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ABSTRACT: The penta-2,4-dieniminium cation (PSB3) displays similar ground state and first excited state potential energy
features as those of the retinal protonated Schiff base (RPSB) chromophore in rhodopsin. Recently, PSB3 has been used to
benchmark several electronic structure methods, including highly correlated multireference wave function approaches,
highlighting the necessity to accurately describe the electronic correlation in order to obtain reliable properties even along the
ground state (thermal) isomerization paths. In this work, we apply two quantum Monte Carlo approaches, the variational Monte
Carlo and the lattice regularized diffusion Monte Carlo, to study the energetics and electronic properties of PSB3 along
representative minimum energy paths and scans related to its thermal cis−trans isomerization. Quantum Monte Carlo is used in
combination with the Jastrow antisymmetrized geminal power ansatz, which guarantees an accurate and balanced description of
the static electronic correlation thanks to the multiconfigurational nature of the antisymmetrized geminal power term, and of the
dynamical correlation, due to the presence of the Jastrow factor explicitly depending on electron−electron distances. Along the
two ground state isomerization minimum energy paths of PSB3, CASSCF calculations yield wave functions having either charge
transfer or diradical character in proximity of the two transition state configurations. Here, we observe that at the quantum
Monte Carlo level of theory, only the transition state with charge transfer character can be located. The conical intersection,
which becomes highly sloped, is observed only if the path connecting the two original CASSCF transition states is extended
beyond the diradical one, namely by increasing the bond-length-alternation (BLA). These findings are in good agreement with
the results obtained by MRCISD+Q calculations, and they demonstrate the importance of having an accurate description of the
static and dynamical correlation when studying isomerization and transition states of conjugated systems.

1. INTRODUCTION

The retinal protonated Schiff base (RPSB, represented in
Figure 1a) is the chromophore responsible for the photo-
chemical properties of a vast family of biological photoreceptors
referred to as retinal proteins which are, among other functions,
involved in the mechanism of vision of dim light in
vertebrates.1−3 RPSB undergoes a very fast cis−trans isomer-
ization in the protein (opsin) environment (∼200 fs) with high
quantum yield (∼0.68) upon photon absorption.1 This

isomerization process has been deeply investigated by different
spectroscopic techniques4 and theoretical calculations.5,6 In
particular, femtosecond spectroscopy7 and hybrid quantum
mechanics/molecular mechanics (QM/MM) molecular dy-
namics calculations7,8 highlight the essential role played by the
surrounding protein environment and by the hydrogen-out-of-
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plane motion9 in the isomerization mechanism, which involves
decay via a S1/S0 conical intersection (CI)10 reached by the
selective torsion of the central (C11C12) double bond.
The penta-2,4-dieniminium cation (PSB3, represented in

Figure 1a) is a small conjugated molecular system widely used
as reduced computational model of the full RPSB because PSB3
and RPSB exhibit similar ground and excited state features.
First, both PSB3 and RPSB have equilibrium cis and trans
isomers where the positive charge is localized on the nitrogen-
containing side of the conjugated chain. Second, the transition
from the ground state (S0) to the first excited state (S1) is

characterized by a transfer of the positive charge from the
nitrogen region toward the opposite end of the conjugated
chain. Third, twisting the conjugated chain along one of the
central double bonds leads to a CI structure between the S0 and
S1 electronic states. Such a CI plays an important role in the
photoisomerization mechanism of RPSB because it mediates
population transfer from S1 to S0 along the isomerization
coordinate.
Not only do PSB3 and RPSB have similar near-equilibrium

and S1 potential energy surface features, but it was recently
found that they have similar ground state potential energy
features in the vicinity of the CI as well. In a hybrid quantum
mechanics/molecular mechanics (QM/MM) study of the
thermal isomerization mechanism of bovine rhodopsin, it was
found that thermal 11-cis to all-trans isomerization of RPSB
may occur via one of two distinct saddle points that are in the
vicinity of the S0/S1 CI.

