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Presbyopia, from the Greek for aging eye, is, like death and taxes, inevitable. Presbyopia causes near vision to
degrade with age, affecting virtually everyone over the age of 50. Presbyopia has multiple negative effects on
the quality of vision and the quality of life, due to limitations on daily activities – in particular, reading. In
addition presbyopia results in reduced near visual acuity, reduced contrast sensitivity, and slower processing
speed. Currently available solutions, such as optical corrections, are not ideal for all daily activities. Here we
show that perceptual learning (repeated practice on a demanding visual task) results in improved visual
performance in presbyopes, enabling them to overcome and/or delay some of the disabilities imposed by the
aging eye. This improvement was achieved without changing the optical characteristics of the eye. The
results suggest that the aging brain retains enough plasticity to overcome the natural biological deterioration
with age.

P
resbyopia results from the gradual decrease of accommodative (focusing) power with age1. This loss of
accommodation begins quite early in life, and is complete or nearly so by about age 50, with the first-
reported negative effects on reading and near tasks occurring between about 42 and 44 years of age2, and

affecting virtually everyone by age 51. It is estimated that by 2020 1.4 billion people will be affected by presbyopia3.
The age-related reduction in accommodation results in reduced near visual acuity and reduced reading abilities
with no optical correction. Indeed, the most common symptom of presbyopia is difficulty in reading up close,
particularly in poor lighting, and early presbyopes often complain that their arms are too short. The most
common solution is reading glasses or bifocals.

In presbyopia, the visual input to the cortex is limited by the optics of the eye. High spatial frequencies (fine
details) are attenuated. Thus, at near, the visual acuity and contrast sensitivity of uncorrected presbyopes is lower
than normal4 (see also Figs. 1 and 2). Since contrast is important in driving neural responses in the visual cortex,
the consequence of a blurred input may result in weaker and slower neuronal responses in the visual cortex,
leading to degraded letter identification and reduced reading abilities4.

We reasoned that if the neural signals from the blurred retinal image could be boosted or used more efficiently
by the brain, it may be possible to overcome or at least delay the effects of presbyopia. To test this idea, we
employed a training protocol (perceptual learning) on 30 presbyopes (age 51 6 4.4, mean 6 se; see Methods).
Perceptual learning with similar, though not identical, tasks has been shown to improve visual functions in
normal vision and in patients with both neural (amblyopia)4,5 and optical (low myopia and presbyopia)4,6 deficits.

Based on the previous studies4, participants were asked to practice at least 3 times per week, on different days,
for about 30 minutes per session. The training was based on detection of a small low-contrast grating patch (T)
flanked by two similar high-contrast patches (M) positioned in a collinear configuration that is known to result in
facilitation of target detection (LM - see Supplementary Fig. 1)7–9. In addition, we imposed a condition of
backward masking with different inter-stimulus intervals, in which the flankers were delayed after the target
(BM-T) and a condition when a second pair of mask followed the LM configuration (BM-LM)10,11. The BM effect
was shown earlier to cancel the facilitation effect after a delay (ISI) of 50 ms12. Thus, the purpose of the training
was also to try to induce faster processing to overcome the masking effect. A similar training protocol resulted in
robust gains in perceptual functions, such as percent correct, sensitivity and faster reaction time in young
participants13. Thirty subjects completed 37.4 6 10.7 (mean 6 std) sessions over a 3 months period. In order
to assess the effects of the training, we pre- and post-tested our subjects on a number of behavioral tests (visual
acuity, reading speed, contrast detection and contrast discrimination) as well as on tests of accommodation, pupil
size and depth of focus (see Methods).
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Results
Near Visual Acuity and reading. The major difficulty in presbyopia
is reading small print. Consider reading the newspaper. The font size
in a typical newspaper has a visual angle of < 14 minutes (and a
stroke size of < 2.8 minutes) when viewed from a distance of

40 cm18. This was too small for glasses-free reading in many of our
subjects prior to training. Fig. 1a shows near visual acuity (expressed
as the minimum angle of resolution) before (abscissa) and after
(ordinate) training. Newspaper font size (expressed as the stroke
size, for comparison with acuity) is shown by the gray lines. Note
that for a number of the participants, the newsprint size was smaller
than letter sizes for their pre-training acuity (indicated by the data to
the right of the vertical gray line). The mean visual acuity before
training (large solid circle) is just below the newsprint size.
Importantly, for every participant, the post-training acuity letter
size was better (smaller) than the pre-training acuity letter size, on
average by a factor of < 1.6, from 2.44 6 0.24 (geometric mean 6

95% confidence interval) arc min at pre-test to 1.56 6 0.16 arc min at
post-test (p , 1.6e-19) (Fig. 1a). Thus, after training, newsprint was
substantially larger than acuity letter size (indicated by the data below
the horizontal gray line) enabling glasses-free reading with both eyes
(squares) for all subjects.

