure 12. Boundary overlay of the segmented mask from the AI-model (green) vs. GT-mask in the background (red).
White arrow shows NIH-segmented boundary not at a right position.

Figure 13 shows the lung region using AI-mask from the AI-model (green) vs. GT-
mask (red). Note that the slight difference is visible between the two-colored masks for the
first three AI models, while a more significant difference is seen between the NIH model
and GT, typically at the basal region (shown by the white arrows). For better visualization
of the differences in area region, we have taken two sample slices in Figure 14, where the
combination (c) shows the zoomed version of (a), and combination (d) shows the zoomed
version of (b). Figure 15 shows the long axis of the AI-model (green) and GT (red) with a
grayscale COVID-19 CT slice in the background. Four models are shown in the rows in the
following order: SegNet, VGG-SegNet, ResNet-SegNet, and NIH.
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Figure 13. Overlay of the segmented mask from the AI-model (green) vs. GT-mask in the background (red). White arrow
shows NIH-segmented boundary not at a right position.
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Figure 14. Visualization of the zoomed region-of-interest showing the difference between AI area
(green) and GT area (red). (a) central lung region, (b) basal region of the lung, (c) zoom of the central
region, and (d) zoom of the basal region. Arrow shows the difference between GT and AI area.
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Figure 15. Display of the AI-long axis (green) and GT-long axis (red) showing the reach of the top apical zone and bottom
basal zone of the left and right lungs. Rows are the four models, and columns are sample four patients COVID-19 CT scans.
White is the GT delineated borders of the lungs by the tracer using ImgTracer(TM).

4.2.2. Performance Metrics for the Lung Area Error
Cumulative Plot for Lung Area Error

Cumulative frequency analysis is the analysis of the frequency of occurrence of the
LAE against the reference value. Figure 16 below shows the cumulative distribution of left
and right LAE over 3000 images corresponding to the test dataset (60% of 5000 scans). A
cumulative frequency threshold of 80% was chosen to compare the four different models:
SegNet, VGG-SegNet, ResNet-SegNet, and NIH. Note that, even though the AI models
perform exceptionally well, the best of all was the HDL model ResNet-SegNet with 80%
LAE for left, right, and combined left/right as 8.3 mm2, 5.8 mm2, and 7.5 mm2, respectively.
Furthermore, note that the NIH showed the lowest performance at an 80% threshold
(19.83 mm2, 13.12 mm2, and 19.22 mm2, corresponding to the left lung, right lung, and
mean of the left lung and right lung). It is also interesting to note that the right LAE was
lower than the left LAE for all four models.
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Lung Area Error

Figure 17 shows the increasing LAE between the AI-models and GT for the left, right,
and mean areas was in the order of ResNet-SegNet < VGG-SegNet < SegNet < NIH. This
is consistent with Figure 16, where the LAE increases in the order of ResNet-SegNet <
VGG-SegNet < SegNet < NIH, demonstrating that AI models (SDL and HDL models) are
superior to NIH conventional models.
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Figure 17. Bar Chart showing the LAE for the four models corresponding to left (blue), right (red), and mean (green) areas.
LAE was in the following order ResNet-SegNet < VGG-SegNet < SegNet < NIH.

Correlation Plots for Lung Area

Figure 18 (4 × 3 matrix) shows the coefficient of correlation (CC) plot for AI-model
lung area vs. GT area using the four models (rows) corresponding to left, right, and mean
(columns). The CC values of all the models ranged from 0.91 to 0.98 (p-value < 0.0001).
The 3D bar plot is shown in Figure 19 for the left, right, and mean lungs. For the left lung,
the decreasing order of the CC performance was ResNet-SegNet, VGG-SegNet, SegNet,
and NIH. Thus, HDL models were better than the SDL model. This order remained the
same for the left lung, right lung, and mean lung area. These results were consistent with
Figures 16–18.
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Figure 18. Correlation plot for lung area for four models corresponding to left, right, and mean.
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Figure 19. Plot for correlation coefficient between the AI model and GT area for the four types of model: ResNet-SegNet,
VGG-SegNet, SegNet, and NIH for left lung, right lung, mean of the two lungs.

