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Graphical Abstract

• An unhealthy plant-based diet rich in refined grains and sugar is associated
with higher CRC incidence.
• A healthy plant-based diet rich in whole grains, fruits and vegetables is associ-
ated with lower incidence of CRC, especially KRAS-wildtype CRC.
• Replacing refined grains with healthy plant foods such as whole grains, fruits
and vegetables is associated with lower CRC incidence.
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Abstract
Background: Plant-based foods have been recommended for health. However,
not all plant foods are healthy, and little is known about the association between
plant-based diets and specific molecular subtypes of colorectal cancer (CRC).We
examined the associations of healthy and unhealthy plant-based diets with the
incidence of CRC and its molecular subtypes.
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Methods:While 123 773 participants of the Nurses’ Health Study and the Health
Professionals Follow-up Study had been followed up (3 143 158 person-years),
3077 of themhaddevelopedCRC.Healthy andunhealthy plant-based diet indices
(hPDI and uPDI, respectively) were calculated using repeated food frequency
questionnaire data. We determined the tumoural status of microsatellite insta-
bility (MSI), CpG island methylator phenotype (CIMP), and BRAF and KRAS
mutations.
Results: Higher hPDI was associated with lower CRC incidence (multivariable
hazard ratio [HR] comparing extreme quartiles, 0.86, 95% confidence interval
[CI]: 0.77, 0.96; P-trend = .04), whereas higher uPDI was associated with higher
CRC incidence (multivariable HR comparing extreme quartiles, 1.16, 95% CI:
1.04, 1.29; P-trend= .005). The association of hPDI significantly differed byKRAS
status (P-heterogeneity = .003) but not by other tumour markers. The hPDI was
associated with lower incidence of KRAS-wildtype CRC (multivariable HR com-
paring extreme quartiles, 0.74, 95% CI: 0.57, 0.96; P-trend = .004) but not KRAS-
mutant CRC (P-trend = .22).
Conclusions: While unhealthy plant-based diet enriched with refined grains
and sugar is associated with higher CRC incidence, healthy plant-based diet rich
in whole grains, fruits and vegetables is associated with lower incidence of CRC,
especially KRAS-wildtype CRC.

KEYWORDS
colorectal carcinoma, inverse probability weighting, molecular pathological epidemiology, sus-
tainability

1 INTRODUCTION

Colorectal adenocarcinomas remain to be the second
most common cause of cancer death in the world.1 It
is estimated that eliminating the effect of poor-quality
diet in the United States may reduce colorectal cancer
(CRC) incidence by approximately 38%.2 Western-style
diet, especially high in red and processed meats, is asso-
ciated with increased CRC incidence.3 Besides the car-
cinogenic compounds (such as N-nitroso compounds, het-
erocyclic amines and polycyclic aromatic hydrocarbons),
other nutrients enriched in meats, including haeme iron,
sulphur and choline, can also contribute to the develop-
ment of CRC.4
Several plant-based foods and nutrients, including

whole grains, fruits, vegetables and fibre, have been asso-
ciated with a lower CRC risk.5–7 The latest scientific report
from the 2020 US Dietary Guidelines Advisory Committee
identified whole grains, fruits and vegetables as three fun-
damental constituents of a healthy dietary pattern.8 The
production of these foods is in general environmentally
more sustainable (i.e. environmentallymore friendly) than
animal-based foods. However, not every plant-based food

is good for consumer’s health. Less nutrient-dense plant-
based foods, including refined grains and sugar-sweetened
beverages (such as carbonated beverages with sugar), are
associatedwith higher risks of cardiometabolic diseases9,10
and CRC.11,12 Thus, it is essential to differentiate between
healthy and unhealthy plant foods when advocating plant-
based diets for CRC prevention.
Additionally, the diet-CRC association may differ

according to various molecular subtypes.13,14 Certain
tumour molecular characteristics, such as CpG island
methylator phenotype (CIMP), microsatellite instability
(MSI) and somatic mutations in BRAF and KRAS, have
been widely investigated with regard to the heterogeneity
of diet and CRC association.14–21 However, most of these
studies primarily focused on an individual food item or
nutrient. Data are limited on the heterogeneity in the
association between dietary patterns and the incidence
of CRC subclassified by molecular subtypes. Therefore,
we conducted a prospective study to test hypotheses that
healthy and unhealthy plant-based dietary patterns might
be associated with CRC incidence and that the association
might differ by individual tumour molecular subtypes or
in combination.
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2 METHODS

2.1 Study population

The present study used data from two prospective cohorts,
namely, the Nurses’ Health Study (NHS) and the Health
Professionals Follow-up Study (HPFS). The NHS enrolled
121 700 nurses who were 30-year-old to 55-year-old women
in 1976.22 The HPFS recruited 51 529 health profession-
als who were 40-year-old to 75-year-old men in 1986.22
Every 2 years, the studies have sent detailed question-
naires to cohort participants to obtain information on
lifestyle and health-related conditions. We excluded par-
ticipants who did not send answers to the baseline (1984
for the NHS and 1986 for the HPFS) food frequency ques-
tionnaire (FFQ), reported nearly impossible daily energy
intake (<500 or >3500 kcal/day for women and < 800
or >4200 kcal/day for men), did not report their dates
of birth, or reported past personal history of malignancy
(except non-melanoma cancer of skin) or ulcerative colitis
before their enrolment. After these exclusions, data from
123 773 participants (76 386 women and 47 387 men) were
utilised in the current analysis (Figure 1).