In order to ensure that the improvements were due to the
training, rather than simply due to variability in the pre- and
post- test measurements, we pre- and post-tested the visual acuity
and contrast sensitivity of three observers approximately two
months apart, but with no intervening training. The visual acuity
data of these ‘‘control’’ subjects are shown by the gray symbols in
Fig. 1a. Note that their data fall along the equality line, and the
pre and post-training measures were not significantly different (p
5 0.16).

Presbyopia is an age related visual impairment, so it is instructive
to look at how uncorrected near visual acuity depends on age
(Fig. 1b). This figure shows clearly that both before (blue) and after
(red) training, uncorrected near acuity deteriorates systematically
with age. Importantly, at every age, acuity is better (lower) after
training, and newsprint is not too small for any subject using both
eyes (red squares). We fit the visual acuity (VA) vs. age data with a
function of the form:

VA~VAbz VAmax=1z exp Age50{Age
� �

=R
� �� �

where VAb and VAmax are the baseline and maximum visual acuities
respectively; Age50 is the age at which visual acuity reaches half of its
maximum value, and R is the rate of decline with age. The fits are
shown by the dotted red and blue curves in Fig 1b. The downward
shift in acuity at each age following perceptual learning (PL) can be
clearly seen in the fits. Interestingly, the mean VA was reduced from
2.44 6 0.24 to 1.56 6 0.16, equivalent to an effective reduction in age
of < 8.6 years, as indicated by the horizontal positions of the mean
acuities (large solid circles) and arrows in Fig. 1b.

Since visual processing time is slower in presbyopia4, we won-
dered whether reading speed would be improved by our training.
In order to test this, we measured reading speed using the
MNREAD chart19 and found that the reading speed of presbyopes
with uncorrected near vision was slow prior to training when
measured on the smallest letter size that subjects could read, but
it improved, on average by about 17 words/minute following
training (Fig. 1c – p 5 0.0035, one-tailed t-test). After training,

Figure 1 | (a) Near visual acuity before (abscissa) and after (ordinate)

perceptual learning (PL). Solid symbols are presbyopic subjects (median

age 51). Open symbols are the no PL control group. The dotted gray line is

the quality line. The solid gray diagonal is a power function fit to the

presbyopes data. The horizontal and vertical lines show typical newsprint

size (expressed in minutes of arc). (b) Near visual acuity vs. age before

(blue) and after (red) PL. The large blue and red circles show the geometric

mean acuities before and after PL, plotted at the corresponding pre-

training abscissa values (shown by the arrows). (c) Reading speed before

(abscissa) and after (ordinate) PL for the smallest letter size that each

subject could read.
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Figure 2 | Presbyope’s contrast thresholds (black symbols) before (bottom abscissa) and after (left ordinate) PL for spatial frequencies of 2 (a), 4 (b) and 6

(c) cpd. For comparison thresholds of the young control subjects (green symbols) are plotted along the top abscissa and right ordinate, so they fall along

the equality line (gray dotted line). d, e. Contrast discrimination thresholds (jnds) (gray symbols) before (bottom abscissa) and after (left ordinate) PL for

a spatial frequencies of 4 cpd and pedestal contrasts of 30% (d) and 60% (e). Thresholds of the young control subjects (green symbols) are plotted along

the top abscissa and right ordinate, so they fall along the equality line (gray dotted line). f. Summarizes the thresholds for each condition.
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a presbyope would save about 9 minutes when reading a 2000
word article at the smallest letter size!

