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Abstract: Flotation collector O-isopropyl N-ethylthionocarbamate (IPETC) is widely used for separa-
tion of sulfide ores. Its removal from water by several oxidation processes was studied. Photocatalytic
oxidation with air in the presence of iron salts, utilizing solar irradiation or artificial UV-A light is
very efficient. Oxidation leads through the formation of O-isopropyl N-ethylcarbamate and sev-
eral other reaction intermediates to total decomposition of organic compound in the final stage in
1 day. Similar results were obtained with a Fenton type oxidation with hydrogen peroxide and
iron salts. Treatment with sodium hypochlorite yields mainly O-isopropyl N-ethylcarbamate. The
formation of this compound in wastewaters can be of concern, since simple alkyl carbamates are
cancer suspect agents.

Keywords: O-isopropyl-N-ethylthionocarbamate; O-isopropyl N-ethylcarbamate; iron salts; photo-
catalysis; hypochlorite; Fenton reaction

1. Introduction

O-isopropyl N-ethylthionocarbamate (IPETC) is widely used as a flotation collector
for sulfide ores, particularly copper and silver ones [1]. Leakage of this compound into
wastewater after ore separation is unavoidable. The water is frequently discharged directly
into the environment without any treatment [2]. It is known that several of residual sulfide
mineral flotation collectors in flotation wastewaters even in low concentrations are toxic
to water life. Serious environmental problems associated with the flotation reagents in
water from mineral processing plants have been documented [3,4]. Although scientific
papers dealing with the toxicity of IPETC are not available, it is considered as potential
carcinogen and harmful to aquatic life with long lasting effects [5]. Related compounds
where sulfur atom is replaced by oxygen, carbamates, are also known as potentially
bioactive compounds. Although weakly toxic to mammals, [6] carbamates are highly toxic
to some arthropods and O-aryl N-alkylcarbamates are used as insecticides. Several low
molecular weight carbamates (ethyl urethane, methyl carbamate etc.) are considered as
cancer suspect agents [7,8].

IPETC is a kind of nin-ionising collector of oily liquid, slightly soluble in water with
different forms in different pH environments [2]. There is virtually no information in the
literature concerning the behavior and stability of IPETC in the environment, as well as
its toxicity properties. Research was conducted on the adsorption of IPECT on mineral
surface [9–11], but the interaction mechanism in not well understood. Some research was
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also conducted on the microbiological degradation of IPETC under anaerobic conditions
using anaerobic digester sludge [12,13]. It was found that the compound is degraded by
mixed cultures in the presence of nitrate, Fe3+ and other electron acceptors. In another
study, IPETC was subjected to aerobic biodegradation conditions and it was found to be
poorly degradable [14].

Biodegradation is one of the most important processes for removal of organic pollu-
tants in natural waters. However, this can be a very slow process and requires a quantity
of microorganisms living under suitable conditions, as pH, appropriate level of oxygen,
nutrients, absence of toxic substances, etc. In mineral separation wastewater this is rarely
the case. These waters frequently contain heavy metals, acids, or alkalis and other toxic
substances, which inhibit or prevent microorganisms from growing and functioning. In
such a case, chemical treatment of wastewater may become necessary. Regardless of the
type of treatment of polluted water, reaction intermediates emerge from the initial pol-
lutants, which can also be harmful or even more toxic than the starting material [15,16].
The study of degradation pathways, including all important reaction intermediates and
their properties is of prime importance. AOPs find suitable applicability in treatment of
waters containing harmful chemicals. The advantage of those kind of methods is in in
situ generation of strong oxidants, i.e., hydroxyl radicals and sulphate radicals, for the
oxidation of organic pollutants [17]. Various photochemical combinations may be used
such as UV/H2O2, UV/Fe2+, UV/H2O2/Fe2+, UV/TiO2, and others. The main advan-
tage of UV AOPs is in better removal rates with both kind of radicals, i.e., hydroxyl and
sulphate ones [18]. Photochemical AOPs are frequently used for the oxidation of organic
pollutants in wastewater, but the combination of UV irradiation with hydrogen peroxide
is usually more effective for specific micropollutants, such as diclofenac and mecoprop.
Fenton process, on the other side, showed the fastest removal rate for phenol present in
wastewater [19].

In this paper, we present the results of several approaches to the treatment of water
containing IPETC, namely photodegradation with UV-A light in the presence of iron salts,
Fenton reaction, and oxidation with hypochlorite.