Jaccard Index and Dice Similarity for Lung Area

Figure 20 below shows the bar chart for the four models using the Jaccard index
(JI) (blue) and Dice similarity (DS) (red). The performance of the models (best to worst)
had the following order ResNet-SegNet > VGG-SegNet > SegNet > NIH, consistent with
Figures 16–19. The cumulative frequency for JI and DS for the four models is shown in
Figure 21 (left column for JI and right column for DS). Figure 21 shows that 80% of the CT
scans had a JI of 0.94, 0.96, 0.97, and 0.93, respectively, for the four models. The DS for 80%
of the CT scans had DS of 0.97, 0.97, 0.98, and 0.96, respectively for the four models SegNet,
VGG-SegNet, ResNet-SegNet, and NIH conventional models.

Figure 20. Bar Chart for JI and DS for four (two-hybrid, one deep, and NIH) models.
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Bland–Altman Plot for Lung Area

A Bland–Altman plot is used to show the concurrency between two methods using
the same variable. We follow the protocol for Bland–Altman computation based on our
previous paradigms [40,51]. Figure 22 below shows the Bland–Altman plot by comput-
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ing (i) mean and (ii) difference between AI model area and GT area corresponding to
3000 COVID-19 test CT scans. The strongest concentration can be seen for the HDL models
over the SDL model and NIH models. This is consistent with previous plots.

Figure 22. BA plot for LAE for the four models (rows) corresponding to left, right, and mean (columns).

ROC Plots for Lung Area

Figure 23 shows ROC plots for four models (rows) corresponding to left, right, and
mean (columns). The corresponding AUC values, along with their p-values, are shown
as well. All the AUCs were in the range of 0.96 to 0.99 (p-value < 0.0001). The highest
performance was for ResNet-SegNet for the left, right, and mean lungs and given as 0.994,
0.974, and 0.987, respectively. The performance of the models for best to worst had the
following order: ResNet-SegNet > VGG-SegNet > SegNet > NIH.
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Figure 23. ROC plot for four models corresponding to left, right, and mean.

4.2.3. Performance Evaluation Using Lung Long Axis Error
Cumulative Frequency Plot for Lung Long Axis Error

Figure 24 shows the cumulative distribution of left and right LLAE over 3000 images
from the test dataset. The cumulative frequency threshold of 80% was chosen to show the
comparison amongst the three models. The corresponding bar charts for the LLAE using
four models are shown in Figure 25. Decreasing error is shown from right to left, showing
the performance of ResNet-SegNet, VGG-SegNet, SegNet, and NIH, which is consistent
with area error in Section 4.2.2.
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Figure 24. Cumulative plot for LLAE along with an 80% threshold for cumulative frequency for LLAE.

Figure 25. Bar chart for LLAE using four models.

Correlation Plot for Lung Long Axis Error

Figure 26 shows the correlation plots between lung long axes of the model vs. GT for
the left, right, and mean. The CC varied from 0.90 to 0.98 (p < 0.0001). The order of the
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performance was from ResNet-SegNet, VGG-SegNet, SegNet, and NIH. The bar chart plot
is shown in Figure 27, and the performance follows the pattern nearly the same order as
ResNet-SegNet > VGG-SegNet > SegNet > NIH.

Figure 26. Plot for correlation coefficient between the AI-based LLA vs. GT.
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Bland–Altman Plots for Lung Long Axis Error

Figure 28 shows the Bland–Altman (BA) plot for the lung long axis for four models
corresponding to left, right, and mean. The order of the performance was ResNet-SegNet,
VGG-SegNet, SegNet, and NIH. This can be seen from the spread of the deviations.

Figure 28. BA plot for LLA for four models corresponding to left, right, and mean.

The Figure of Merit Using Lung Area

The figure of merit (FoM) is defined in terms of the central tendency of the error. Let
Aai(m, n) and Agt(n) represent the lung area using AI model ‘m’ and GT, respectively, for
the image ‘n’. Considering N as the total number of CT scans, the corresponding mean AI
for model m and GT can be represented as Aai(m) and Agt, as defined in Equation (3), and
the FoM can be expressed in Equation (5).
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Table 1 shows the values for FoM for the models against the GT. The order of perfor-
mance for the models is SegNet, VGG-SegNet, SegNet, and NIH:

FoM(m) = 100−
[(∣∣Aai(m)− Agt

∣∣
Agt

)
∗ 100

]
, (5)

where Aai(m) = ∑N
n=1Aai(m,n)

N & Agt =
∑N

n=1Agt(n)
N .

Table 1. FoM for the segmentation modes for lung area and lung long axis.

