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Background: Patients with Internet gaming disorder (IGD) and attention-

deficit/hyperactivity disorder (ADHD) have high comorbidity but it is still unknown

whether these disorders have shared and distinctive neuroimage alterations.

Objective: The aim of this meta-analysis was to identify shared and disorder-specific

structural, functional, and multimodal abnormalities between IGD and ADHD.

Methods: A systematic literature search was conducted for whole-brain voxel-

based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies

comparing people with IGD or ADHD with healthy controls. Regional gray matter

volume (GMV) and fMRI differences were compared over the patient groups and then

a quantitative comparison was performed to find abnormalities (relative to controls)

between IGD and ADHD using seed-based d mapping meta-analytic methods.

Result: The meta-analysis contained 14 IGD VBM studies (contrasts covering 333 IGDs

and 335 HCs), 26 ADHD VBM studies (1,051 patients with ADHD and 887 controls),

30 IGD fMRI studies (603 patients with IGD and 564 controls), and 29 ADHD fMRI

studies (878 patients with ADHD and 803 controls). Structurally, VBM analysis showed

disorder-specific GMV abnormality in the putamen among IGD subjects and orbitofrontal

cortex in ADHD and shared GMV in the prefrontal cortex. Functionally, fMRI analysis

discovered that IGD-differentiating increased activation in the precuneus and shared

abnormal activation in anterior cingulate cortex, insular, and striatum.

Conclusion: IGD and ADHD have shared and special structural and functional

alterations. IGD has disorder-differentiating structural alterations in the putamen and
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ADHD has alterations in the orbitofrontal cortex. Disorder-differentiating fMRI activations

were predominantly observed in the precuneus among IGD subjects and shared

impairing function connection was in the rewards circuit (including ACC, OFC,

and striatum).

Keywords: internet gaming disorder, attention-deficit/hyperactivity disorder, rewards circuit, voxel-based

morphometry, functional connectivity

INTRODUCTION

Internet gaming disorder (IGD) is characterized by difficulties in
controlling online gaming behaviors, including symptoms such
as craving (1, 2), loss of control, and excessive impulsivity (3, 4).
Previous studies have indicated that the prevalence estimates of
IGD range from 0.3 to 10.8%, depending on the country and
age of the population (5–8). Attention-deficiency/hyperactivity
disorder (ADHD) has a prevalence of 5–7% (9) and is typically
characterized by symptoms of inattention, hyperactivity, and
impulsivity (10).

Several comprehensive reviews reported a strong correlation
between IGD and ADHD (11). These two disorders share some
key features such as impulsivity, seeking immediate rewards,
motivation deficit, and hostility (12, 13). A single prospective
study followed over 2,000 adolescents for 2 years and found that
ADHD was the most significant predictor for the development
of internet addiction (14). Moreover, both IGD and ADHD have
deficits in the reward circuit, which includes the prefrontal cortex
(PFC), anterior cingulate cortex (ACC), orbitofrontal cortex
(OFC), striatum (containing the caudate nucleus, putamen,
globus pallidus), amygdaloid nucleus, and thalamus (15–17).

Current evidence shows that most addictive diseases exert
initial reinforcing effects by activating reward circuits in the
brain (18). Weinstein (19) has shown that individuals who are
addicted to video-game playing obtainmuch pleasure during play
because of extensive dopamine release. In addition, functional
magnetic resonance imaging (fMRI) studies of the reward circuit
showed hyperactivity in the bilateral dorsolateral prefrontal
cortex (DLPFC), caudate nucleus, the supplementary motor
cortex (SMA), and ACC among IGD people (2, 20). Moreover,
people with IGD have abnormal structural alterations that
include reduced gray matter volume (GMV) in the bilateral ACC,
OFC, SMA, right putamen, and left dorsolateral prefrontal cortex
through different studies (17, 21, 22).

In addition, Blum et al. (23) showed that ADHD is a reward
deficiency disorder, and some theories considered that reward
deficiency might predispose individuals to addictive, impulsive,
and compulsive behavior. An ADHD, fMRI meta-analyses
displayed hypoactivation in the right and left ventrolateral
prefrontal cortex (VLPFC), anterior insular (AI), caudate
nucleus, middle frontal gyrus (MFG) (24), SMA, and ACC.
Moreover, whole-brain voxel-based morphometry (VBM)
studies found common decreased GMV in the right globus
pallidus and putamen, caudate nucleus, ventromedial prefrontal
cortex (VMPFC), and ACC (25–27).