Contrast detection. After training, contrast detection thresholds
improved (decreased) at all 3 tested spatial frequencies (p , 0.002,
0.009 and 0.001 for 2, 4 and 6 cpd, respectively – 1-tailed t-test -
Fig. 2a–c). This is an improvement of < 34, 23 and 19 percent at
spatial frequencies of 2, 4 and 6 cpd, respectively. Before treatment,
the presbyopes contrast thresholds were significantly higher than
that of the young subjects (N57, age 23.4 6 1.4 years, mean 6 se,
shown in green in Fig. 2) for the two higher spatial frequencies (p 5

0.07, 0.01 and 0.02 for 2, 4 and 6 cpd, respectively, two-sample two-
tailed t-test). Following treatment this difference was reduced at the
two higher spatial frequencies (p5 0.05 and 0.05 for 4 and 6 cpd
respectively; two-sample two-tailed t-test), and the presbyopes
thresholds were not significantly different from the young subjects
at the lowest spatial frequency (2 cpd; p 5 0.15). These results are
consistent with earlier reports of improvement of contrast sensitivity
in presbyopic4 and amblyopic4,14 participants after training. In
contrast, our three ‘‘no practice control’’ subjects actually showed a
slight (on average <15% 6 8%) worsening of contrast detection
thresholds.

Contrast discrimination. The ability to discriminate between grey
levels (contrast just noticeable difference or JND) is very important
in our daily activities. Whereas previous reports on training on
contrast discrimination resulted in inconsistent results15–17, here we
show, for the first time, improvement in suprathreshold contrast
discrimination without direct training on a just-noticable-
difference (JND) task (by 28.5% at the highest pedestal contrast of
60%, fig. 2e). JND remained unchanged for the pedestal contrast of
30% (p 5 0.526), however this threshold was not significantly
different from the level of the young controls either for pre-test (p
5 0.636) or post-test (p 5 0.933) (Fig. 1d). Furthermore, whereas the
contrast detection threshold at post-test remained significantly
different from the level of young controls (p 5 0.001 and 0.003,
for pre-test and post-test, respectively – Fig. 2b), the contrast
discrimination threshold for the pedestal of 60%, which was
significantly higher than the level of young controls at pre-test (p
5 0.001), was similar to the level of controls following the treatment
(p 5 0.952). Fig. 2f summarizes the pre- and post-test thresholds of
the presbyopic subjects, along with thresholds of the young controls.

Accommodation, Pupil size and Depth of Focus. Since presbyopia
is an optical problem, an intriguing question is whether the
improvement of near visual functions following the training
resulted from changes in the optical functions of the eye. In order
to address this possibility, we tested accommodative power, pupil
size and depth of focus, which are known to affect perception. As
shown in Fig. 3, there were no changes in our objective measures of
accommodation (p 5 0.409, 0.623 and 0.960 for the distances of 300,
40 and 33 cm, respectively - Fig. 3a), pupil size (p 5 0.146, 0.872 and
0.995 for the distances of 300, 40 and 33 cm, respectively - Fig. 3b) or
depth of focus (p 5 0.605; Fig. 3c). Therefore we conclude that
perceptual changes occur due to changes in the brain.

Discussion
Our results, consistent with previous studies, show that perceptual
learning can improve visual acuity and contrast sensitivity in persons
with presbyopia, and in some cases, result in performance levels
similar to the young control group. Moreover, here we show that
training also improves suprathreshold contrast discrimination and
reading speed for small letters. Our study is the first to show con-
clusively that these improvements are not due to improved optical
performance of the eye (accommodation, pupil size or depth of
focus).

Figure 3 | Accommodation (a), pupil size (b) and depth of focus (c) before

(abscissa) and after (ordinate) perceptual learning (PL).
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The uncorrected presbyopic neural system operates under non-
optimal conditions and is limited by the blurred input with lower
contrast and resolution, as indicated by the reduced contrast detection
and discrimination thresholds, reduced visual acuity and slower read-
ing speed. The effects of training show that the visual system has the
potential to operate on the blurred input to reestablish the normal
‘‘pre-presbyopic’’ level, matching the processing of the young group
and achieving normal or near normal visual performance for low
spatial frequencies and suprathreshold contrasts. Our results under-
score the remarkable capacity of the brain to increase the efficiency of
neural processing in order to perform ‘‘de-blurring’’ of highly blurred
images, retrieve the information and deliver it downstream for further
processing at sensory and cognitive levels.