2. Results and Discussion
2.1. Photooxidation in the Presence of Iron Salts

Effluents from mineral processing deposited into open containers or discharged into
streams are subjected to solar irradiation. The first experiment performed on the solution
of IPETC in water was irradiation in photochemical reaction with UV-A light. A 24 h
irradiation with six 15 W lamps resulted in zero loss of the starting compound. Only after
1 week of irradiation a slight decrease in concentration of IPETC was noticed. Thus, it can
be concluded that IPETC is photochemically stable under UV-A light.

In mining wastewaters, a presence of iron compounds is to be expected. Iron(III) com-
pounds are well-known photocatalysts, producing hydroxyl radicals in water under visible
or UV-A light [20–23]. Fe(II), formed in the photocatalytic reaction, can be regenerated with
molecular oxygen. The predominant form of iron(III) in slightly acidic aqueous medium
(such as the water solution of FeCl3) is Fe(OH)2+ and related species [24]. The process of
reoxidation of Fe(II) is complex, however it can be simplified as shown in the Scheme 1.
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a decomposition of IPETC took place, with a rate depending on the concentration of 
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ious concentrations of oxygen. Curve Ar: solution purged with argon. Air-s: saturated with air, no 
bubbling. Air-b: air bubbled continuously. O2: oxygen bubbled continuously. 

Concentration of oxygen in air-saturated water at 20 °C and 97 kPa can be estimated 
to 0.28 mM [25]. The initial concentration of IPETC in these experiments (100 ppm) was 
0.68 mM, which is several times higher than the concentration of oxygen. Thus, the 
amount of oxygen, dissolved in the reaction mixture is not enough to oxidize all IPETC, 
in particular because it is likely that more than 1 equivalent of oxygen is consumed in the 
oxidation. In Figure 1 (curve Air-s) it is clearly seen, that the initial rate of oxidation with 
air is fast, and after some time the rate slows down and becomes comparable to the rate 
of degradation in the absence of oxygen (curve Ar). When pure oxygen or air was bubbled 
continuously through the irradiated solution, the decomposition was fast, obeying 1st 
order kinetics in the beginning, changing after 70–80% conversion to a mixed order. The 
rate of oxidation is almost the same with pure oxygen as it is with air, indicating rapid 
reoxidation of Fe(II) with oxygen. When iron(III) sulfate was used instead of chloride, no 
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Photochemical experiments with a water solution of IPETC and FeCl3 were carried
out under various conditions. In the dark, a mixture of IPETC and FeCl3 exhibited no
change in the concentration of IPETC across the period of several days. Under UV-A light,
a decomposition of IPETC took place, with a rate depending on the concentration of oxygen
(Figure 1).
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Figure 1. Decomposition of IPETC under UV-A light in the presence of FeCl3 in solutions with
various concentrations of oxygen. Curve Ar: solution purged with argon. Air-s: saturated with air,
no bubbling. Air-b: air bubbled continuously. O2: oxygen bubbled continuously.

Concentration of oxygen in air-saturated water at 20 ◦C and 97 kPa can be estimated
to 0.28 mM [25]. The initial concentration of IPETC in these experiments (100 ppm) was
0.68 mM, which is several times higher than the concentration of oxygen. Thus, the amount
of oxygen, dissolved in the reaction mixture is not enough to oxidize all IPETC, in particular
because it is likely that more than 1 equivalent of oxygen is consumed in the oxidation. In
Figure 1 (curve Air-s) it is clearly seen, that the initial rate of oxidation with air is fast, and
after some time the rate slows down and becomes comparable to the rate of degradation
in the absence of oxygen (curve Ar). When pure oxygen or air was bubbled continuously
through the irradiated solution, the decomposition was fast, obeying 1st order kinetics in
the beginning, changing after 70–80% conversion to a mixed order. The rate of oxidation is
almost the same with pure oxygen as it is with air, indicating rapid reoxidation of Fe(II)
with oxygen. When iron(III) sulfate was used instead of chloride, no significant change in
the reaction rate was observed (not shown in Figure 1). With iron(II) sulfate no reaction
was observed under argon. However the reaction commenced when argon was replaced
by air.
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The analysis of the reaction solution after the complete conversion of the starting
IPETC revealed a formation of several products. HPLC with UV-DAD detector has de-
tected one initial product, formed in significant amount (its peak in chromatogram is
comparable to that of IPETC), which is slowly transformed to another compound on
standing. According to its UV spectrum (λmax = 262 nm, IPETC: λmax = 244 nm), in the
molecule of this first intermediate, the C=S group is most probably preserved, but it is
lost in further reactions. Unfortunately this compound was found to be too unstable to be
isolated and characterized. Further degradation leads to compounds which do not absorb
UV and are difficult to determine by HPLC. GC and GC/MS analyses revealed several
products, among which is O-isopropyl N-ethylcarbamate (1) was present in the highest
amount. The identity of this compound was confirmed by independent synthesis [26].
Other, minor compounds are, according to their mass spectra, O-isopropyl thionocarbamate
(2) and O-isopropyl carbamate (3, for both compounds, good matching with spectra in MS
database was found). One of the minor products was tentatively assigned as O-isopropyl
N-acetylthionocarbamate (4), all presented in Scheme 2.
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Scheme 2. Transformation of IPETC under UV-A light in the presence of FeCl3 in solutions with
various concentrations of oxygen.