2 Both saddle points (i.e., chemically,
transition states) feature an almost orthogonally twisted C11
C12 double bond, similar to the CI but very different bond
length alternations (BLA). We define the BLA as the difference
between the average bond length of formal single bonds (C1−
C2 and C3−C4 for PSB3) and the average bond length of
formal double bonds (C1N, C2C3, and C4C5 for PSB3),
such that BLA is positive if there is no bond inversion and
negative if there is. The situation is analogous in the case of
PSB3. Indeed, PSB3 also features two transition states which
are almost 90° twisted along the central (C2C3) double bond
but having different BLA patterns. In both PSB3 and RPSB, the
two transition states not only have different BLA geometries
but also different electronic structures. One transition state
(TSCT) is characterized by a transfer of the positive charge
from the nitrogen-containing side of the molecule to the other
end of the conjugated chain. The other transition state
(TSDIR) retains the positive charge on the nitrogen side of
the chain and therefore has covalent/diradical character due to
the homolytic breaking of the isomerizing double bond. To
characterize the regions of the ground state potential energy
surface driving the thermal isomerization, Gozem et al.11

optimized the two transition states in PSB3 and used them to
map three pathways at the CASSCF/6-31G* level of theory.
The first two pathways are minimum energy paths (MEPs)
leading away from each transition state and toward the two
equilibrium structures, cis-PSB3 and trans-PSB3. These paths
are called MEPCT (for the path passing through the charge
transfer transition state TSCT) and MEPDIR (for the path
passing through the covalent/diradical transition state TSDIR).
The third path is an interpolation/extrapolation of coordinates
between the two transition states. Because the transition states
essentially have different BLAs but otherwise are almost
geometrically identical, this scan follows a BLA coordinate
and is therefore called the BLA scan. This scan intercepts a S1/
S0 CI structure. For a simplified representation of the three
paths, see Figure 1b; further information are reported in ref 11.
The three aforementioned paths served useful as benchmarks

to understand the importance of a balanced representation of
electronic correlation in correctly describing the topology of the
potential energy surface in that region as well as in computing
the relative energies of TSCT and TSDIR. If the CASSCF-
(6,6)/6-31G* can be considered a good compromise between
accuracy and computational effort for mapping (small) parts of
the potential energy surface of complex molecular systems,
using more sophisticated methodologies for single-point energy
calculations on the CASSCF paths is seen to be a reliable

Figure 1. (a) Lewis representation of the full chromophore, the 11-cis
retinal protonated Schiff base (RPSB), covalently bound to a lysine of
the opsin protein, and of the cis-,trans-penta-2,4-dieniminium cations
(PSB3). (b) Schematic representation of the thermal isomerization
from the cis to the trans configuration of PSB3, following the two
minimum energy paths (obtained in ref 11 from CASSCF
calculations) undergoing respectively a charge transfer (CT) and a
diradical (DIR) transition state. The former minimum energy path
(MEPCT) is represented in red with a saddle point in the charge
transfer transition state (TSCT), and the orange region indicates that
the ground state potential energy surface is characterized by a charge
transfer character. The latter minimum energy path (MEPDIR) is
represented in blue with a saddle point in the diradical transition state
(TSDIR), and the cyan region indicates that the ground state potential
energy surface is characterized by a diradical character. The energy
barriers corresponding to TSCT and TSDIR are comparable, and most
of the computational studies agree that TSCT represents the lowest
barrier.11−13 The main difference between TSCT and TSDIR
configurations lies in their bond length alternation (BLA), which is
positive for the TSDIR and negative for the TSCT (see discussion in
the text). A scan of the configurations connecting TSCT with TSDIR
(called BLA scan) presents a conical intersection (CI) for a positive
BLA, but the actual value varies with the adopted computational
method.11−14
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strategy to explicitly include dynamical correlation in the wave
function,11−13,15 allowing one to correct the original CASSCF
findings such as CI location, energy of the π2 and ππ*
configurations, and relative stability of the TSCT and TSDIR.
Thanks to the tremendous progress in high performance

computing (HPC) in recent years, quantum Monte Carlo
(QMC) methods represent a powerful alternative to other ab
initio and DFT approaches for the accurate description of
systems where electronic correlation plays an essential role.
QMC methods16,17 have been widely applied to several
problems of physical and chemical interest such as materi-
als,18−22 molecular properties,23−34 reaction pathways,35,36 and
geometry and excited states of biochromophores.37−41 The
good scalability with respect to the system size (Nd, with 3 < d
< 4 and N the number of electrons)16,39 and the use of
massively parallel algorithms make QMC methods particularly
suitable for Petascale architectures. All these aspects justify the
growing number of applications of QMC in problems of
quantum chemistry and molecular physics.
The variational Monte Carlo (VMC) method42 is the