Lung Area Lung Long Axis
Left Right Mean Left Right Mean

SegNet 94.28 97.6 95.94 97.03 98.53 97.78
VGG-SegNet 99.09 99.56 99.32 99.7 99.61 99.65

ResNet-SegNet 99.03 99.98 99.55 99.72 99.62 99.67
NIH 94.98 98.69 96.83 97.76 96.09 96.92

Percentage Improvement of AI Models against the NIH Model Using the Lung Area
and Lung Long Axis.

This performance measure shows the improvement of the AI models against the NIH,
the so-called benchmarking solution (Table 2).

Table 2. Improvement of three AI models against the NIH model for lung area and lung long axis.

Lung Area Error Lung Long Axis Error
Left Lung Right Lung Mean Left Lung Right Lung Mean

ResNet-SegNet 57% 60% 58% 42% 44% 43%
VGG-SegNet 51% 52% 52% 31% 37% 34%

SegNet 22% 19% 21% 5% 13% 4%

5. Discussion

This study presented a COVLIAS 1.0 system that consisted of two hybrid deep learning
and one solo deep learning artificial intelligence model for lung segmentation in COVID-19
CT lung scans. The system was then compared against the conventional NIH-released
model. Seventy-two COVID-19 patients were considered for the study, which consisted of
5000 CT scans. Cross-validation protocol was implemented using 40% training and 60%
testing data sets. The performance of the system was computed using three main kinds
of metrics. This consisted of two sets of visualization components: (i) visualization of the
model boundary against the ground truth boundary with different boundary colors; and
(ii) visualization of the superimposition of the segmented model lung region against the GT
lung region with different colors; the second set of performance evaluation was based on
the LAE and consisted of (i) cumulative plot of the LAE; (ii) Bland–Altman plot for the LAE;
(iii) JI and DS for the lung region; and (iv) ROC curves for AI-based model performance.
The third set of performance evaluation was based on the LLAE and consisted of the
following components: (I) cumulative plot of the LLAE; (ii) correlation coefficient of the
lung long axis; (iii) correlation coefficient of the lung long axis error; and (iv) Bland–Altman
plot for the LLAE. In all the metrics, HDL performed better than SDL and both were
better than the conventional NIH model, retaining the order of ResNet-SegNet > VGG-
SegNet > SegNet > NIH. Note that the COVILAS 1.0 system (AtheroPoint™, Roseville,
CA, USA) was designed using Python language unlike other tools typically designed in
MATLAB. The COVLIAS 1.0 used solo deep learning and hybrid deep learning solutions
for lung segmentation for CT lung COVID-19 scans. The Python system was developed in a
Windows 10 environment, while the graphical user interface was designed using JavaScript.
It adapts multitasking and multithreaded architecture for COVLIAS 1.0.
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5.1. Benchmarking

Several studies have been published with deep learning systems based on chest CT
imaging to distinguish COVID-19 cases from non-COVID-19 cases (which may include
normal and abnormal cases) and segment the COVID-19 region from the lungs [52–55].
However, most of them do not include lung segmentation, boundary estimation, or lung
region mask overlays compared to GT. Table 3 shows the benchmarking table showing
five studies: Priya et al. (2021) [56], Saood et al. (2021) [57], Paluru et al. (2020) [58], and
Cai et al. (2020) [59], which focused on lung segmentation. The table also compares against
the proposed study by Suri et al. (2021). Cai et al. [59] have used a deep learning-based
UNet model to segment the lung and show the boundary of the segmented lung with a
DSC of 0.98 and Jaccard of 0.96. Xiao et al. [60] have demonstrated CNN architecture for
segmentation of lung and showed a DSC of 0.98. Our study used a hybrid deep learning AI
solution for computing lung region with a study database of 5000 CT scans demonstrating
DS of 0.97, 0.97, 0.98, and 0.96. The JI for the four models were 0.94, 0.96, 0.97, and 0.93,
respectively. The AUC for the four models were 0.96, 0.96, 0.97, and 0.98, respectively, the
highest of the previous methods. The accuracies of the proposed AI models were 98%, 98%,
and 99%, respectively. Overall, the proposed study offers a first-time hybrid solution in
conjunction with solo deep learning and benchmarking against the NIH-based approach,
proving our hypothesis that hybrid deep learning artificial intelligence models are superior
to solo deep learning models for COVID-19 lung segmentation.