The above studies showed brain structural abnormalities were
observed in the cingulate, striatum, frontal, and temporal lobes

between these two disorders (15, 17). Moreover, both IGD and
ADHD have abnormal whole-brain functional connectivity, such
as deficits in the reward circuit (17, 28), although they may show
much heterogeneous performance. However, only one study on
VBM and no task fMRI compared these two disorders directly.
The VBM study (29) showed that IGD subjects with a history
of childhood ADHD symptoms had greater GMV in the angular
gyrus, middle occipital gyrus, and lingual gyrus than IGD subjects
who did not have childhood ADHD symptoms. However, the
relatively small sample size of this study is statistically limited.
This study aimed to establish the most consistent disorder-
differentiating, shared structural, and functional deficits, which
are important for developing disorder-specific or transdiagnostic
treatment. A comprehensive meta-analysis was conducted,
comparing structural and functional abnormalities between
IGD and ADHD. Furthermore, multimodal structural and
functional abnormalities were performed through conducting
conjunction/disjunction analyses across VBM and fMRI studies.

According to previous studies, we hypothesized that disorder-
specific GMV abnormality would be shown in the OFC among
ADHD subjects (27) and in the putamen in IGD people,
whereas we expected disorder-shared decreased GMV in the
prefrontal cortex and striatum for both (29). As for fMRI, we
hypothesized that IGD-differentiating increased activation in
the prefrontal regions (e.g., OFC) (17) where ADHD patients
show hypoactivation, and shared abnormal overactivation in the
cingulate cortex in both disorders.

METHODS

Publication Search and Study Inclusion
Systematic and comprehensive searches were performed in the
PubMed, Web of Knowledge, and Science Direct databases
from January 1, 2010, to October 31, 2020, using different
combinations of the keywords “voxel-based morphometry” or
“VBM” or “morphometry” or “gray matter” or “functional
magnetic resonance imaging” or “fMRI” and “online-game”
or “Internet gaming disorder” or “IGD” or “Attention-
Deficit/Hyperactivity Disorder” or “ADHD.” We identified
further papers by reference tracking and consulting retrieved
high-quality meta-analysis and review articles.

The included studies had to meet the following criteria: (1)
they provided whole-brain pairwise voxel-based comparisons of
patient groups (IGD or ADHD) relative to controls; (2) they
were a task-related fMRI or VBM study; (3) they provided
peak coordinates in Montreal Neurological Institute (MNI) or
Talairach spaces; (4) the diagnosis of ADHD patients had to be
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based on DSM-IV-TR, or DSM-5, or ICD-10 criteria, and IGD
was diagnosed according to DSM-5 or YIAS or CIAS; and (5)
there were no neurological or psychiatric comorbidities (such as
depression, anxiety, autism, learning disorder, and epilepsy).

We excluded studies that had fewer than 10 patients, those that
used only ROI analyses, duplicated patient data, or no eligible
contrasts (25, 30–32). If studies did not report peak coordinates,
corresponding authors were contacted for necessary details;
otherwise, these studies were excluded from the meta-analysis.

The two authors (Gao and Zhang) assessed all articles and
achieved 100% agreement.

Statistical Analysis
We used an anisotropic effect-size version of the Seed-based d
Mapping software package (AES-SDM) (version 5.15) to conduct
the voxel-wise meta-analysis (https://www.sdmproject.com/),
following MOOSE guidelines for meta-analyses of observational
studies. The AES-SDM data processing procedure is briefly
summarized here (http://www.sdmproject.com/software/
tutorial.pdf). AES-SDM uses an anisotropic non-normalized
Gaussian kernel to recreate an effect-size map and an effect-size
variance map for the contrast between patients and controls
from peak coordinates and effect sizes for each VBM or fMRI
study. Coordinates were converted to Montreal Neurological
Institute (MNI) space for this analysis. Following this, a
mean map is created by performing a voxel-wise calculation
of the random-effects mean of the study maps, weighted by
sample size and variance of each study and between-study
heterogeneity. In addition, full width at half maximum (FWHM)
was set to 20mm because this setting was optimal to balance
sensitivity and specificity and other parameters included
voxel P = 0.005, peak height Z = 1, and cluster extent = 10
voxels (33).

First, separate analyses were conducted to examine regional
GMV within each patient group (IGD and ADHD) relative to
controls and then between the two disorders. Second, fMRI
meta-analyses were conducted to examine the neural activation
abnormalities observed within and between disorders using all
available data. Then a conjunction analysis across both patient
groups relative to controls was further performed to examine
areas of shared/contrasting abnormalities; This conjunction
method was also used within patient groups to conduct
multimodal analyses, which showed regions of overlapping
functional and structural abnormalities compared with controls.
Some studies used multiple task contrasts, several functional
tasks, or identical controls. Combined maps with reduced
variance were calculated to avoid dependent data in the analyses
(26). To examine the effects of age and gender, meta-regression
analyses were performed. Finally, we also conducted additional
reliability analyses to assess the robustness of the findings: a
jackknife sensitivity analysis, which repeated the same analysis
excluding one study each time, to assess the reproducibility of the
results for each meta-analysis. Moreover, an Egger’s test was used
to examine possible publication bias.

A statistical threshold p< 0.005 was used for all meta-analyses
(32, 34), and a reduced threshold p < 0.0005 and a cluster extent

20 voxels was used in the meta-regression to control for false
positives (35).