2.2 Examination of diets and the
plant-based diet indices

Dietary data were extracted from semi-quantitative FFQs
in 1984, 1986, 1990, 1994, 1998, 2002, 2006 and 2010 in the
NHS, and 1986, 1990, 1994, 1998, 2002, 2006, 2010 and 2014
in the HPFS. The reproducibility and validity of the FFQs
have been reported elsewhere.23,24 Plant-based diet indices
were developed as described previously.25,26 In brief, we
first categorised all foods to 18 groups within three broad
categories: healthy plant foods, including whole grains,
fruits, vegetables, legumes, nuts, tea/coffee and vegetable
oils; unhealthy plant foods, including refined grains, pota-
toes, sweets/desserts, fruit juice and sugar-sweetened bev-
erages and animal foods, including animal fats, meat, eggs,
dairy, fish/seafood and miscellaneous animal foods. These
food groups were categorised based on nutrient and culi-
nary similarities. Healthy and unhealthy plant foods were
distinguished using existing knowledge of associations of
the foods with type 2 diabetes, cardiovascular disease, cer-
tain cancers and intermediate conditions (obesity, hyper-
tension, hyperlipidemia and systemic inflammation).26
The 18 food groups were then divided into quintiles of con-
sumption, and each quintile was assigned a score of 1 to
5. For the healthy plant-based diet index (hPDI), positive
scores (a score of 1 was assigned to the lowest quintile and 5
to the highest) were assigned to healthy plant food groups
and reverse scores (a score of 5 was assigned to the low-

est quintile and 1 to the highest) to unhealthy plant food
groups; for the unhealthy plant-based diet index (uPDI),
positive scores were assigned to unhealthy plant food
groups and reverse scores to healthy plant food groups. We
also derived an overall plant-based diet index (PDI), where
both healthy and unhealthy plant foodswere given positive
scores. Reverse scores were assigned to animal food groups
for all three indices. Finally, we summed up 18 food group
scores to obtain the indices, each ranging from 18 to 90.
These indices have been widely used in other cohorts.27–30

2.3 Covariate assessment

We collected information on body weight, physical exer-
cise activity, regular use of aspirin or other NSAID, smok-
ing habits, family history of CRC, history of previous
lower gastrointestinal endoscopic examination (and status
of menopause and postmenopausal use of hormone ther-
apy in women) through the baseline and biennial follow-
up questionnaires.22

2.4 Assessment of colorectal cancer
cases

When participants had diagnosis of CRC, it was reported
in biennial questionnaires. Unreported CRC cases, a vast
majority of which were lethal CRCs, were identified
through use of the National Death Index and question-
naire returned by next of kin. Study participants with
CRC diagnosis (or their next of kin if participants with
CRC were deceased) were asked for permission to exam-
ine medical records of the CRC participants. Study physi-
cians, whowere blinded to information on exposures, care-
fully examined allmedical records to confirm the diagnosis
of colorectal adenocarcinoma and obtain data on detailed
colorectal tumour location and tumour-node-metastasis
(TNM) stage. Both colon and rectal cancers were regarded
as outcomes in the current study, in consideration of the
colorectal continuum model.31

2.5 Tumour molecular analyses

We attempted to collect formalin-fixed paraffin-embedded
(FFPE) tumour and normal tissue from all incident CRC
cases in which we obtained consent for tissue analyses.
The study pathologist (S.O.) conducted histopathological
examinations and marked tumour-rich areas in all cases
with available tissue. Genomic DNA was extracted from
tumour and normal tissues. The quantity and quality of
DNA specimens extracted from FFPE tissue have been
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F IGURE 1 Flow chart of study population. CIMP, CpG island methylator phenotype; FFQ, food frequency questionnaire; MSI,
microsatellite instability

shown to be stable for up to 12 years.32 We analysed
four well-studied colorectal tumour molecular character-
istics: microsatellite instability (MSI), CpG island methy-
lator phenotype (CIMP), and BRAF and KRAS mutations.
Polymerase chain reaction (PCR) followed by pyrose-
quencing were done on BRAF codon 600 and KRAS

codons 12, 13, 61 and 146 (Supplementary Table 1).33,34
MSI status was analysed by PCR assays of 10 microsatel-
lite markers (BAT25, BAT26, BAT40, D17S250, D18S55,
D18S56, D18S67, D18S487, D2S123 and D5S346). MSI-high
tumours were defined as tumours with instability in
≥30% of the markers.31 We quantified DNA methylation
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levels using bisulphite modification followed by real-
time quantitative PCR (MethyLight)35 for 8 CIMP-specific
promoters (CACNA1G, CDKN2A [p16], CRABP1, IGF2,
MLH1, NEUROG1, RUNX3 and SOCS1)36 and classified
tumours as CIMP-high if ≥6 promoters were methy-
lated and CIMP-low/negative if 0 to 5 promoters were
methylated.37
We also used a colorectal carcinoma classification sys-

tem using a combination of four biomarkers: Type 1 (MSI-
high, CIMP-high, BRAF mutant, KRAS wild-type), Type
2 (non-MSI-high, CIMP-high, BRAF mutant, KRAS wild-
type), Type 3 (non-MSI-high, CIMP-low/negative, BRAF
wild-type, KRAS-mutant), Type 4 (non-MSI-high, CIMP-
low/negative, BRAF wild-type, KRAS wild-type) and
Type 5 (MSI-high, CIMP-low/negative, BRAF wild-
type, KRASwild-type).38 These five combinatorial subtype
have been related to the three different etiological path-
ways: (a) serrated pathway [Type 1 and Type 2], (b)
alternate pathway [Type 3] and (c) conventional adenoma
pathway [Type 4 and Type 5].14,38