simplest QMC approach: thanks to a combined use of the
Monte Carlo integration and the variational principle for the
ground state, the many-body trial wave function ΨT can be
efficiently optimized and used to extract information other than
just the energy of the molecular target. Higher accuracy in the
determination of the system properties (energy, geometrical
and electronic parameters, etc.) is usually achieved by the fixed
node projection Monte Carlo methods such as the diffusion
Monte Carlo (DMC)43,44 or the lattice regularized diffusion
Monte Carlo45,46 (LRDMC).
The choice of the functional form of ΨT represents a crucial

step determining the overall quality of QMC calculations, both
in the variational and in the fixed node projection schemes. The
Jastrow antisymmetrized geminal power (JAGP)47−52 has been
seen to be very efficient in the investigation of chemical
systems,28−30,32,33,35,39−41 with accuracy comparable to that of
high-level quantum chemistry methods. Its compactness,
coupled to the use of efficient algorithms for the optimization
of all parameters, including linear coefficients and exponents of
the atomic basis set,25,53,54 leads to a fast convergence of the
variational results for electronic and geometrical properties with
the size of the basis set,28,55,56 with a computational cost
comparable to that of a simple wave function defined by the
product of a Jastrow factor and a single Slater determinant.
Although AGP is not in general size consistent, the presence of
a flexible Jastrow factor makes JAGP size consistent for systems
which splits in fragments with spin zero or 1/2.25,49,57 JAGP has
already proven to give a good description of the static and
dynamical correlation in several crucial benchmarks32,50,51,58

like in the estimation of the torsional energy of the ethylene
and of the singlet−triplet gap of methylene.32

In the following, we compute the energy and electronic
structure of PSB3 along the MEPCT, MEPDIR, and BLA paths
reported previously.11 As shown below, the combination of
QMC and JAGP ansatz allows us to get a proper description of
both static and dynamical correlation; for this reason, using the
QMC and JAGP wave functions represents an optimal choice
to study the intrinsic properties of the PSB3 model.
The paper is organized as follows: in section 2 we report the

main features of VMC and LRDMC schemes and a detailed
analysis of the JAGP ansatz and of its potential to correctly
describe multiconfigurational systems such as diradicals;
computational details on our calculations are given in section

3; the current results are shown in section 4, pointing out the
importance of the electronic correlation properly introduced by
the QMC/JAGP study for the characterization of the conical
intersection; conclusions and comments on future perspectives
are reported in the last section.

2. QUANTUM MONTE CARLO
2.1. Variational and Lattice Regularized Diffusion

Monte Carlo. The accuracy of QMC approaches, both in the
simplest VMC scheme and in the fixed-node projection
schemes, are strictly related to the wave function ansatz.
Typically, the electronic wave function ΨT in QMC16,17,56 is
defined by the product

Ψ ̅ ̅ = ̅ ̅ ̅ ̅x x xR R R( ; ) ( ; ) ( ; )T (1)

where is the antisymmetric function taking into account the
Fermionic nature of electrons and is the Jastrow factor
depending explicitly on the interparticle (electrons and nuclei)
distances; x ̅ and R̅ represent the collective electronic (x ̅ refers
to space r ̅ and spin σ̅) and nuclear coordinates, respectively.
The Jastrow factor is a symmetric positive function of the

electronic positions; therefore it does not change the nodal
surface (determined by the antisymmetric term ), but it
introduces the dynamical correlation among electrons and
satisfies the electron−electron and electron−nucleus cusp
conditions.16,56,59

In VMC, the parameters that define ΨT are optimized in
order to minimize the electronic energy within the functional
freedom of the ansatz. The VMC results can further be
improved by using the fixed-node (FN) projection Monte
Carlo techniques, which provide the lowest possible energy
with the constraint that the wave function ΦFN has the same
nodal surface of an appropriately chosen guiding function
ΨT,

16,43 which is usually optimized using the VMC method.
The fixed-node projection Monte Carlo method that we have
adopted is LRDMC,45,46 which is efficient for systems with a
large number of electrons46 and preserves the variational
principle even when used in combination with nonlocal
pseudopotentials.46 Because the LRDMC calculations are
much more demanding than the VMC calculations, in terms
of computational time, they have been performed only for a few
key structures.