All these compounds react further under irradiation. In sufficient time, all organic
material is degraded. TOC measurements, performed in regular 8 h intervals show a slight
increase of organic carbon in the first 16 h and a sharp drop after 24 h. Apparently, in the
beginning, IPETC is transformed to other, still organic compounds, which are ultimately
oxidized to CO2.

The exact degradation pathway could not be established. From the structure of the
intermediates formed, the most probable pathway is that of several parallel reactions with
hydroxyl radical taking place simultaneously. It can attack the C=S group, leading to the
replacement of sulfur atom with oxygen, possibly via unstable S-oxide [27]. This is inferred
from the formation of several compounds containing carbonyl group. Another site of attack
is methylene hydrogen in ethyl group, which can be easily abstracted, leading to oxidation
and/or dealkylation products [28–32].

To test the possibility of photodegradation of IPETC under natural conditions, a
solution containing IPETC and iron was exposed to sunlight on a clear July day. After a
whole day of irradiation, neither IPETC nor the products were found in the sample.

2.2. Fenton Type Oxidation with Iron Salts and Hydrogen Peroxide

Another reaction system, producing OH radicals is a mixture of hydrogen peroxide
and suitable redox metal salt, e.g., Fe, Cu, Ti and similar. Efficient and environmentally most
acceptable are iron salts, which react with hydrogen peroxide according to the Scheme 3.
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Scheme 3. Reaction of iron salts with hydrogen peroxide and formation of peroxide radicals.

Hydroxyl and hydroperoxyl radicals are produced, which react with organic sub-
strates. The chemistry of these reactions largely resembles the processes in irradiated
solutions of iron salts. Therefore it is not surprising that some of the the products appearing
during Fenton reaction are the same as in photooxidation. However, there are differences
since in Fenton system additionally contains hydroperoxyl radicals and hydrogen peroxide,
which react in their own way. We have conducted experiments with several different con-
centrations of iron salts and hydrogen peroxide. In Figure 2 only few cases are presented
for the sake of clarity. It can be clearly seen that the iron concentration has little or no
effect of the reaction rate in selected concentration range. The rate of oxidation depends
mainly on the concentration of hydrogen peroxide. The main product is again O-isopropyl
N-ethylcarbamate (1).

Molecules 2021, 26, x  5 of 11 
 

 

 

 
Scheme 3. Reaction of iron salts with hydrogen peroxide and formation of peroxide radicals. 

Hydroxyl and hydroperoxyl radicals are produced, which react with organic 
substrates. The chemistry of these reactions largely resembles the processes in irradiated 
solutions of iron salts. Therefore it is not surprising that some of the the products 
appearing during Fenton reaction are the same as in photooxidation. However, there are 
differences since in Fenton system additionally contains hydroperoxyl radicals and 
hydrogen peroxide, which react in their own way. We have conducted experiments with 
several different concentrations of iron salts and hydrogen peroxide. In Figure 2 only few 
cases are presented for the sake of clarity. It can be clearly seen that the iron concentration 
has little or no effect of the reaction rate in selected concentration range. The rate of 
oxidation depends mainly on the concentration of hydrogen peroxide. The main product 
is again O-isopropyl N-ethylcarbamate (1). 

 
Figure 2. Decomposition of IPETC in FeCl3/H2O2 system. Numbers in the legend represent conc. of 
H2O2 and Fe in ppm. 

2.3. Reaction with Sodium Hypochlorite 
An alternative method for the removal of organic compounds from wastewater is 

treatment with strong oxidants, e.g., sodium or calcium hypochlorite [33,34]. Sulfur 
compounds are susceptible to oxidation, yielding various oxidation products. Sulfur atom 
is usually transformed to sulfate in the final stage [33].  