2.6 Statistical analysis

We conducted restricted cubic spline analyses to test the
possible non-linear relationships of hPDI and uPDI with
overall CRC risk, and no spline variables were added into
the model, suggesting no substantial departure from lin-
earity. Therefore, we set our primary hypothesis testing to
assess the statistical linear trend for the association of hPDI
(or uPDI) with overall CRC, as well as the heterogeneity
of the linear trend for the association of each index with
CRC incidence subclassified by either of the four molecu-
lar markers. All other tests were considered as secondary
analyses, to reduce the number of primary hypothesis tests.
Furthermore, we used the stringent two-sided α level of
.005 was employed as a stringent significance level which
has been set by expert statisticians.39
We used time (months) in following each participant

from the return date of the baseline FFQ until diagno-
sis of CRC, death, or end of follow-up (June 30, 2014, for
NHS and January 31, 2014, for HPFS), whichever first had
come. As no substantial or significant heterogeneity (using
Q-statistic) between the two cohorts was observed for the
association of hPDI, uPDI, or overall PDI with CRC inci-
dence, we pooled individual-level data from both cohorts
for further analyses. We employed multivariable-adjusted
time-varying Cox proportional hazards regression models
(which were statistically stratified by age, cohort and cal-
endar year) to compute the hazard ratio (HR) for CRC inci-
dence.
To assess the long-term habitual dietary intake patterns,

we used the cumulative average of each plant-based diet

index from the baseline FFQ up to the start of each follow-
up interval before CRC diagnosis, death, or end of follow-
up. The cumulative average of the index was categorised
into study-specific quartiles. We also used the cumulative
average for body mass index, physical activity and dietary
covariates (alcohol intake and total energy intake). Multi-
variable models were adjusted for body mass index (con-
tinuous with a ceiling at 35 kg/m2),40 physical activity
(continuous with a ceiling at 50 metabolic equivalent task
score-hours/week),40 regular use of aspirin or other non-
steroidal anti-inflammatory drugs (≥2 tablets/week: yes or
no), smoking status (never, past or current), family his-
tory of CRC (yes or no), history of previous lower gas-
trointestinal endoscopy (yes or no), alcohol intake (con-
tinuous with a ceiling at 30 g/day) and total energy intake
(continuous). Analyses of only women (i.e. NHS without
theHPFS)were adjusted for postmenopausal hormone use
(premenopausal, postmenopausal never, past, or current
use) in addition to the aforementioned variables. For miss-
ing data in covariates (missing proportion 0.4% for body
mass index and for 2.4% physical activity), we carried for-
ward the value collected in the closest questionnaire cycle
with available data. The proportional hazards assumption
was tested by adding interaction terms between follow-
up time and plant-based diet indices, demonstrating no
evidence for statistically significant deviation from the
assumption.
When testing for linear trend, to maximise the use of

the data and minimise the influence of extreme values, we
placed lower and upper ceilings at the 5th and 95th per-
centiles, respectively, of each index (Supplementary Figure
1) (with values below the 5th or above the 95th percentile
being replaced by the 5th or 95th percentile value, respec-
tively) and put it into the regression model as a continu-
ous term. One recently published paper indicated that the
metabolic health effects of plant-based diets were driven
by the total protein amount rather than the plant versus
animal source in the diet.41 To test if this was applicable to
the health benefits on CRC prevention, we examined the
associations of total protein, total fat and protein/fat from
plant or animal source with CRC incidence. In addition,
we evaluated the associations of the individual plant food
groups with CRC incidence while adjusting for six animal
food groups and covariates for indices analysis. We also
estimated the associations of substituting equal servings
of whole grains, fruits or vegetables for refined grains, as
we found refined grains were the major unhealthy plant
food group that was correlatedwith higher CRC incidence.
The substitution analyses were conducted by including
both food groups as continuous variables in the same
multivariable model, which also contained total energy
intake and other covariates. The difference of the parame-
ter estimates of the two food groups and the corresponding
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variances and covariance were then used to estimate sub-
stitution associations.42
We adoptedCox proportional hazards regressionmodels

with competing risks data duplication method that could
assess whether the association of hPDI (or uPDI) with
CRC incidence differed according to tumour location or
molecular subtype. Heterogeneity was tested using a like-
lihood ratio test that compared a model allowing for sepa-
rate associations with CRC subtypes to another model pre-
suming a common association with the CRC subtypes.43
Given that not all CRC cases provided tissue materials for
tumour molecular biomarker assessments, inverse proba-
bility weighting (IPW) was employed to control for selec-
tion bias due to the variable availability of tissue biomarker
data.44 Cox regression analyses without using IPW were
conducted as a sensitivity analysis.
We conducted other sensitivity analyses by stopping any

further updates to diet after diagnosis of other morbid-
ity outcomes that might change a person’s dietary habits
(diabetes, cardiovascular diseases and cancers other than
CRC), to test the robustness of our findings. All analyses
were conducted using SAS software version 9.4 (SAS Insti-
tute, Cary, North Carolina, USA).