RESULT

Search Results and Sample Characteristics
A pool of 2,174 retrieved publications was searched and 41
additional records were identified through other sources. After
duplicates were removed, 1,103 records were screened and 289
full-text articles were assessed for eligibility. The final dataset
comprised 14 IGD VBM studies (contrasts covering 333 IGDs
and 335 HCs), 26 ADHD VBM studies (1,051 patients with
ADHD and 887 controls), 30 IGD fMRI studies (603 patients
with IGD and 564 controls), and 29 ADHD fMRI studies
(878 patients with ADHD and 803 controls). See Figure 1 and
Tables 1, 2 for more details.

In the VBM analysis, Wilcoxon W tests revealed that patient
groups did not differ in age (z = −1.155; P = 0.248), and Chi-
squared test showed both groups contained a significantly greater
proportion of males (χ2

= 26.362; P = 0.001). In the fMRI
meta-analysis, patient groups did not differ in age (z = −1.077;
P = 0.282) but a large proportion of patients with IGD and
ADHD were males (χ2

= 93.565; P = 0.001). Age and sex were
consequently included as covariates in all between-group meta-
analyses performed including only the adult studies, which were
age and sex matched.

Disorder-Differentiating and Shared Brain
Structure Abnormalities
Regional Differences in GMV

IGD VBM

Relative to healthy controls, IGD had reduced gray-matter
volume (GMV) in the bilateral anterior cingulate cortex (ACC),
median cingulate cortex (MCC), superior frontal gyrus (SFG),
the supplementary motor cortex (SMA), right putamen/striatum,
bilateral inferior frontal gyrus (IFG), and left middle frontal gyrus
(MFG) (Table 3 and Figure 2).

ADHD VBM

ADHD Patients compared with HCs showed significantly
lower GMV in the bilateral ACC/olfactory cortex/median
cingulate, bilateral striatum, left caudate nucleus, left precentral
gyrus/postcentral gyrus, right superior frontal gyrus, and
orbitofrontal cortex (OFC) (Table 3 and Figure 2).

IGD vs. ADHD VBM

People with IGD, relative to ADHD, had more reduced
GMV in the right striatum (Montreal Neurological Institute
[MNI]coordinates, 28, −4, −10; 44 voxels); while people
with ADHD showed lower left caudate nucleus GMV (MNI
coordinates,−12, 8, 6; 89 voxels), relative to IGD (Table 3).

Disorder-Differentiating and Shared Brain
Functional Connectivity
IGD fMRI
Across all fMRI studies, people with IGD showed activation in the
bilateral precuneus/cingulate cortex (CC), right OFC, left angular
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FIGURE 1 | Literature search methods and results for ADHD and IGD fMRI and VBM.

gyrus/middle temporal gyrus (MTG)/MOG, left precentral gyrus,
bilateral IFG, right caudate nucleus. Moreover, IGDs had lower
activation in the right precentral and postcentral gyri, right
insular/rolandic operculum, compared with controls (Table 3
and Figure 3).

ADHD fMRI
Patients with ADHD relative to controls showed overactivation
in the right DLPFC, right MFG, and right ACC. Hypoactivation
was observed in the right precentral gyrus (motor cortex), left
STG/insula/OFC, right STG/MTG, left DLPFC/MFG (Table 3
and Figure 3).

IGD vs. ADHD fMRI
ADHD was associated with disorder-specific hypoactivation
relative to IGD in the L MCC, R MTG, R caudate nucleus, and
L MFG (Table 3).

Multimodal VBM and fMRI Analyses
Multimodal Analysis in IGD
In patients with IGD, decreased GMV and functional connection
relative to controls overlapped in the right insular/putamen

(MNI coordinates, 36, −8, 4; 240 voxels) while increased
GMV overlapped with increased activation in the right angular
gyrus/MOG and precuneus (MNI coordinates, 38, −70, 36 and
8, −56, 34; 456 voxels and 258 voxels, respectively). The left
ACC and right IFG was decreased in volume and increased in
function connection in patients with IGD relative to controls
(MNI coordinates, 4, 16, 22 and 50, 24, 24; 832 and 445 voxels)
(Figure 4).

Multimodal Analysis in ADHD
As for ADHD patients, increased GMV and functional activation
relative to controls overlapped in the right fusiform gyrus
(MNI coordinates, 34, −8, −28; 39 voxels) while decreased
GMV overlapped with decreased activation in the right superior
temporal gyrus, left inferior frontal gyrus, and left postcentral
gyrus (MNI coordinates: 58, −42, 16; −30, 16, −24 and −50,
−14, 46; 810 voxels; 776 voxel and 222 voxels, respectively)
(Figure 5).

Publication Bias
Egger’s tests were performed to examine potential publication
bias. The results of the Egger tests were non-significant (P > 0.05
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TABLE 1 | Sample characteristics of VBM and fMRI studies in IGD and ADHD group.