Reactions of IPETC with NaOCl in phosphate buffer at pH 7 with various amounts 
of hypochlorite were performed. The reaction is fast, IPETC reacts within minutes. With 
small amounts of hypochlorite, two products were detected, the principal one being O-
isopropyl N-ethylcarbamate, 1. When increasing the amounts of hypochlorite added, the 

Figure 2. Decomposition of IPETC in FeCl3/H2O2 system. Numbers in the legend represent conc. of
H2O2 and Fe in ppm.

2.3. Reaction with Sodium Hypochlorite

An alternative method for the removal of organic compounds from wastewater is
treatment with strong oxidants, e.g., sodium or calcium hypochlorite [33,34]. Sulfur com-
pounds are susceptible to oxidation, yielding various oxidation products. Sulfur atom is
usually transformed to sulfate in the final stage [33].

Reactions of IPETC with NaOCl in phosphate buffer at pH 7 with various amounts
of hypochlorite were performed. The reaction is fast, IPETC reacts within minutes. With
small amounts of hypochlorite, two products were detected, the principal one being O-
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isopropyl N-ethylcarbamate, 1. When increasing the amounts of hypochlorite added, the
other compound disappeared. The amount of 1 decreased slightly on increasing amounts
of hypochlorite (Figure 3).
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To elucidate the structure of the intermediate product, the reaction mixture obtained
by the addition of two equivalents of NaOCl to IPETC was extracted with dichloromethane
and the organic extract chromatographed on silica column. The structure of the compound
was determined by several NMR techniques (1H and 13C-NMR, COSY, 1H-13C-HSQC, 1H-
13C-HMBC, 1H-15N-HMBC), mass spectrum and HRMS measurement and was found to
be isopropyl N-((ethylimino)(isopropoxy)methyl)-N-ethylthionocarbamate (5). Compound
5 is oxidized to 1 with additional amounts of hypochlorite (Scheme 4).
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Carbamate 1 seems to be a relatively stable product of the oxidation of IPETC with
hypochlorite in neutral medium. However it is slowly oxidized further with excess of
hypochlorite, producing isopropanol, acetone and some other unidentified products.

Isopropyl ethylcarbamate (1) is a scarcely described compound and its toxicological
properties are not known. It should be stressed that at least some related simple carbamates
are cancer suspect compounds and this can possibly apply to 1 too. It can be formed
from IPETC in any water, containing hypochlorite or related chlorine based disinfectants,
including swimming pool and drinking water, as well as in other surface waters subjected
to solar irradiation.

3. Materials and Methods
3.1. Chemicals

IPETC sample was a technical product (Tieling Flotation Reagents, Tieling city, Liaoning,
China). Its purity was tested by 1H-NMR and GC and was established to be pure enough (less
than 2% of impurities) to be used in the present study. Acetonitrile, dichloromethane, ethyl
isocyanate (Aldrich) isopropanol, formic acid (Fluka), iron(III) chloride hexahydrate, iron(II)
sulfate heptahydrate, sodium sulfite (Merck), hydrogen peroxide, 65% (Belinka, Ljubljana)
were used without further purification. The concentration of sodium hypochlorite solution
(Aldrich) was determined by iodometric titration prior to use. Deionized water was
obtained from Millipore Milli-Q water system (Burlington, MA, USA).

3.2. Analyses of Reaction Mixtures

Quantitative analyses of reaction mixtures were preformed on HPLC-DAD instrument
(Agilent, Santa Clara, CA, USA) with an external standard of IPTC or 1.

For qualitative analyses of the reaction products, several instruments were used. GC
and GC/MS analyses were carried out on HP 6890 instrument (Hewlett Packard, Palo Alto,
CA, USA), equipped with HP5 (30 m × 0.32 mm i.d.) column and FID or quadrupole MS
detector, respectively. Aqueous samples, containing iron salts and other inorganic material,
for GC analyses were extracted with several portions of dichloromethane and concentrated
under reduced pressure.

TOC analyses were performed on Shimadzu TOC5000A Total organic carbon analyzer
(Shimadzu, Kyoto, Japan). Confirmation of structures of independently synthesysed
products, HRMS measurements were performed on Agilent 6224 TOF LC/MS system
(Agilent, Santa Clara, CA, USA), and NMR spectra were measured on Bruker Avance III
500 spectrometer (Bruker, Karlsruhe, Germany).