3 RESULTS

While 123 773 study subjects in the two cohorts had been
followed up (3 143 158 person-years), a total of 3077 par-
ticipants had been found to have diagnosis of colorectal
cancer (CRC). The healthy plant-based diet index (hPDI)
was associated positively with physical activity and neg-
atively with smoking (Table 1), whereas the unhealthy
plant-based diet index (uPDI) was associated positively
with smoking and negatively with physical activity (Sup-
plementary Table 2). The hPDI, uPDI and overall plant-
based diet index (PDI) were generally stable during the
follow-up period (Supplementary Figure 2).
A higher hPDI was associated with lower incidence of

CRC (multivariable P-trend = .04), while a higher uPDI
was associated with increased CRC incidence (multivari-
able P-trend= .005) (Table 2). Multivariable HR for partic-
ipants in the highest hPDI quartile compared to those in
the lowest quartile was 0.86 (95% confidence interval [CI]:
0.77, 0.96). In contrast,multivariableHR for participants in
the highest uPDI quartile compared to those in the lowest
quartile was 1.16 (95% CI: 1.04, 1.29).
There was little evidence for heterogeneity between

the two cohorts (P-heterogeneity = .43 for hPDI; and P-
heterogeneity= .59 for uPDI).We did not observe evidence
of heterogeneity in the association of hPDI or uPDI with
CRC incidence by tumour locations in each cohort sep-
arately or in the pooled combined cohorts (Supplemen-

tary Table 3). The PDI was not associated with CRC inci-
dence (multivariable P-trend = .59) (Supplementary Table
4). Participants had similar average fish/seafood intake
across quartiles of hPDI, whereas participants with higher
uPDI tended to have lower fish/seafood intake (Table 1).
Thus, we further adjusted for fish/seafood intake and
found that the results remained similar (Supplementary
Table 5).
We did not observe any significant associations of total

protein or total fat intake, or their intakes from plant or
animal source and CRC incidence (Supplementary Table
6). Analysis of individual plant food groups showed that
whole grains intake was associated with lower incidence
of CRC (multivariable HR for a unit increase of two serv-
ings/day, 0.88, 95% CI: 0.81, 0.95; p = .001) (Figure 2A). In
contrast, refined grains intake was associated with higher
CRC incidence (multivariable HR for a unit increase
of two servings/day, 1.10, 95% CI: 1.02, 1.19; p = .01)
(Figure 2B). In substitution analyses in which two serv-
ings/day of refined grains were replaced by equal serv-
ings of whole grains, fruits or vegetables, we observed
lower incidence of CRCwithmultivariable HR of 0.85 (95%
CI, 0.77, 0.94), 0.88 (95% CI, 0.80, 0.98) or 0.89 (95% CI,
0.82, 0.98), respectively (Figure 2C). The associations for
hPDI and uPDI were attenuated after adjusting for whole
grains and refined grains, respectively (Supplementary
Table 5).
Among all incident CRC cases, 1244 cases had available

data on tumour molecular subtypes. Patients with avail-
able molecular marker data generally had similar char-
acteristics to those without molecular data (Supplemen-
tary Table 7). No significant heterogeneity by molecular
marker data availability was observed for the association
of hPDI (or uPDI) and CRC (Supplementary Table 8). We
integrated the IPW method into the Cox regression mod-
els for subsequent analyses to adjust for potential selec-
tion bias due to varied molecular data availability. The
association of hPDI and CRC incidence significantly dif-
fered by KRAS mutation status (P-heterogeneity = .003)
(Table 3). A higher hPDI was associated with lower inci-
dence of KRAS-wildtype CRC (multivariable HR com-
paring extreme quartiles, 0.74, 95% CI: 0.57, 0.96; P-
trend = .004) but not KRAS-mutant CRC (multivariable
HR comparing extreme quartiles, 1.10, 95% CI: 0.82, 1.47;
P-trend = .22). We did not observe evidence of hetero-
geneity by MSI, CIMP or BRAF status for hPDI (Table 3)
or by any of the four molecular markers for uPDI (Sup-
plementary Table 9) (P-heterogeneity ≥ .15). When defin-
ing CRC molecular subtypes using the four molecular
markers in combination,38 the association of hPDI and
CRC was mainly observed for Type 4 CRC (non-MSI-
high, CIMP-low/negative, BRAF wild-type, KRAS wild-
type) (Supplementary Table 10). The results were generally
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TABLE 1 Age-standardised characteristics of participants in the Nurses’ Health Study and the Health Professionals Follow-up Study,
according to quartiles of the healthy plant-based diet index

Nurses’ Health Study Health professionals follow-up study
Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile 1 Quartile 2 Quartile 3 Quartile 4

Person-years 515 401 507 822 517 637 510 928 274 459 266 807 271 500 278 604
Age at baseline, years (mean) 48 49 50 52 51 52 53 54
Body mass index, kg/m2 (mean) 26.3 26.0 25.7 25.1 25.7 25.7 25.5 25.1
Physical activity, METS-hour/week
(mean)

13.4 15.1 16.8 20.1 28.2 29.4 31.1 34.7

Current smoker (%) 15 13 12 11 8 7 6 4
Non-drinker of alcohol (%) 24 23 23 24 18 17 17 18
History of previous
endoscopy (%)

23 23 23 23 32 34 35 36

Family history of colorectal
cancer (%)