References Age group Patients Controls

Number (% male) Mean age, y Number (% male) Mean age, y

1. VBM studies in IGD

Du et al. (36) Adolescents 25 (100) 17.28 27 (100) 17.48

Han et al. (37) Adults 20 (100) 20.90 18 (100) 20.90

He et al. (21) Adults 26 (77) 20 20.69 26 (77) 20.46

Jin et al. (38) Adults 25 (64) 16 19.12 21 (67) 18.76

Ko et al. (39) Adults 20 (100) 21.70 20 (100) 22.40

Lee et al. (22) Adults 30 (100) 23.57 30 (100) 24.23

Lee et al. (29) Adults 31 (100) 24.00 30 (100) 23.00

Lin et al. (40) Adults 20 (100) 23.90 20 (100) 22.70

Mohammadi et al. (41) Adults 35 (100) 22.20 36 (100) 22.28

Seok and Sohn (42) Adults 29 (100) 23.60 29 (100) 22.70

Sun et al. (43) Adults 18 (83) 15 20.50 21 (86) 21.95

Weng et al. (44) Adolescents 17 (24) 4 16.25 17 (12) 15.54

Yoon et al. (45) Adults 19 (100) 22.90 25 (100) 25.40

Zhou et al. (46) Adolescents 18 (89) 16 17.23 15 (87) 17.81

2. VBM studies in ADHD

Ahrendts et al. (47) Adults 31 (65) 31.20 31 (65) 31.50

Amico et al. (48) Adults 20 (75) 33.60 20 (75) 34.70

Bonath et al. (49) Adolescents 18 (x) 13.60 18 (x) 14.10

Bralten et al. (50) Adolescents 307 (68) 17.06 196 (49) 16.66

Gehricke et al. (51) Adults 32 (81) 25.31 40 (83) 23.93

He et al. (52) Children 37 (100) 9.90 35 (100) 10.70

Jagger et al. (53) Children 41 (x) 9.61 32 (x) 9.66

Kappel et al. (54) Adults 16 (94) 23.50 20 (100) 23.70

Children 14 (71) 9.80 10 (80) 11.00

Sutcubasi et al. (55) Adolescents 19 (74) 10.32 18 (67) 10.17

Klein et al. (56) Adults 25 (36) 66.90 34 (18) 68.90

Kobel et al. (57) Adolescents 14 (x) 10.43 12 (x) 10.92

Kumar et al. (58) Children 18 (100) 9.60 18 (100) 9.70

Li et al. (59) Adolescents 30 (100) 10.30 30 (100) 10.30

Lim et al. (60) Adolescents 29 (100) 13.80 29 (x) 14.40

Almeida Montes et al. (61) Adults 20 (50) 28.95 20 (50) 27.57

Moreno-Alcázar et al. (62) Adults 44 (66) 31.61 44 (66) 32.57

Ramesh and Rai (63) Adolescents 15 (27) 16.80 15 (27) 16.72

Roman-Urrestarazu et al. (64) Adults 49 (65) 22.23 34 (57) 22.95

Seidman et al. (65) Adults 74 (x) 37.30 54 (x) 34.30

Sethi et al. (66) Adults 30 (63) 33.70 30 (63) 32.60

Shimada et al. (67) Adolescents 17 (88) 10.29 15 (73) 12.80

van Wingen et al. (68) Adults 14 (100) 32.00 15 (100) 37.00

Vilgis et al. (69) Adolescents 33 (100) 12.58 31 (100) 12.75

Villemonteix et al. (70) Adolescents 38 (58) 10.40 25 (60) 10.10

Wang et al. (71) Adolescents 30 (63) 10.60 25 (48) 10.60

Zhao et al. (72) Adolescents 36 (x) 12.14 36 (x) 11.69

3. fMRI studies in IGD

Chiao et al. (73) Adults 15 (100) 24.70 15 (100) 24.47

Chun et al. (74) Adolescents 16 (100) 13.60 19 (100) 13.37

Dieter et al. (75) Adults 15 (87) 28.7 17 (76) 24.94

Ding et al. (13) Adolescents 17 (82) 16.40 17 (82) 16.29

Dong et al. (76) Adults 18 (100) 21.00 19 (100) 21.00

(Continued)
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TABLE 1 | Continued