How can we account for the improvement with training? One
possibility is that the perceptual learning triggers or enhances the
process of blur adaptation. It is now well established that the visual
system can adapt to blur, including the blur imposed by it’s own
optics20–22. However we think this is unlikely to account for the
improvement because blur adaptation is transient, short-lasting,
and if adaptation to presbyopic blur did occur, presbyopes would
not have difficulty reading. Rather, we suggest that the improvement
is an effect of ‘‘de-blurring’’. This could be achieved by increasing the
sensitivity or gain of neurons by a factor that enables image proces-
sing at very low signal-to-noise levels with efficiency similar to pro-
cessing at normal signal-to-noise levels. Support for this possibility is
found in the improved contrast discrimination and sensitivity of
presbyopes so that following training they are close to the level of
the young group. Watson & Ahumada24 conclude that blur detection
and discrimination are instances of contrast detection, so it is not
unreasonable to assume that when we improve contrast detection
through perceptual learning, we also improve the ability to detect and
discriminate blurred images.

Increasing sensitivity may, in turn, increase neural processing
speed2. It is also possible that the training regimen may increase
processing speed directly. It was shown earlier that training
improved contrast sensitivity4,14,23 and, recently, that training on
backward masking decreased the latency by 20 ms in the human
brain13 and shortened the reaction time4. Thus, altogether, training
may improve both the sensitivity and processing speed of the pres-
byopic visual system in order to compensate for the optically de-
graded visual input transmitted by the aging eye. We note that our
study has limitations since subjects were not randomly assigned into
experimental and control groups, and our ‘‘no practice control’’
group was small. Thus, a large randomized clinical trial may be useful
to confirm the benefit of this approach to a clinical population.
Nonetheless, our study provides evidence that while a loss of accom-
modation is an inevitable consequence of aging, it may be possible to
overcome and/or delay the unwanted effects of presbyopia and
improve the quality of life in the aging population.

Methods
We have developed a structured perceptual learning treatment method for improving
visual functions in presbyopia4,12. Subjects were trained on contrast detection of
Gabor targets under backward masking conditions, posing temporal constraints on
the visual processing. The training covered a range of spatial frequencies and orien-
tations that were modified in accordance with the performance improvement.
Subjects were trained in a dark room from a distance of 40 cm with both eyes open.
Visual acuity, spatial and temporal contrast sensitivity, contrast discrimination and
reading speed were tested before (pre-test) and after (post-test) the treatment.
Accommodation, depth of focus, and pupil size were also measured objectively at pre-
test and post-test. Subjects practiced for at least two sessions of about 30 min per
week. On average, subjects practiced for 37.4 6 10.7 (mean 6 std) sessions over 3
months. The study was performed at the University of California, Berkeley, and the
experiments were approved by the UC Berkeley Committee for the Protection of
Human Subjects.

Subjects. Thirty presbyopic subjects (14 females and 16 males, age 51 6 4.4 years old,
mean 6 se) with no neurological conditions volunteered to participate in the study.
Three presbyopic subjects served as controls, participating in pre-and post-testing
roughly 2 months apart, but with no intervening training. Seven young subjects (age

23.4 6 1.4 years, mean 6 se) with normal or corrected-to-normal vision in both eyes
served as a young control group. All participants signed the informed consent form
which was approved by the UC Berkeley IRB.

Apparatus. For psychophysical measurements, stimuli were presented on a Sony
multiscan G400 color monitor (10243768 pixels at a 75 Hz refresh rate; gamma
correction applied) controlled by a PC. The effective size of the monitor was 170

(26335 cm), which, at a viewing distance of 40 cm, subtended a visual angle of
9.9313.1 degrees. A Grand Seiko Auto Ref/Keratometer WAM-5500 was used for
measuring objective refraction, accommodation and pupil size. A COAS Precision
Aberrometer was used for measuring ocular aberrations during attempted
accommodation that were used to compute the depth of focus (DOF).

Optometric and optical measurements pre- and post- training. A complete eye
examination was performed at pre-test and post-test by an optometrist. The exam
included objective refraction, subjective refraction, ETDRS acuity from viewing
distance of 40 cm.

Optical measurements included objective measurements of accommodation and
pupil size, stimulated by viewing distances of 33 cm, 40 cm and 3 meters. Objective
DOF was quantified from defocus curves that were derived from image quality
metrics analysis (VSOTF) of the wavefront measured in the steady-state responses in
the zero and non-zero accommodation stimulus conditions (viewing distances of 3
meters and 33 cm)25. Defocus curves were calculated from the simulated changes in
the defocus term of the Zernike polynomial ranging from 23.00 to 13.00 D in
increments of 0.25 D3. Each calculation used the pupil size recorded by the aber-
rometer as measured during the trial. The log-metric was plotted against linear
defocus values. The depth of focus was estimated from the defocus range corres-
ponding to a 50% reduction from the peak of the metric performance.