19 19 19 19 15 15 15 15

Regular use of aspirin or other
non-steroidal anti-
inflammatory drugs (%)

34 34 33 32 35 37 37 36

Premenopausal (%) 12 12 12 11 / / / /
Current postmenopausal hormone
use (%)

23 25 26 28 / / / /

Dietary intake (mean)
Alcohol, among drinkers, g/day 7.8 7.9 7.8 7.7 13.2 13.5 13.6 13.1
Total energy, kcal/day 1991 1788 1654 1523 2278 2019 1864 1743
Total dietary fibre, g/day 14.6 16.6 18.3 21.6 17.7 20.3 22.6 27.7
Total folate, µg/day 401 438 468 521 474 523 562 633
Healthy plant foods
Whole grains, serving/day 1.0 1.2 1.4 1.6 1.2 1.5 1.7 2.1
Fruits, serving/day 1.2 1.5 1.6 2.0 1.3 1.5 1.7 2.2
Vegetables, serving/day 2.6 3.0 3.2 3.8 2.6 2.9 3.2 3.8
Legumes, serving/week 2.5 2.7 2.8 3.2 2.7 2.9 3.1 3.8
Nuts, serving/week 1.4 1.6 1.7 1.9 2.3 2.5 2.6 3.0
Vegetable oils, serving/week 1.6 1.9 2.2 2.9 1.6 1.9 2.2 2.8
Tea/coffee, serving/day 2.6 2.9 3.0 3.1 2.1 2.3 2.4 2.4

Unhealthy plant foods
Refined grains, serving/day 2.1 1.7 1.4 1.1 2.0 1.6 1.4 1.2
Sweets/desserts, serving/day 1.7 1.3 1.1 0.8 2.0 1.5 1.2 0.9
Potatoes, serving/week 4.5 3.6 3.0 2.3 5.0 4.0 3.4 2.7
Fruit juice, serving/week 6.2 5.4 4.8 3.9 6.4 5.7 5.2 4.6
Sugar-sweetened beverages,
serving/week

3.5 2.0 1.2 0.6 4.4 2.5 1.7 0.8

Animal foods
Animal fats, serving/week 4.2 2.4 1.6 1.0 3.4 1.8 1.2 0.7
Dairy products, serving/day 2.3 2.1 2.0 1.8 2.3 2.0 1.8 1.5
Eggs, serving/week 2.5 2.1 1.8 1.5 2.8 2.2 1.8 1.3
Fish/seafood, serving/week 2.1 2.2 2.2 2.3 2.5 2.6 2.7 2.8
Meat, serving/day 1.8 1.6 1.5 1.2 2.2 1.8 1.6 1.2
Miscellaneous animal foods,
serving/week

3.5 3.0 2.6 2.0 3.6 2.9 2.4 1.8

(Continues)
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TABLE 1 (Continued)

Nurses’ Health Study Health professionals follow-up study
Quartile 1 Quartile 2 Quartile 3 Quartile 4 Quartile 1 Quartile 2 Quartile 3 Quartile 4

Healthy plant-based diet index
(mean)

46.9 52.8 57.0 63.0 46.4 52.6 57.0 63.5

Unhealthy plant-based diet index
(mean)

57.8 55.6 54.0 51.6 57.1 55.4 54.2 52.1

Note: All variables are standardised to the age distribution of the study population, except for age at baseline.
Abbreviation: METS, metabolic equivalent task score.

F IGURE 2 Association of individual plant food with colorectal cancer risk in the pooled cohort of Nurses’ Health Study and the Health
Professionals Follow-up Study. (A) Associations for healthy plant foods and (B) unhealthy plant foods. (C) Associations by equally
substituting whole grains, fruits, or vegetables for two servings of refined grains. The associations in (A) and (B) were two servings/day for
whole grains, fruits, vegetables and refined grains, and one serving/day for all other plant foods. All models were stratified by age (in month),
calendar year and sex and adjusted for body mass index (continuous with a ceiling at 35 kg/m2), physical activity (continuous with a ceiling at
50 metabolic equivalent task score-hours/week), smoking status (never, past, or current), regular use of aspirin or other non-steroidal
anti-inflammatory drugs (≥2 tablets per week: yes or no), family history of colorectal cancer (yes or no), history of previous lower
gastrointestinal endoscopy (yes or no), alcohol intake (continuous with a ceiling at 30 g/day), total energy intake (continuous) and intake of
six animal food groups (continuous)
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TABLE 2 Hazard ratios with 95% confidence intervals of incident colorectal cancer according to the healthy or unhealthy plant-based
diet index in the Nurses’ Health Study (NHS) and the Health Professionals Follow-up Study (HPFS)a

Quartiles of healthy or unhealthy plant-based diet index
Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-trendb

Healthy plant-based diet index
NHS
No. of cases 400 386 463 439
Age-adjusted 1 (reference) 0.88 (0.77, 1.02) 0.97 (0.84, 1.11) 0.86 (0.75, 0.99) .08
Multivariable-adjusted 1 (reference) 0.90 (0.78, 1.04) 1.00 (0.87, 1.15) 0.92 (0.79, 1.06) .46

HPFS
No. of cases 339 328 358 364
Age-adjusted 1 (reference) 0.86 (0.73, 1.00) 0.85 (0.73, 0.99) 0.79 (0.68, 0.92) .009
Multivariable-adjusted 1 (reference) 0.86 (0.73, 1.01) 0.86 (0.73, 1.01) 0.82 (0.70, 0.98) .07