References Age group Patients Controls

Number (% male) Mean age, y Number (% male) Mean age, y

Dong et al. (76) Adults 27 (x) 21.00 43 (x) 21.47

Dong et al. (77) Adults 16 (100) 21.40 15 (100) 22.10

Dong et al. (78) Adults 14 (100) 23.40 13 (100) 24.10

Dong and Potenza (79) Adults 20 (100) 21.30 16 (100) 21.90

Dong et al. (80) Adults 15 (100) 21.60 15 (100) 22.40

Han et al. (81) Adolescents 15 (100) 14.20 15 (100) 14.00

Kim et al. (82) Adolescents 13 (x) 14.50 10 (x) 14.20

Ko et al. (83) Adults 15 (100) 24.70 15 (100) 24.47

Ko et al. (84) Adults 26 (100) 24.60 23 (100) 24.35

Lee et al. (85) Adults 24 (100) 24.80 24 (100) 24.3

Lee et al. (86) Adolescents 18 (18) 13.60 18 (100) 13.40

Lemenager et al. (87) Adults 16 (88) 28.30 17 (76) 24.94

Lin et al. (88) Adults 19 (100) 22.20 21 (100) 22.80

Liu et al. (2) Adults 39 (100) 22.60 23 (100) 23.09

Liu et al. (89) Adults 11 (100) 23.50 11 (100) 22.45

Liu et al. (90) Adults 41 (100) 21.90 27 (100) 22.74

Lorenz et al. (91) Adults 8 (100) 25.00 9 (100) 24.80

Ma et al. (92) Adults 29 (100) 22.60 23 (100) 23.09

Qi et al. (93) Adolescents 23 (100) 17.30 24 (100) 17.42

Qi et al. (94) Adolescents 24 (100) 17.20 24 (100) 17.42

Shin et al. (95) Adults 20 (x) 22.10 21 (x) 22.14

Sun et al. (20) Adults 10 (100) 20.40 10 (100) 20.30

Wang et al. (96) Adults 20 (100) 21.00 20 (100) 21.95

Zhang et al. (97) Adults 19 (100) 22.20 21 (21) 22.80

Zhang et al. (98) Adults 40 (100) 22.00 19 (100) 22.89

4. fMRI studies in ADHD

Cubillo et al. (99) Adults 11 (100) 29.00 10 (100) 28.00

Dibbets et al. (100) Adults 15 (100) 28.90 14 (100) 28.80

Kooistra et al. (101) Adults 11 (100) 21.50 11 (100) 22.30

Passarotti et al. (102) Adolescents 11 (55) 13.10 15 (47) 14.13

Cubillo et al. (103) Adults 11 (100) 29.00 15 (100) 28.00

Rubia et al. (104) Adolescents 12 (100) 13.00 13 (100) 13.00

Rubia et al. (105) Adolescents 12 (100) 13.00 13 (100) 13.00

Spinellli et al. (106) Adolescents 13 (69) 10.60 17 (47) 10.50

Ma et al. (107) Children 15 (53) 9.82 15 (53) 9.91

Sebastian et al. (108) Adults 20 (55) 33.30 24 (46) 30.30

Siniatchkin et al. (109) Children 17 (82) 9.30 14 (71) 9.10

Bhaijiwala et al. (110) Adolescents 12 (100) 13.80 12 (100) 15.40

Chantiluke et al. (111) Adolescents 18 (100) 13.40 25 (100) 14.30

Cubillo et al. (112) Adolescents 19 (100) 13.00 29 (100) 13.00

Schulz et al. (113) Adults 14 (100) 23.30 14 (100) 22.80

Chen et al. (114) Adults 29 (100) 24.90 25 (100) 25.64

Janssen et al. (115) Adolescents 21 (90) 10.60 17 (76) 10.28

Rasmussen et al. (116) Adults 25 (68) 24.60 12 (50) 24.10

Van Rooij et al. (117) Adolescents 185 (70) 17.30 124 (44) 16.50

Ma et al. (118) Adolescents 25 (76) 15.40 33 (67) 15.30

Zamorano et al. (119) Adolescents 17 (100) 11.60 17 (100) 11.70

Fan et al. (120) Adolescents 27 (89) 12.10 27 (70) 13.00

Shang et al. (121) Adults 25 (56) 28.50 30 (50) 28.17

(Continued)
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TABLE 1 | Continued

References Age group Patients Controls

Number (% male) Mean age, y Number (% male) Mean age, y

Thormton et al. (122) Adolescents 20 (90) 12.40 20 (40) 10.55

Materna et al. (123) Adults 30 (63) 31.40 35 (54) 28.89

Mehren et al. (124) Adults 20 (100) 31.40 20 (100) 29.50

Yang et al. (125) Adults 20 (45) 26.90 20 (40) 27.70

Ariadna et al. (126) Adolescents 18 (67) 10.30 14 (64) 11.12

Pretus et al. (127) Adults 21 (52) 36.50 24 (50) 34.33

WHO, Children:1-9y; Adolescents, 10-19y; Adults, >19y.

TABLE 2 | Demographic information for studies included in meta-analysis.

Characteristic IGD ADHD IGD controls ADHD controls

Voxel-based morphometry

Patients, no. 333 1,051 335 887

Male sex, no. (%) 300 (90) 811 (77) 302 (90) 639 (72)

Mean age, y 21.3 20.3 21.43 21.3

Functional magnetic resonance imaging

Patients, no. 603 878 564 803

Male sex, no. (%) 596 (99) 540 (62) 553 (98) 448 (56)

Mean age, y 21.3 15.4 21.2 15.8

for all comparisons, Bonferroni corrected), suggesting that there
was no publication bias. Jack-knife reliability analyses suggested
robust disorder-differentiating findings.