3.2.1. HPLC Analyses

Samples from photochemical and Fenton degradation experiments were injected
directly, without any preparation onto Agilent 1260 Infinity instrument (Agilent, Santa
Clara, CA, USA), equipped with Phenomenex Luna 5µm C18 (250 × 4.6 mm) column and
DAD photometric detector. Mobile phase consisted of deionized water, acidified with 0.1%
of formic acid, and gradient grade acetonitrile (Aldrich). Calibration curves were measured
in the range 0–1000 mg L−1 for IPETC and 1.

3.2.2. GC/MS Analysis

Reaction mixture (20 mL) from photooxidation, after all of the IPETC reacted, was
extracted with 10 mL of dichloromethane in three portions, the extract concentrated under
reduced pressure and subjected to GC/MS analysis. Several peaks were found and in
some of them, the substances were identified according to their mass spectra (EI, m/z (%).
Besides isopropyl ethylcarbamate (1) the following compounds were found: O-isopropyl
thionocarbamate (2), O-isopropyl carbamate (3), and O-isopropyl N-acetylthionocarbamate
(4). Details about mass spectra are presented in the Supplementary Materials section.
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3.2.3. Determination of Sulfate (Typical Experiment)

29.3 mg of IPETC and 250 mg of sodium hydrogen carbonate was dissolved in 50 mL
of water. This solution was oxidized with 0.55 mL of 1.8 M NaOCl (5 equiv.) and left to
stand 2 h at r.t. The solution was acidified with 2 mL of conc. HCl and sulfate determined
gravimetrically as BaSO4. The mass of BaSO4 was 21.3 mg (0.458 mol/mol of IPETC).

3.3. Degradation Experiments

Photochemical experiments were carried out in photochemical reactor MLU 18 reactor
(Photochemical Reactors Ltd., Surrey, UK) with six 15 W UV-A lamps (Sankyo Denki
FL-15BLB).

3.3.1. Photochemical Degradation Experiments

In total, 10 mL of a solution of IPETC (100 ppm, 0.68 mM) and FeCl3 × 6H2O (or
other iron salt, such as FeSO4 or Fe2(SO4)3, 0.22 mM) in deionized water was placed in
a 16 cm glass tube with internal diameter 1.0 cm and, in the case of argon, purged with
argon and stoppered with a rubber septum. The samples for analysis were withdrawn
through septum by means of a syringe. In the cases of air and oxygen, these gases were
continuously bubbled through the solution. Cuvette was placed into a photochemical
reactor and irradiated with six 15 W UV-A lamps for several (typically 10) h. Samples were
analyzed in regular time intervals by HPLC-DAD (Agilent, Santa Clara, CA, USA).

3.3.2. Degradation of IPETC under Sunlight

A 100 mL of solution of IPETC (100 ppm, 0.68 mM) and 0.22 mM FeCl3 in deionized
water was placed in a 500 mL borosilicate glass Erlenmeyer flask and stoppered. The flask
was exposed to sunlight for 24 h (morning to morning) in the beginning of July under the
cloudless sky at 46◦ northern latitude. The solution was analyzed by HPLC.

3.3.3. Reaction with Sodium Hypochlorite

To the 100 mL of the IPETC (1000 ppm, 6.8 mM) solutions in deionized water, buffered
with 0.05 M phosphate buffer pH = 6.9, solutions of NaOCl (1.75 M) were added in such
amounts, that the ratio NaOCl/IPETC of 2, 4, 6, 8, and 10 mol/mol was obtained. The
reaction mixture was allowed to stand 30 min at room temperature and quenched with 2 to
10 mL (proportional to the amount of NaOCl) of 1 M Na2SO3 solution. After the addition
of internal standard (diethylene glycol dimethyl ether), the reaction mixture was extracted
with dichloromethane (3 × 5 mL), the organic phase was dried with sodium sulfate and
taken for GC analysis.

3.3.4. Reaction with FeSO4/H2O2

To the 100 mL of the IPETC solution in deionized water, iron(II) sulfate and hydrogen
peroxide were added in various amounts (i.e., combinations (ppm) 40:200, 40:500, and
100:500, of Fe and H2O2, respectively) were achieved. The solutions were analyzed by
HPLC in regular time intervals.