5.2. A Special Note on the HDL Model

Our results show that HDL is superior to SDL, and both were superior to the con-
ventional NIH model. HDL takes advantage of combining the two SDL models. Several
studies were published in the image classification area that showed HDL was superior to
SDL. EL-Kenawy et al. [61] used Stochastic Fractal Search (SFS) combined with the Whale
Optimization Algorithm (WOA) as part of the HDL, and the authors showed superior
results compared to SDL models such as AlexNet, VGGNet16, VGGNet19, GoogleNet,
and ResNet50. Vijayalakshmi et al. [62] implemented an HDL model where the authors
combined SVM with VGG16 and showed superior results compared to SDL such as VGG16
or VGG19.

5.3. A Note on Comparison between the Proposed AI and NIH Conventional Models

The fundamental difference between the proposed AI models and the NIH model is
the role of feature extraction during the lung segmentation process. The feature extraction
step is the most vital component of the entire system. This component is accomplished
automatically in the AI model, unlike the semi-automatically implemented in the NIH
model. This automaticity provides considering time-saving in AI models, unlike in the
conventional NIH model. Second, the NIH model has several sub-systems which are
user-controlled, such as seed point selection, and image format conversion from High
dynamic range (HDR) to Neuroimaging Informatics Technology Initiative (NII/NIfTI) to
Portable Network Graphics (PNG) format. It is very tedious and time-consuming when
you have to execute this on 5000 CT slices. This is where the AI system comes in handy, is
time saving, and is efficient. Our analysis showed that the AI model typically takes one
second on any test CT slice, unlike in the NIH model, which took 10 min for a single slice.
Note that the NIH model required that the user inputs the entire CT volume of the patient
for segmenting the lungs in the CT scans. The processing time for the volume of interest
consisting of typically 60 selected slices took ~20 min based on the hardware configuration.
This included uploading of volumes, semi-automated segmentation, format conversion,
and saving of all the segmented results.
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Table 3. Benchmarking table.

Author
(Year)

# of
Patients Demo. # of

Images IS2 # of
Tracers

AI
Model

SDL vs.
HDL Dim. Training

Speed Heatmap VS AE BE DS JI AUC ACC
(%)

Priya et al.
(2021) [56] - No 78 - - Squeeze

Net HDL 2D - Yes No - Yes - - - -

Saood et al.
(2021) [57] - No 100 2562 - UNet,

SegNet SDL 2D - - No - - 0.73,
0.74 - 0.94,

0.95
91,
95

Paluru et al.
(2020) [58] 69 No 4339 5122 - Anam-net SDL 2D 27 min - Yes - - 0.75 - 0.99 99.1

Cai et al.
(2020) [59] 99 Yes 6301 2 UNet SDL 2D - yes No - - 0.98 0.96 - -

Suri et al.
(2021) 72 Yes 5000 7682 1

NIH,
SegNet,
VGG-

SegNet,
ResNet-
SegNet

SDL
and HDL 2D 18 min No No Yes Yes

0.96,
0.97,
0.97,
0.98

0.93,
0.94,
0.96,
0.97

0.96,
0.96,
0.97,
0.98

NA,
98,
98,
99

Demo.: Demographics, VS: Variability studies; IS2: Image size (2 represents dimension along x-axis & y-axis); AE: Area error; Dim.: Dimensionality of the image (2D vs. 3D); BE: Boundary error; DS: Dice
similarity; JI: Jaccard index; AUC: Area under the curve; SDL: Solo deep learning; HDL: Hybrid deep learning; ACC: Accuracy.
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5.4. Strength, Weakness, and Extension

The study presented two HDL models, one SDL model, and one conventional NIH
model for lung segmentation in COVID-19 CT lungs for a cohort of 5000 images. The
results of the study showed consistency where HDL models were superior to SDL models.
The online system took less than 1 s.

Even though the COVLIAS 1.0 was the first of its kind where HDL was designed and
developed, more validation is needed for conduction involving multicenter studies [39,63].
Furthermore, cyclic cross-validation needs to be conducted for further comparisons [64,65].
The system can be extended to estimate COVID-19 severity in the lung region while keeping
the services cost-effective [66]. Variability analysis can also be conducted where multiple
tracers can be involved [40]. The COVLIAS 1.0 is a pilot study with encouraging results.
We intend to pursue more CV protocols with large data size and more models in the big
data framework [67] in the future.