DISCUSSION

The purpose of our meta-analytic comparison is to show that
patients with IGD and ADHD have predominantly shared
and disorder-specific patterns of structural and functional
abnormalities, especially in reward function. Structurally, IGD
people have decreased putamen GMV and ADHD patients have
lower GMV in the orbitofrontal cortex. Functionally, precuneus
was reported as disorder-special activation in IGD patients.
Furthermore, functional alteration in the OFC was opposite,
which is activated in IGDs and hypoactive in ADHD. Moreover,
disorder-specific increased GMV and functional activation were
found in the precuneus among IGD patients and in the fusiform
gyrus in ADHD patients through multimodal analysis. Patients
with IGD and ADHD showed commonly the same direction
of change in the ACC (decreased GMV and hyperactivation)
and insula (decreased GMV and lower activation). In addition,
striatum, expecting abnormal structure in both two disorders,
was reported to be reduced in GMV and functional connectivity
in the IGD group and reduced in GMV and no significant change
in fMRI for the ADHD group.

The key disorder-shared abnormality in two disorders
both in structure and function is the prefrontal-striatum
circuit. The circuit network contains the anterior cingulate

cortex, the orbital prefrontal cortex, the ventral striatum,
the ventral pallidum, the dorsal prefrontal cortex, amygdala,
hippocampus (16). Attention-deficit/hyperactivity disorder
(ADHD) has been conceptualized as a disorder of the
prefrontal cortex for over 30 years (28) and IGD is found
to be defective in PFC through various studies (22, 40),
our results showed that parts of structural and functional
alterations in ADHD and IGD patients concentrated
on PFC areas. The main cortical areas in the PFC areas
associated with reward are the anterior cingulate cortex and
orbitofrontal cortex.

As predicted, the results of the main meta-analyses converged
on the ACC, which showed functional hyperactivation and gray-
matter reduction in IGDs and ADHD relative to HCs. This
finding is in line with recent transdiagnostic meta-analyses
that this region may serve as a common bio-marker across
psychiatric disorders (128), possibly because it modulates the
neural activity of the default-mode network and executive
control network (129) and is critically involved in multiple
processes including cognitive control (130), emotional regulation
(131), and reward-relative decision-making (132). Bonath et
al. found significantly smaller ACC gray matter volume in
subjects with ADHD and reduced volume in ACC was directly
associated with symptoms of attentional deficits (49). IGD
participants cannot control their compulsion to play Internet
games despite experiencing negative consequences due to
impaired cognitive control of ACC (40). These studies are
consistent with our findings. Neural alterations in the ACC
area, consistent with the interaction of the Person-Affect-
Cognition-Execution model, play an important role in cue-
induced craving, rewards-seeking, (22) and cognitive control in
the ACC among IGD and ADHD patients. Moreover, although
the direction of the alteration of the ACC is inconsistent across
modalities (fMRI and VBM), previous evidence suggests that
gray-matter-volume increases or reductions may not simply
correspond to functional neural activation or deactivation (132).
In conclusion, fMRI and VBM may reflect the distinctive
aspects of neural alterations, and the evidence converges
to emphasize an important role for the ACC in IGD
and ADHD.

The disorder-contrasting findings in OFC are worth
discussion. Now it is commonly understood that the OFC
contributes to psychotic dysfunction including impulse control
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TABLE 3 | Meta-analysis results for voxel-based morphometry studies in IGD and ADHD.

Contrast MNI coordinates SDM Z score P-value Voxels number Jack-knife sensitivity Brodmann areas

X Y Z

1. VBM RESULTS

1) IGD decreased vs. control

L ACC/R ACC/L SFG/R

MCC/L MCC/R SMA/L

SMA/R SFG

0 40 12 −2.636 0.000005186 2,107 14 out of 14 32, 24, 10, 11, 6

R putamen/R striatum 28 0 −4 −2.277 0.000072241 392 14 out of 14 48

L MFG/L IFG −42 34 18 −1.742 0.001615345 99 11 out of 14 45, 46

R IFG 50 32 18 -1.599 0.003282249 20 11 out of 14 45

2) ADHD decreased vs. control

L ACC/L SFG/R SFG/R

ACC/L olfactory cortex/R

olfactory cortex/L median

cingulate/L caudate/L

striatum/R striatum/R

MCC/L median network/R

gyrus rectus/L gyrus rectus

4 24 – −3.037 0.000361264 1,849 25 out of 27 10, 11, 24, 25, 32

L precentral gyrus/L

postcentral gyrus

−40 −6 54 −2.248 0.000743151 176 26 out of 27 6

R OFC/R DLSFG 26 68 −2 −2.381 0.000407696 92 26 out of 27 11

L OFC −24 16 −24 −2.222 0.000830889 55 25 out of 27 38

3) IGD (vs. control) vs. ADHD (vs. control)

IGD (vs. control) decreased

vs. ADHD (vs. control)

R striatum 28 −4 −10 1.958 0.000103235 24

ADHD (vs. control)

decreased vs. IGD (vs.

control)