2.2. The Jastrow Antisymmetrized Geminal Power.
The trial wave function ansatz used in the QMC calculations
presented in this paper is the Jastrow antisymmetrized geminal
power (JAGP),47,48,56 that is, the product

Ψ ̅ ≡ Ψ ̅ = Ψ ̅ ·Ψ ̅(x) (x) (x) (x)T JAGP AGP J (2)

of the antisymmetrized geminal power (AGP) function ΨAGP
and the Jastrow factor ΨJ, where the dependence on the nuclear
coordinates R̅ is here omitted.
For an unpolarized system (zero total spin S) of N = 2Np

electrons and M atoms, the AGP function is defined as

∏Ψ ̅ = ̂
+G x x(x) [ ( ; )]

i

N

i N iAGP

p

p
(3)

where ̂ is the antisymmetrization operator and the geminal
pairing function G is a product of a singlet function and a
spatial wave function symmetric with respect to the particle
exchange :
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α β β α
=

−
G

i j i j
x x r r( ; ) ( , )

( ) ( ) ( ) ( )
2i j i j (4)

The spatial function is a linear combination of products of
atomic orbitals ϕμ:

∑ ∑ ϕ ϕ=
μ ν

μν μ νgr r r r( , ) ( ) ( )i j

L L

i j
(5)

where the indexes μ and ν run over all the basis in all the atoms
in the system, for a total of L atomic orbitals (note that L is
determined by the overall basis set size). The coefficients gμν
have to be optimized in order to minimize the variational
energy of the system (together with the other parameters in the
wave function).
In our calculations, we used this Jastrow factor

Ψ = + + +U U U Uexp( )J en ee een eenn

that involves the one-electron interaction term Uen, the
homogeneous two-electron interaction term Uee, and the
inhomogeneous two-electron interaction terms Ueen and Ueenn
(representing respectively an electron−electron−nucleus func-
tion and an electron−electron−nucleus−nucleus function).
They are defined as follows:

∑ ∑ ∑ χ̅ = − − +
μ

μ μ

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥U Z

e
b Z

f rr( )
1

2
( )

a

M

i

N

a

b Z r

a

l
a a

iaen

2

1

a ia a1
4

4

(6)

∑̅ = −

<

−⎡
⎣⎢

⎤
⎦⎥U

e
b

r( )
1

2i j

N b r

ee
2

ij2

(7)

∑ ∑ ∑ ∑ χ χ̅ = ̅
μ ν

μ ν μ ν
<

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥U f r rr( ) ( ) ( )

a

M

i j

N l l
a a

ia
a

jaeen ,

a a

(8)

∑ ∑ ∑ ∑ χ χ̅ = ̃
μ ν

μ ν μ ν
≠ <

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥U fr r r( ) ( ) ( )

a b

M

i j

N l l
a b a

ia
b

jbeenn ,
,a b

(9)

where the vector ria = ri − Ra is the difference between the
position of the nucleus a and the electron i, ria is the
corresponding distance, rij is the distance between electrons i
and j, Za is the electronic charge of the nucleus a, which is
described by la atomic orbitals χμ

a (with index μ = 1,...,la), and
b1, b2, fμa

a , f¯μ,ν
a , and fμ̃,μ

a,b are variational parameters. [Note that the
atomic orbitals χ used in the Jastrow term are similar to the
atomic orbitals ϕ used for the AGP, although they are not the
same orbitals, and in general a reliable description of molecular
systems requires a much smaller number of orbitals in the
Jastrow than the number of orbitals used in the AGP, see for
instance ref 56.] The leading contribution for the description of
electronic correlation is given by Uee, but also the
inhomogeneous two-electron interaction terms Ueen and Ueenn
are particularly important in the JAGP ansatz because they
reduce the unphysical charge fluctuations included in the AGP
function, as discussed in refs 25, 49.
The pairing spatial function in eq 5 is written in terms of

the (localized) atomic orbitals ϕμ, offering an interesting
correspondence between the AGP ansatz and the resonating
valence bond framework.60,61 An equivalent way to write the
pairing function is obtained by using the molecular orbitals

(MOs) ψk. The expansion of the pairing function in terms of
MOs is obtained by performing a generalized (the atomic
orbitals ϕμ are not necessarily orthonormal, so the overlap
matrix Sμν = ⟨ϕμ|ϕν⟩ ≠ δμν) diagonalization of the coupling
matrix G, which is the L × L matrix of the gμν coefficients:

= ΛGSP P (10)

where Λ = diag(λ1,...,λL)
and

λ λ λ| | ≥ | | ≥ ≥ | | ≥... 0L1 2 (11)