Comorbidity is an essential factor that has been linked to COVID-19 right from the
beginning. Recently, a study was conducted that showed the relation of the effect of the
comorbidity on AI model design [6]. In our study, the patients had no prior issues before
getting admitted to Novara hospital, Italy during a pandemic. In some cases, however, it
is possible that the patients had concomitant or incidental findings such as scars or small
nodules. The scope of this study did not incorporate such incidental findings enough to
incorporate them into the AI model. This could potentially be a future possibility of more
sophisticated data collection and modeling of AI. Furthermore, the COVLIAS 1.0 system
can be extended to other kinds of pneumonia, interstitial lung diseases, and cancer [25,68].
Lastly, the AI model can be compared with conventional models as previously attempted
applications [69].

6. Conclusions

The study presented four kinds of lung segmentation methods for COVID-19 CT lung
scans under the COVLIAS 1.0 (AtheroPoint™, Roseville, CA, USA). It consisted of three
AI-based models: two-hybrid deep learning (HDL) models and one SDL. These three AI
models were benchmarked against the NIH-based conventional model. The COVILAS 1.0
used a database of 5000 COVID-19 CT images for designing the cross-validation protocol
that consisted of 4:6 ratios for training to testing with validation data.

Comprehensive performance matrices were designed such as (i) visualization of
the model boundary against the ground truth boundary with different boundary colors;
(ii) visualization of the superimposition of the model lung region against the GT lung
region with different colors; (iii) performance evaluation based on the LAE and consisted
of (a) cumulative plot of the lung area error; (b) Bland–Altman plot for the lung area
error; (c) Jaccard index and dice similarity for the lung region; and (d) ROC curves for
AI-based model performance. (iv) performance evaluation based on the lung long axis
error and consists of the following components (a) cumulative plot of the lung long axis
error; (b) correlation coefficient of the lung long axis error; and (c) Bland–Altman plot for
the lung long axis error.

We further conclude that the AI-based models were better than the conventional NIH
model, and HDL was superior to SDL. The order of performance for all metrics were
ResNet-SegNet > VGG-SegNet > SegNet > NIH. The COVLIAS 1.0 system is currently
under evaluation by radiology departments at friendly sites.
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Acronym Table

SN Symbol Description of the Symbols
1 ACC Accuracy
2 AE Area Error
3 AI Artificial Intelligence
4 ARDS Acute Respiratory Distress Syndrome
5 AUC Area Under the Curve
6 BA Bland–Altman
7 BE Boundary Error
8 CC Correlation coefficient
9 CE Cross Entropy
10 COVID Coronavirus disease
11 COVLIAS COVID Lung Image Analysis System
12 CT Computed Tomography
13 DL Deep Learning
14 DS Dice Similarity
15 FoM Figure of merit
16 GT Ground Truth
17 HDL Hybrid Deep Learning
18 IS Image Size
19 JI Jaccard Index
20 LAE Lung Area Error
21 LLAE Lung Long Axis Error
22 NIH National Institute of Health
23 PC Pixel Counting
24 RF Resolution Factor
25 ROC Receiver operating characteristic
26 SDL Solo Deep Learning
27 VGG Visual Geometric Group
28 VS Variability studies
29 WHO World Health Organization
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Symbol Table

SN Symbol Description of the Symbols
1 LCE Cross Entropy-loss
2 LDSC Dice Similarity Coefficient-loss
3 m Model number used for segmentation in the total number of models M
4 n Image scan number a total number of image N.
5 Aai(m) Mean estimated lung area for all images using AI model ‘m’
6 Aai(m, n) Estimated Lung Area using AI model ‘m’ and image ‘n’
7 Agt(n) GT lung area for image ‘n’
8 Agt Mean ground truth area for all images N in the database
9 FoM(m) Figure-of-Merit for segmentation model ‘m’
10 JI Mean Jaccard Index for a specific segmentation model
11 DSC Dice Similarity Coefficient for a specific segmentation model
12 Np Sample size required computed using power analysis
13 MoE Margin-of-Error
14 TP, TN True Positive and True Negative
15 FP, FN False Positive and False Negative
16 yi GT label
17 ai SoftMax classifier probability
18 Yp Ground truth image
19 Ŷp Estimated image
20 P Total number of pixels in an image in x,y-direction
21 z Z-score from standard z-table
22 K5-r46 Cross-validation protocol with 40% training and 60% testing
Deep Learning Segmentation Architectures

23 SegNet SDL model for lung segmentation with reduced learning parameters

24 VGG-SegNet HDL model designed by fusion of VGG-19 and SegNet architecture

25 ResNet-SegNet HDL model designed by fusion of ResNet-50 and SegNet architecture

Conventional Model

26 NIH National Institute of Health segmentation model
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