L caudate nucleus −12 8 6 1.626 0.000030994 89

2. fMRI RESULTS

1) IGD increased vs. control

L precuneus/R precuneus/R

MCC/L MCC/R PCC/L PCC

−4 −58 38 2.253 0.000139356 1,185 30 out of 30 7, 23

R IFG/R precentral gyrus 50 12 16 2.454 0.000015497 808 30 out of 30 6, 44, 45, 48

L angular gyrus/L MTG/L

MOG

−42 −64 28 2.098 0.000376761 465 30 out of 30 19, 39

L precentral gyrus/L IFG −48 8 30 2.167 0.000232220 189 28 out of 30 6, 44

R caudate nucleus 10 8 18 1.819 0.001832068 33 24 out of 30 25

IGD decreased vs. control

R precentral gyrus/R

MFG/R postcentral gyrus

42 −10 48 −1.489 0.000092924 831 27 out of 30 3, 4, 6

R insula/R Rolandic

operculum

34 −20 18 −1.391 0.000175476 295 28 out of 30 48

L precentral gyrus −38 −24 68 −1.209 0.000547051 111 28 out of 30 4, 6

2) ADHD increased vs. control

R MFG/R DLSFG 18 48 28 1.166 0.000392199 103 27 out of 29 9, 46

R ACC 12 42 22 1.158 0.000030994 52 28 out of 29 32

ADHD decreased vs. control

R precentral/R postcentral

gyrus

30 −24 54 −3.584 ∼0 813 29 out of 29 2, 3, 4, 6

(Continued)
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TABLE 3 | Continued

Contrast MNI coordinates SDM Z Score P-value Voxels number Jack-knife sensitivity Brodmann areas

X Y Z

L STG/L insula/L OFC −46 12 20 −3.167 0.000113547 286 28 out of 29 38, 47

R STG/R MTG 56 −40 10 −3.172 0.000113547 147 28 out of 29 22, 42

L DLSFG/L MFG −24 38 36 −3.246 0.000072241 55 28 out of 29 9, 46

3) IGD (vs. control) vs. ADHD (vs. control)

ADHD (vs. control)

decreased vs. IGD (vs.

control)

L MCC −2 −6 32 −3.534 0.000010312 254 23, 24

R STG 52 −40 12 −2.987 0.000836074 88 41, 42

R caudate nucleus 10 8 20 −3.392 0.000046432 57

L MFG −20 46 32 −2.925 0.001109600 20 9

IGD (vs. control) decreased

vs. ADHD (vs. control)

Null

4) Multimodal analysis in IGD

VBM increased and fMRI

increased

R MOG/angular gyrus 38 −70 36 1 456 7, 19, 39

R precuneus 8 −56 34 1 258 23

VBM decreased and fMRI

increased

L ACC/SFG 4 16 22 1 832 24,32

R IFG 50 24 24 1 445 45,48

VBM decreased and fMRI

decreased

Insula/putamen 36 −8 4 1 240 48

5) Multimodal analysis in ADHD

VBM increased and fMRI

increased

R fusiform gyrus 34 −8 −28 1 39 20

VBM decreased and fMRI

increased

R MCC 4 24 32 1 1,315 24

R SFG(OFC) 4 38 −14 1 766 11

R STG 62 −12 4 1 376 22

R MOG 40 −82 6 1 229 19

VBM decreased and fMRI

decreased

R STG 58 −42 16 1 660 42

L IFG −30 16 −24 1 543 38

L postcentral gyrus −50 −14 46 1 222 4

ACC, anterior cingulate cortex; DL, dorsolateral; IFG, inferior frontal gyrus; L, Left; MNI, Montreal Neurological Institute; MCC, median cingulate cortex; MFG, middle frontal gyrus; MOG,

middle occipital gyrus; MTG, middle temporal gyrus; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; R, Right; SDM, seed-based d mapping; SMA, supplementary motor

area; SFG, superior frontal gyrus; STG, superior temporal gyrus.

andmonitoring ongoing behavior and rewards-seeking behaviors
(44). Our decreased OFC activation in ADHD is consistent with
a previous study that showed decreased cognitive capacity, which
is related to hyperactivity and impulsivity and is associated with

reduced OFC activity during reward expectation in ADHD
patients (133). Furthermore, the strong activation of OFC
in IGD patients might be explained by pleasant objects and
rewarding anticipation, which refers to internet games in IGD,
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FIGURE 2 | Results of Voxel-Based Morphometry (VBM) for IGD and ADHD.

Results of VBM meta-analysis for, from top to bottom, patients with Internet

gaming disorder (IGD) relative to controls, patients with

attention-deficit/hyperactivity disorder (ADHD) relative to controls.

so that IGD people are more eager to look for stimulation
and rewards.