Pooled
No. of cases 739 714 821 803
Age-adjusted 1 (reference) 0.87 (0.79, 0.97) 0.91 (0.83, 1.01) 0.83 (0.75, 0.92) .002
Multivariable-adjusted 1 (reference) 0.88 (0.79, 0.97) 0.93 (0.83, 1.03) 0.86 (0.77, 0.96) .04

Unhealthy plant-based diet index
NHS
No. of cases 401 426 416 445
Age-adjusted 1 (reference) 1.08 (0.94, 1.24) 1.05 (0.91, 1.20) 1.16 (1.01, 1.33) .05
Multivariable-adjusted 1 (reference) 1.08 (0.94, 1.24) 1.03 (0.90, 1.19) 1.14 (0.98, 1.32) .14

HPFS
No. of cases 357 345 356 331
Age-adjusted 1 (reference) 1.00 (0.86, 1.16) 1.06 (0.91, 1.23) 1.05 (0.90, 1.23) .29
Multivariable-adjusted 1 (reference) 1.04 (0.89, 1.21) 1.12 (0.95, 1.30) 1.14 (0.96, 1.34) .05

Pooled
No. of cases 758 771 772 776
Age-adjusted 1 (reference) 1.04 (0.94, 1.15) 1.05 (0.95, 1.17) 1.11 (1.00, 1.23) .03
Multivariable-adjusted 1 (reference) 1.07 (0.96, 1.18) 1.08 (0.97, 1.20) 1.16 (1.04, 1.29) .005

aAll analyses were stratified by age (in month), calendar year and sex. Multivariable-adjusted hazard ratios were adjusted for body mass index (continuous with
a ceiling at 35 kg/m2), physical activity (continuous with a ceiling at 50 metabolic equivalent task score-hours/week), smoking status (never, past, or current),
regular use of aspirin or other non-steroidal anti-inflammatory drugs (≥2 tablets per week: yes or no), family history of colorectal cancer (yes or no), history of
previous lower gastrointestinal endoscopy (yes or no), alcohol intake (continuous with a ceiling at 30 g/day) and total energy intake (continuous). In NHS-only
analyses, we also adjusted for postmenopausal hormone use (premenopausal, postmenopausal never, past, or current use).
bThe healthy (or unhealthy) plant-based diet index was used as a continuous variable in the regressionmodel except for individuals below 5th percentile and those
above 95th percentile for whom the 5th and 95th percentile values, respectively, were used to eliminate outlier effects.
Abbreviations: HPFS, Health Professionals Follow-up Study; NHS, Nurses’ Health Study.

similar when analysing each cohort separately (Supple-
mentary Tables 11 and 12). Sensitivity analyses using
Cox regression models without IPW also generated sim-
ilar results (Supplementary Table 13). Further analyses
within the colon and rectum indicated that the differ-
ential associations of hPDI and CRC by KRAS mutation
status was mainly for the colon cancer (Supplementary
Table 14). In the analysis of individual plant food group
with CRC by KRAS mutation status, the association of
whole grains with CRC differed by KRAS mutation sta-
tus (P-heterogeneity = .05), although statistical signifi-
cance was unattained at the predefined α level of 0.005
(Supplementary Table 15).

We conducted subgroup analyses for overall CRC by age
or body mass index and did not observe any significant
effectmodification (Supplementary Table 16).We also con-
ducted sensitivity analysis excluding early-onset CRCs that
were diagnosed in participants under 50 years old (n= 60)
and confirmed that the observed associations persisted for
later-onset CRC (Supplementary Table 17). Last, the results
for the association of hPDI and uPDI with overall CRC
and CRC molecular subtypes remained similar in sensi-
tivity analyses where we stopped further updating dietary
data after diagnosis of other disease outcomes that might
change a person’s habitual diet (Supplementary Table 18
and Supplementary Table 19).
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TABLE 3 Hazard ratios with 95% confidence intervals of incident colorectal cancer (CRC) subclassified by tumour molecular features
according to the healthy plant-based diet index in the pooled cohorta

Quartiles of healthy plant-based diet index
Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-trendb P-heterogeneityc

MSI status .84
Non-MSI-high CRC
No. of cases 231 256 272 242
Age-adjusted 1 (reference) 1.11 (0.91, 1.35) 1.02 (0.84, 1.24) 0.86 (0.70, 1.05) .05
Multivariable-adjusted 1 (reference) 1.12 (0.92, 1.36) 1.03 (0.84, 1.26) 0.88 (0.71, 1.09) .14

MSI-high CRC
No. of cases 48 40 52 50
Age-adjusted 1 (reference) 0.58 (0.38, 0.90) 0.79 (0.52, 1.19) 0.72 (0.47, 1.10) .30
Multivariable-adjusted 1 (reference) 0.58 (0.38, 0.90) 0.79 (0.52, 1.20) 0.75 (0.49, 1.15) .39

CIMP status .90
CIMP-low/negative CRC
No. of cases 211 243 270 236
Age-adjusted 1 (reference) 1.13 (0.92, 1.39) 1.08 (0.88, 1.32) 0.92 (0.75, 1.13) .16
Multivariable-adjusted 1 (reference) 1.15 (0.94, 1.41) 1.11 (0.90, 1.36) 0.96 (0.78, 1.20) .41