The resulting pairing function is

∑ λ ψ ψ=
=

r r r r( , ) ( ) ( )i j
k

L

k k i k j
1 (12)

where the orthonormal single particle functions are written as

∑ψ ϕ=
μ

μ μ
=

Pr r( ) ( )k

L

k
1 (13)

with the Pμk coefficients defining the eigenvectors P.
It is interesting to investigate the connection between the

expansion of the pairing function in terms of MOs and the
standard configuration interaction expansion of the wave
function in multiconfigurational approaches.
By substitution of eq 12 in eq 3, and expanding the

summation out of the antisymmetrization operator, the
following multideterminant expansion is obtained for the
AGP function:

∑ ∑

∑ ∑

Ψ = |Ψ ⟩ + |Ψ ⟩

+ |Ψ ⟩ +

= = +

=
≠

= +
≠

c c

c ...

i

N

a N

L

ii
aa

ii
aa

i j

N

i j
a b N

L

a b

iijj
aabb

iijj
aabb

AGP 0 0
1 1

, 1 , 1p

p

p

p

(14)

where the coefficients are given by

∏ λ
λ
λ

λ λ
λ λ

= = =c c c c c; ; ; ...
i

N

i ii
aa a

i
iijj
aabb a b

i j
0 0 0

p

(15)

|Ψ0⟩ is the leading closed-shell Slater determinant:

∏ ∏ψ α ψ β|Ψ ⟩ = ̂
+i jr r{[ ( ) ( )][ ( ) ( )]}

i

N

i i
j

N

j N j0

pp

p
(16)

the determinant |Ψii
aa⟩ is equal to |Ψ0⟩, but with the virtual

orbital ψa substituting the valence orbital ψi, etc. From the
expression of the coefficients in eq 15 and the ordering of the
eigenvalues λk in eq 11, it follows that the leading contribution
beyond the determinant |Ψ0⟩ is given by the determinant |Ψii

aa⟩
with i = Np and a = Np + 1. The multideterminant expansion of
ΨAGP in eq 14 allows us to directly compare the ΨAGP with
wave functions from other quantum chemical frameworks. In
ΨAGP, all the odd excited determinants (single, triple, etc.) are
excluded, whereas a subset of the even excitations (those with a
multiple excitation to the same virtual orbital) are taken into
account; only doubly occupied molecular orbitals are present.
In other words, ΨAGP is contained in the seniority zero sector of
the electronic full configuration interaction and its expansion
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coefficients are determined by the ratios of the eigenvalues of
the Λ matrix.
The seniority number Ω represents an alternative tool to

classify singlet wave functions. Ω is defined as the number of
unpaired electrons in the Slater determinant, i.e., the number of
singly occupied molecular orbitals. In cases when the static
correlation plays a major role Ω-based selection of important
Slater determinants in the expansion has been seen to be
superior than the traditional one, based on the number of
excitations with respect to the reference configuration.62 Wave
functions with Ω = 0 for benchmark systems are accurate
enough to recover most of the static correlation, but the FCI
limit (including dynamical correlation) is achieved only when
configurations from Ω = 2, 4, 6, ... sectors are explicitly
included.62 In the case of JAGP wave function, the combination
between a Ω = 0 determinantal term and a Jastrow factor allows
us to estimate the correlation energy more accurately than Ω =
0 CI wave functions. The set of MOs ψk is optimized within the
JAGP framework, i.e., in the presence of the Jastrow factor and
of the multiconfigurational character of the wave function:
MOs extracted from our optimization procedure represent
therefore the optimal choice for the correlated description of
the system under study. The way to move from the AGP MOs
to the standard ones and vice versa is explained in the next
paragraph and in Appendix.
2.3. AGP for Diradicals. The multiconfigurational nature of

the AGP function, clearly shown by eq 14, has been extensively
discussed by Zen et al. in a recent paper on the use of AGP for
diradicals.32 Here we focus the attention on the application of
the AGP ansatz to the ππ* state of PSB3 (see the discussion in
section 4), starting from the simple but accurate model with
two electrons in two orbitals, originally introduced by Salem
and Rowland.63,64 For a generic diradical system, two atomic
orbitals ϕA and ϕB are centered on nuclei A and B. Such a
model is a representative scheme for molecules undergoing a
double bond breaking, like the twisted ethylene or the twisted
PSB3: in these cases, the two involved orbitals are of p type and
positioned on two (central) carbon atoms.
The main goal of this discussion is to demonstrate that the