3.4. Syntheses and Isolation of New Compounds
3.4.1. Synthesis of O-Isopropyl N-ethylcarbamate (1)

Synthesis of O-Isopropyl N-ethylcarbamate (1), presented at Scheme 5.
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The compound was synthesized by a modified literature procedure [23]. A mixture
of 0.71 g (10 mmol) ethyl isocyanate and 10 mL isopropanol was refluxed for 2 h. The
excess isopropanol was evaporated under reduced pressure and 1.23 g (94%) O-isopropyl
N-ethylcarbamate was obtained as a colorless oil. The compound was analyzed by NMR
and GC/MS (Agilent, Santa Clara, CA, USA).

1H-NMR (CDCl3) δ/ppm: 1.13 (t, J = 7.2 Hz, 3H), 1.22 (d, J = 6.2 Hz, 6H), 3.20 (m, 2H),
4.91 (septet, J = 6.2 Hz, 1H). 13C-NMR (CDCl3) δ/ppm: 15.4 (CH3), 22.3 (CH3), 35.8 (CH2),
67.8 (CH), 156.3 (C).

MS (EI) m/z (%): 131 (M+, 4), 116 (12), 90 (70), 88 (26), 74 (21), 72 (60), 44 (41), 43 (100),
41 (35), 30 (36).

3.4.2. Isolation of Isopropyl N-((ethylimino)(isopropoxy)methyl)-N-ethylthionocarbamate (5)

A solution of 147 mg (1.00 mmol) of IPETC in 10 mL of 0.05 M phosphate buffer
pH = 6.9 was treated with 2.00 mmol of NaOCl (1.1 mL of a 1.77 M solution). After
2 h, the reaction mixture was extracted with dichloromethane (3 × 5 mL), the organic
phase dryed with sodium sulfate and concentrated on a rotary evaporator. The mixture
was then chromatographed on a column packed with silica gel, using dichloromethane.
A 28 mg of pure compound was obtained, which we tentatively assigned, on the basis
of spectroscopic data and with the help of advanced NMR measurements, as isopropyl
N-((ethylimino)(isopropoxy)methyl)-N-ethylthionocarbamate (5).

1H-NMR (CDCl3) δ/ppm: 1.13 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.2 Hz, 3H), 1.25 (d, J =
6.2 Hz, 6H) 1.28 (m, 6H), 3.08 (m, 2H), 3.78–3.91 (m, 2H), 4.96 (septet, J = 6.2 Hz, 1H), 5.54
(septet, J = 6.1 Hz, 1H).

13C-NMR (CDCl3) δ/ppm: 12.2 (CH3), 16.2 (CH3), 21.2 (CH3), 21.5 (CH3), 21.6 (CH3),
21.7 (CH3), 43.2 (CH2), 45.8 (CH2), 69.8 (CH), 75.0 (CH), 146.3 (C), 186.7 (C).

MS (EI) m/z (%): 260 (M+, 1), 217 (22), 175 (90), 147 (13), 104 (23), 88 (13), 72 (71), 44
(68), 43 (100), 41 (40).

HRMS (ESI+) Calcd for C12H25N2O2S (MH+): 261.1631, found: 261.1634.

4. Conclusions

Flotation collector IPETC can be effectively removed from wastewaters by several
oxidation methods. Although itself is photochemically inert, it undergoes photooxidation
in the presence of iron salts and oxygen. The concentration of oxygen in the reaction
mixture has little effect on the rate, since the reoxidation of Fe(II), formed in the oxidation
process by molecular oxygen is relatively rapid. Direct sunlight is very efficient in this
transformation, under our experimental conditions, the total degradation was achieved in
one single day. Iron salts absorb efficiently UV-A light which is abundant in solar radiation
and there is no need to use artificial light sources to bring about the photooxidation. As
IPETC is used as a flotation collector for sulfide ores, in mine wastewaters containing
IPETC the presence of iron compounds is very likely. These waters are usually acidic,
which causes iron compounds to be soluble and the photochemical oxidation can take
place under sunlight by itself. Similarly, the Fenton reaction system, composed of iron salts
and hydrogen peroxide, oxidizes IPETC efficiently, as does sodium hypochlorite in few
hours. The oxidation processes are complex, composed of several consecutive and parallel
reactions, leading to the formation of simple alcohols, ketones and similar, and, at least in
photooxidation to total mineralization. In all three procedures, the main intermediate is
O-isopropyl N-ethylcarbamate which undergoes further decomposition more slowly. Its
presence in water might be of concern, since simple carbamates are potential carcinogens.

Supplementary Materials: Supplementary S1: Mass spectra of compounds 1–5, Supplementary S2:
NMR spectra of synthesized compounds 1 and 5, Supplementary S3: Chromatograms of degradation
experiments.
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