Psychophysical measurements pre- and post- training: stimuli and paradigms.
The stimuli were localized vertically oriented gray-level gratings (Gabor patches,
GPs) with equal distribution (STD, s, allowing a minimum 2 cycles in the GP),
modulated from a background luminance of 40 cd/m2 (Supplementary Figs. 1a).
Psychophysical measurements included: 1) a contrast sensitivity task with brief
stimuli (presented for 60 msec) with a spatial frequency of 2, 4 and 6 cycles per degree
(cpd, wavelength, l), using a 2AFC detection paradigm (Supplementary Figs. 1b) and
2) a contrast discrimination or a just noticeable difference (JND) task for brief stimuli
(presented for 60 msec) with a spatial frequency of 4 cpd, using a 2AFC
discrimination paradigm with 2 pedestal contrasts: 30 and 60 % (Supplementary
Figs. 1c). Separate blocks were used for each spatial frequency and pedestal contrast.
Target detection contrast threshold was determined for each condition, in a separate
staircase for each block. Subjects started each trial by pressing a key on the keyboard.
A fixation circle (subtending a visual angle of 0.7 degrees) was presented in the center
of the screen for 200 msec and was followed by two intervals with a 500 msec gap
between them. Each interval was preceded by a 300 msec blank period, during which
background was presented and an additional blank period with temporal jitter of
500 msec on average. A target GP was presented in one of the two intervals, and
subjects were asked to report which interval contained the target by pressing a mouse
button (left for the first interval and right for second). Across trials, target
presentation was equally distributed between the two intervals. Participants were
instructed to maintain their fixation in the center of the monitor and avoid eye
movements during the trials.

Reading performance was assessed using MNREAD acuity chart (Minnesota
Laboratory for Low-Vision Research, University of Minnesota).

Training paradigm. Subjects completed 37.4 6 10.7 (mean 6 std) training sessions
on different days (not including the days of pre-test and post-test). Each session
included 4 conditions: 1) a foveal target presented alone (T) (Supplementary Figs. 1d),
2) lateral masking (LM), composed of T in the presence of two flanking collinear GPs
at a contrast of 40% (Supplementary Figs. 1d), 3) backward masking on target (BM-
T), composed of T followed by a mask, identical to the two flanking collinear GPs used
in LM, presented at varied time intervals (ISIs) after T (Supplementary Figs. 2a) and
4) backward masking on lateral masking (BM-LM), composed of LM followed by
another mask, identical to the two flanking collinear GPs used in LM, presented at
varied time intervals (ISIs) after LM (Supplementary Figs. 2b). The ISIs were: 60, 90,
120, 150, 180, 210 or 240 msec. A two alternative forced choice (2AFC) paradigm was
used, identical to the one used in pre-test and post-test and subjects were asked to
report which interval contained the target. Auditory and visual feedback was
provided. ISI, duration of target presentation, and masking GPs, their orientation,
spatial frequency and spatial separation between them were modified between
sessions, one parameter at a time, according to performance in the preceding session.
The duration of stimuli presentation varied between 60 to 120 msec. The spatial
distance between the target and the flankers varied between 2 to 4 l. The orientation
of GPs was always the same for target and masking GPs (i.e., collinear).

Data analysis. The results were first entered into ANOVA; pairwise comparisons
were performed using paired one-tailed t-tests, unless specified differently.

Supplementary Results. A two-way ANOVA was performed for the CS task (test (2:
pre-test and post-test) 3 spatial frequency (3: 2, 4 and 6 cpd)) and for the CD task
(test (2: pre-test and post-test) 3 pedestal contrast (2: 30 and 60%)). For the CS task,
there was a significant main effect of the test (F(1,162) 5 12.87, p 5 0.0004) and of the
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spatial frequency (F(2,162) 5 5.78, p 5 0.004). For the CD task, there was also a
significant main effect of the test (F(1,108) 5 10.41, p 5 0.002) and of the pedestal
contrast (F(1,108) 5 5.93, p 5 0.02).
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