CIMP-high CRC
No. of cases 53 39 52 56
Age-adjusted 1 (reference) 0.58 (0.38, 0.89) 0.81 (0.53, 1.23) 0.77 (0.52, 1.16) .56
Multivariable-adjusted 1 (reference) 0.58 (0.38, 0.88) 0.83 (0.54, 1.26) 0.82 (0.55, 1.24) .80

BRAFmutation status .22
BRAF-wildtype CRC
No. of cases 231 257 285 256
Age-adjusted 1 (reference) 1.11 (0.91, 1.35) 1.07 (0.88, 1.30) 0.90 (0.74, 1.09) .21
Multivariable-adjusted 1 (reference) 1.11 (0.92, 1.36) 1.08 (0.89, 1.32) 0.92 (0.75, 1.14) .24

BRAF-mutant CRC
No. of cases 49 40 48 41
Age-adjusted 1 (reference) 0.68 (0.43, 1.06) 0.75 (0.48, 1.17) 0.61 (0.39, 0.96) .10
Multivariable-adjusted 1 (reference) 0.67 (0.43, 1.05) 0.75 (0.48, 1.17) 0.63 (0.40, 1.00) .06

KRASmutation status .003
KRAS-wildtype CRC
No. of cases 161 181 169 149
Age-adjusted 1 (reference) 1.02 (0.81, 1.29) 0.85 (0.67, 1.07) 0.69 (0.54, 0.89) <.001
Multivariable-adjusted 1 (reference) 1.03 (0.82, 1.31) 0.87 (0.68, 1.11) 0.74 (0.57, 0.96) .004

KRAS-mutant CRC
No. of cases 106 101 144 133
Age-adjusted 1 (reference) 1.00 (0.74, 1.35) 1.16 (0.88, 1.54) 1.02 (0.77, 1.36) .47
Multivariable-adjusted 1 (reference) 1.03 (0.76, 1.40) 1.22 (0.92, 1.62) 1.10 (0.82, 1.47) .22

aAll analyses were stratified by age (in month), calendar year and sex. Multivariable-adjusted hazard ratios were adjusted for body mass index (continuous with a
ceiling at 35 kg/m2), physical activity (continuous with a ceiling at 50metabolic equivalent task score-hours/week), smoking status (never, past or current), regular
use of aspirin or other non-steroidal anti-inflammatory drugs (≥2 tablets per week: yes or no), family history of colorectal cancer (yes or no), history of previous
lower gastrointestinal endoscopy (yes or no), alcohol intake (continuous with a ceiling at 30 g/day) and total energy intake (continuous). The inverse probability
weighting method was applied to reduce selection bias due to molecular data availability.
bThe healthy plant-based diet index was used as a continuous variable in the regression model except for individuals below 5th percentile and those above 95th
percentile for whom the 5th and 95th percentile values, respectively, were used to eliminate outlier effects.
cWe tested for heterogeneity by using a likelihood ratio test, comparing a multivariable-adjusted model that allows separate associations for different colorectal
cancer subtypes with a model that assumes a common association.
Abbreviations: CIMP, CpG island methylator phenotype; CRC, colorectal cancer; MSI, microsatellite instability.
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4 DISCUSSION

Colorectal adenocarcinomas are heterogeneous multifac-
torial diseases, the incidence and characteristics of which
are modified by diet and lifestyle.45,46 Our current study
demonstrated an inverse association between the healthy
plant-based diet index (hPDI) and colorectal cancer (CRC)
incidence. The reduced CRC incidence associated with
a high hPDI was only observed for KRAS-wildtype CRC
but not the KRAS-mutated subtype. In contrast, the
unhealthy plant-based diet index (uPDI) was associ-
ated with increased CRC incidence. Replacing refined
grains with healthy plant foods such as whole grains,
fruits and vegetables was associated with lower CRC
incidence.
A few previous cohort studies have examined the associ-

ation of plant-derived food intake with CRC risk.47–49 The
results were mixed, with one study showing an inverse
association49 and others reporting null findings.47,48 One
key limitation was that the quality of the plant foods in
these studies was not adequately differentiated. Unhealthy
plant foods such as refined grains have been associated
with a higher CRC risk.12 Therefore, intake of detailed
plant-based food items needs to be measured. The food
consumption patterns were not described in the two
studies that reported a null association between vege-
tarian diets and CRC risk.47,48 However, in the study
where the inverse associationwas observed,49 compared to
non-vegetarians, vegetarians consumed on average lower
amounts of refined grains, sweets, snack foods and caloric
beverages, in addition to reduced consumption of ani-
mal products.50 Such a vegetarian diet was similar to the
healthy plant-based diet in our study. Thus, the findings in
that study49 and our current study consistently indicate a
possible role of healthy plant-based diets in CRC preven-
tion.
Other plant-based dietary patterns, such as the Alterna-

tive Mediterranean Diet (AMED), Dietary Approaches to
StopHypertension (DASH) diet and prudent diet, have also
been associated with a lower CRC risk.51 Healthy plant-
based diet is correlated to these dietary patterns (Sup-
plementary Table 20). However, there are notable differ-
ences among these various plant-based dietary patterns.
For example, fish intake was given a positive weight in
the prudent diet and AMED, and low-fat dairy was given
a positive weight in the DASH diet.51 Prudent diet, DASH
diet and AMED no doubt reflect healthy eating habits,
highlighting both healthy plant and healthy animal foods.
Our study aimed to differentiate between the healthy and
unhealthy plant foods and gave negative weights to all ani-
mal foods. There is increasing interest in the plant-based
diet because of its benefits to both human health and envi-
ronmental sustainability. Therefore, it is important to char-