AGP ansatz, a formally Ω = 0 wave function, contains the ππ*
configuration, needed for a proper description of the ground
state surface of PSB3 along the paths. [The π and π* orbitals
have to be intended here as π-molecular orbitals residing on
highly twisted configurations.]
In case of two orbitals, the pairing function term in the

AGP formulation is explicitly given by

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= +

+ +

g g

g g

r r r r r r

r r r r

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 AA A 1 A 2 BB B 1 B 2

AB A 1 B 2 BA B 1 A 2 (17)

where gμν coefficients represent the coupling terms of the G
matrix in the expansion of the AGP spatial factor: gAA and gBB
are referred to the ionic terms ϕA(r1)ϕA(r2) and ϕB(r1)ϕB(r2)
in which the two electrons are localized on the same atom,
whereas the elements gAB and gBA are related to the covalent
terms ϕA(r1)ϕB(r2) and ϕB(r1)ϕA(r2) .
In terms of molecular orbitals, r r( , )1 2 becomes (L = 2)

λ ψ ψ λ ψ ψ= +r r r r r r( , ) ( ) ( ) ( ) ( )1 2 1 1 1 1 2 2 2 1 2 2 (18)

On the other hand, in the standard delocalized picture63,64 two
ψ+ and ψ− molecular orbitals are defined:

ψ
ϕ ϕ

ψ
ϕ ϕ

=
+

=
−

+

−

2

2

A B

A B

(19)

assuming zero overlap between ϕA and ϕB (the assumption is
easily verified for two orthogonal p orbitals).
The diradical Ψ(r1,r2) = ψ+ψ− wave function (ψ+ψ− is a short

notation for ψ+(r1)ψ−(r2) + ψ−(r1)ψ+(r2)) is written in the
atomic basis as the following

ϕ ϕ ϕ ϕ
Ψ =

−
r r

r r r r
( , )

( ) ( ) ( ) ( )

21 2
A 1 A 2 B 1 B 2

(20)

Because the AGP formally contains the terms introduced in eq
20, the comprehension of a consistent way to link together eqs
17, 18, and 20 is a mandatory task. Some questions are
therefore arising: (i) which relation occurs between ψ1, ψ2, ψ+,
and ψ−; (ii) which relation exists between the atomic basis, ϕA
and ϕB, and the molecular orbitals, ψ1 and ψ2 obtained by the
diagonalization of the matrix (eq 18); (iii) finally, if a
diradical ground state ψ+ψ− can be properly described by the
AGP ansatz.
A unitary matrix Û transforms the ψ+ and ψ− molecular

orbitals, by rotating them with a certain angle θ, into ψ̃+ and ψ̃−

ψ

ψ

ψ
ψ

θ θ
θ θ

ψ
ψ

̃

̃
= ̂ =

−
+

−

+

−

+

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟U

cos sin
sin cos (21)

If θ = π/4, the normalized orbitals become

ψ ψ ψ̃ = ++ + −
1
2

( )
(22)

ψ ψ ψ̃ = −− + −
1
2

( )
(23)

By defining ψ1  ψ̃+ and ψ2  ψ̃−, which become ψ1 = ϕA and
ψ2 = ϕB by taking into account the relations in eqs 19, and by
substitution in eq 18, we obtain

λ ϕ ϕ λ ϕ ϕ= +r r r r r r( , ) ( ) ( ) ( ) ( )1 2 1 A 1 A 2 2 B 1 B 2 (24)

which is equivalent to eq 20 for λ1 = −λ2 = 1/√2. We also
observe that eq 17 is equivalent to eq 20 for gAB = gBA = 0 and
gAA = −gBB = 1/√2.
Summarizing, it is always possible to transform a ψ+ψ−