As for the striatum, which comprises the caudate nucleus
and the putamen, the nucleus accumbens (NAc), and the
olfactory tubercle, which appear in our result. When IGD or
ADHD patients are exposed to cue-relative stimulation, the
activation of glutamatergic projections from the ventral PFC, the
ventral hippocampus, and the amygdala (and presumably medial
thalamus) to striatal projections that increase DA signaling
and release in the NAc and dorsal striatum will enhance
reward craving and eventually result in game activity in IGD
and distraction in ADHD (18). However, we found reduced
striatum GMV in the IGD and ADHD group and lower
functional connectivity in the IGD group, but there was no
significant change in fMRI for the ADHD group. Using all
kinds of checkout, there was still no significant functional
connection alteration in striatum among ADHD patients. We
speculate that the reasons could include ADHD fMRI studies
that claim there was inconsistent striatum action, meaning
there was no result when putting these studies together to
conduct meta-analyses.

We found consistent changes in the insula, which had
decreased GMV and lower activity in ADHD and IGD
subjects. The insula are involved in motivation, rewards,
salience detection, and cognitive control (98, 134, 135),
modulated by dopaminergic activity (134), which is typically
decreased in IGD and ADHD. Therefore, the insula is
hypothesized to be a neural system that increases reward
drivers and weakens cognitive control (136). In ADHD,
deficient insula activation may result in reduced task-
related salience detection and cognitive control, resulting
in lower self-control ability and increased distractibility. IGD

FIGURE 3 | Results of Functional Magnetic Resonance Imaging (fMRI) for IGD

and ADHD. Results of fMRI meta-analysis for, from top to bottom, patients with

Internet gaming disorder (IGD) relative to controls (red: increased in IGD; blue:

decreased in IGD), patients with attention-deficit/hyperactivity disorder (ADHD)

relative to controls (green: increased in ADHD; yellow: decreased in ADHD).

hypoactivation in the insula probably shows that they are
habituated to gaming-related stimulation and insensitive
to other conventional stimulation, which contributes to
gaming addiction.

We find decreased putamen GMV in IGD people through
VBM analysis. The dorsolateral putamen has been functionally
linked to the sensorimotor cortices, forming the sensorimotor
network. A recent research report that health controls show
a significant positive correlation in the neural pathways
connecting the putamen-MFG-insula when facing gaming
cues, which is missing in individuals with IGD (136).
Meanwhile, this study also demonstrated increased excitatory
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FIGURE 4 | Multimodel analysis in the IGD. Blue: increased GMV and

increased activation; Yellow: decreased GMV and functional connection;

Green: decreased GMV and increased activation.

neuromodulation in the effective connections among the
insula-putamen-OFC in IGD, a neural pathway involving
reward-related activity. In conclusion, the putamen is part of
the reward pathway, the declination of putamen gray matter
may impact its function, which is part of the reason for
game addiction.

In our study, disorder-specific activation is suggested in the
precuneus among IGD patients. The precuneus is associated with
visual imagery, attention, and memory retrieval by participating
in the visual process and integrates related memory (137). A
possible explanation is that high activation in the precuneus
is relative to gaming urge, craving, and the severity of
Internet addiction. This result suggests that the precuneus
activates to process the gaming cue, and contributes to the
cue-induced craving for online gaming. Furthermore, ADHD
patients have special activation in the fusiform gyrus. The
findings are consistent with a study of reward effect on brain
structure and function in adults and children with ADHD (54).
The fusiform gyrus (FG), which topographically connects the
striate cortex to the inferior temporal lobe, plays a pivotal
role in high-level visual/cognitive functions (138). Speculation
is that fusiform mediate various stimuli that result in it
being hard for people with ADHD to focus on what they
are doing.

FIGURE 5 | Multimodel analysis in the ADHD. Blue: increased GMV and

increased activation; Yellow: decreased GMV and functional connection;

Green: decreased GMV and increased activation.

LIMITATION

This meta-analysis has several limitations. First, it was based
primarily on peak coordinates rather than raw statistical
brain maps. Besides, the heterogeneity of the methodologies
among VBM studies could not be avoided, such as the
differences in MRI machines, slice thickness, preprocessing
protocols (traditional or optimized), and smoothing kernel
size, which might have contributed to the inconsistent
results (33). Moreover, the included studies have different
proportions of males and diverse statistical thresholds, which
may lead to discrepant results. Previous studies suggest
that neural alterations in some regions may be more severe
in female IGDs and ADHDs (17), but future studies are
needed to shed more light on gender difference and conduct
further research.

CONCLUSION

The comparative meta-analytic findings of this study stress
the shared and distinctive brain structure and function in IGD
and ADHD. Disorder-differentiating structure alterations are
reported in the putamen for IGD and in the orbitofrontal
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cortex for ADHD subjects. Disorder-differentiating fMRI
activation was predominantly observed in the precuneus
among IGD subjects. The shared functional alterations focus
on the frontal-striatum reward circuit, which is important for
understanding the underlying pathophysiology and proves
that these two disorders have a common neurological
foundation. Disorder-shared neurofunctional biomarkers
provide useful evidence that the drugs treat ADHD
could be used on IGD. Disorder-specific neurofunctional
biomarkers could ultimately aid in the development of
future, disorder-differentiated behavioral, pharmacological, or
neurotherapeutic treatments.
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