acterise the better nature of healthy plant foods compared
to both animal-based foods and unhealthy plant foods.
Although one recent study suggested that the total pro-

tein intake underlined the health effects of plant-based
diets,41 our analyses of protein and fat did not show any
associations between protein or fat intake and CRC inci-
dence, suggesting other components of plant-based diets
might explain the beneficial effects. Analyses of individ-
ual food groups demonstrated that the inverse associa-
tion between the healthy plant-based diet and CRC inci-
dence could be primarily ascribed to a higher intake of
whole grains and a lower intake of refined grains. There
is substantial evidence that whole grains and foods con-
taining dietary fibre are associated with a reduced CRC
risk.3 Whole grains are good sources of dietary fibre and
may decrease the risk of CRC by increasing stool bulk and
decreasing transit time, thus reducing the contact between
potential carcinogens and colorectal epithelial cells.52 In
addition, microbial fermentation of fibre produces short-
chain fatty acids, which may regulate the immune system
and reduce CRC risk.4 Other beneficial nutritional com-
ponents in whole grains, such as polyphenols, lignans and
phytoestrogens, which are found mainly in the bran and
germ of the grain, may also protect against CRC.53,54 These
bioactive compounds that are missing in refined grains
might help explain both the existence of an inverse asso-
ciation between whole grains and CRC risk and a lack of
association with dietary fibre in some studies, as refined
grains could also be a source of dietary fibre.
We took the molecular pathological epidemiology

approach in which we attempted to link the putative eti-
ological factors (hPDI and uPDI) with specific tumour
molecular signatures.45 We observed heterogeneity of the
association between hPDI and CRC incidence by KRAS
mutation status. A higher hPDI was associated with
reduced incidence of KRAS-wildtype CRC but not KRAS-
mutant CRC. It is well-recognised that KRASmutations in
CRC confer resistance to anti-EGFR targeted therapy.55,56
As our current study suggests, KRAS-mutated colorectal
neoplasms may also be resistant to the beneficial effects
of hPDI. Experimental evidence indicates that polyphenols
in healthy plant foods, such as ferulic acid and p-coumaric
acid in whole grains,57,58 hydroxytyrosol in olive oil59 and
epigallocatechin-3-gallate in green tea,60 can inhibit col-
orectal tumour cell growth via downregulation of EGFR
expression. The resistance of KRAS-mutant tumour cells
to alterations in EGFR signalling might result in the null
association between hPDI and KRAS-mutant CRC. An
alternative explanation could be that unhealthy diets, indi-
cated by a lower hPDI, are not responsible for the multiple
KRAS mutations that lead to the initiation of CRC, sug-
gesting looking for other biological mechanisms.61 In the
analyses of CRC subtypes defined by all four molecular
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markers, we observed a beneficial association between
hPDI and Type 4 CRC (defined by Jass38). These find-
ings are consistent with a previous analysis reporting that
dietary factors including total dietary fibre and total folate
were generally more strongly associated with conven-
tional non-serrated adenomas thanwith serrated lesions.62
Although future studies are needed to elucidate the mech-
anisms underlying our findings, our approach can provide
novel insight into the possible cancer-preventive effects of
healthy plant-based diets.
Several strengths of our study are apparent. First, the

prospective cohort design eliminated differential recall
bias between individuals with and without CRC. Sec-
ond, IPW method was applied to adjust for selection bias.
Third, repeated assessments of diet allowed us to assess
long-term dietary habits and patterns in relation to CRC
incidence. Fourth, the molecular pathological epidemiol-
ogy approach16,45,63–66 enabled us to assess the etiologi-
cal link between the dietary patterns and specific molecu-
lar subtypes, thereby providing pathogenic insight into the
observed epidemiological association.
Nevertheless, we acknowledge several limitations. First,

as in any other observational study, there existed unmea-
sured and residual confounding to uncertain degrees.
However, residual confounding is likely smaller compared
to most previous studies, given our detailed and repeated
measurement of diet and covariates. Similar results gener-
ated from several sensitivity analyses also gave us reassur-
ance of the robustness of our findings. Second, our data on
dietary intake were derived from responses of study partic-
ipants to the questionnaires and had certain measurement
errors. However, the FFQs used in our study were thor-
oughly validated against dietary records.23,24 Third, not all
incident CRC cases provided tissuematerials formolecular
analyses. Nonetheless, the employed IPWmethod enabled
adjusting for potential selection bias due to the varied
availability of stored carcinomatous tissue, and the results
using the IPW approach were similar to those not using
the IPW method. In addition, the small sample size for
subgroup analyses based on tumour characteristics lim-
ited our power to detect the heterogeneity. Finally, all
of our participants were health care workers, and a vast
majority of them were white. Future research is neces-
sary to examine similar hypotheses in other population
groups.
In summary, our current study revealed an inverse asso-

ciation between a healthy plant-based diet and the inci-
dence of CRC, particularly the KRAS-wildtype subtype, as
well as a positive association between unhealthy plant-
based diet and CRC incidence. Our data not only under-
score the necessity of differentiating healthy plant foods
from unhealthy plant foods when advocating implementa-
tion of plant-based diets for CRC prevention but also high-

light themodifying effects of tumour characteristics on the
association of diet with CRC risk.
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