configuration into a combination of ψ̃+
2 and ψ̃−

2 by applying
an opportunely chosen proper unitary transformation. In this
simple model for diradicals, the AGP molecular orbitals are a
linear combination of the orbitals deriving from the traditional
picture of electronic delocalization. The detailed derivation of
the mapping procedure is reported in the Appendix, where the
generalization from the (2,2) to the (2,n) active space (where n
is the number of orbitals) is shown and the proof of the
capability of AGP to represent such active space is reported.
The expansion in eq 17 shows that the AGP ansatz contains all
the terms reported by the picture in terms of delocalized
molecular orbitals and localized atomic orbitals. The gμν
coefficients are variational parameters optimized by the
stochastic methods mentioned before, and for this reason the
AGP optimization is a fundamental step to select the right wave
function for the ground state of interest.
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As a conclusion of this discussion, the graphical representa-
tion of CASSCF and AGP molecular orbitals for highly twisted
diradical ππ* state of a certain structure of PSB3 (the last
structure of the BLA path, see the discussion below), together
with the combinations explained in this paragraph, is reported
in Figure 2: the AGP frontier orbitals (ψ1 and ψ2, eq 18) are
identical to the normalized sum and difference of the
corresponding CASSCF orbitals (π and π* orbitals), according
to the rotation given by the unitary transformation Û .

3. COMPUTATIONAL DETAILS

The QMC calculations reported in this paper have been
obtained using the TurboRVB package, developed by S. Sorella
and co-workers,65 that includes a complete suite of variational
and diffusion Monte Carlo codes for wave function and
geometry optimization of molecules and solids. The scalar-
relativistic energy consistent pseudopotentials (ECP) of
Burkatzki et al.66 have been used in order to describe the two
core electrons of the carbon and nitrogen atoms. In detail, the
basis sets we have used for the AGP part are (10s,9p,2d,1f)
contracted in {8} hybrid orbitals for the carbon atom,
(8s,9p,2d,1f) contracted in {8} hybrid orbitals for the nitrogen
atom, and (6s,5p,1d) contracted in {1} hybrid orbitals for the
hydrogen atom. As basis sets for the atomic orbitals included in
the inhomogeneous terms of the Jastrow factor, namely in Uen,
Ueen and Ueenn reported in eqs 6, 8 and 9, we used an
uncontracted basis for the Uen and Ueen term and a contracted
with hybrid orbitals basis for Ueenn. This allowed us to have an
accurate basis set for the Jastrow factor while keeping the
number of parameters of the wave function reasonably small. In
more details, in Uen and Ueen we used a (4 s,2p,1d) basis set for
the carbon or nitrogen atoms, and a (3 s,2p) for hydrogen
atom, whereas in Ueenn the orbitals are contracted in {2} hybrid
orbitals for the oxygen, nitrogen, or hydrogen atoms.
The parameters of the wave function ΨT, including the values

of the exponents of the atomic orbitals, have been optimized by
using the already validated and stable optimization schemes
discussed in ref 56. In particular, the optimization that we have
followed for the singlet π2 and triplet states of PSB3 considered
here in the different structures starts from an initial
configuration where the AGP matrix is diagonal, the exponents
are initialized to values taken from standard Dunning’s basis
sets (where too small and too large values are eliminated
because they are not not necessary due to the presence of our
Jastrow factor, see discussion in ref 56), and all the Jastrow

parameters are set to zero, with the exception of b1 = b2 = 1.
Next, the optimization procedure follows the protocol: (i)
optimization of the AGP, namely of the matrix elements and
the contraction coefficients of the basis set, with fixed
exponents and Jastrow parameters b1 = b2 = 1, (ii) optimization
of the AGP and relaxation of the values of the exponents of the
AGP basis set and of the b1 and b2 parameters, (iii)
optimization of the Jastrow terms, keeping the AGP parameters
fixed, (iv) optimization of the overall JAGP, keeping fixed the
exponents in the basis set, both for the AGP and the Jastrow,
(v) optimization of all the parameters, including the exponents
of the basis set, with increasing statistical accuracy. For the
single diradical state (ππ* configuration) of PSB3 in the
proximity of the conical intersection, we have used a slightly
different procedure to avoid the possibility to be trapped in a
local minimum. Therefore, we forced the wave function to be in
the correct electronic configurations by taking the triplet JAGP
optimized wave function and obtained from that the
corresponding singlet diradical configuration. This wave
function has been used as the starting point of an optimization
that started from the step (iii) of the previously stated
optimization schedule. We have verified a posteriori for every
nuclear structure, where we have calculated both the π2 and the

ππ* singlet configurations, that the overlap ⟨ΨJAGP
ππ* |ΨJAGP

π2 ⟩
between the two JAGP wave functions (calculated using the
correlated sampling techniques) is almost zero, thus the two
wave functions actually correspond to different electronic
states.
It is important to note that QMC approaches use stochastic

methods both to evaluate an observable and to optimize the
variational parameters of the wave function. The stochastic
uncertainty due to the former point is easy to calculate, and it
has been reported in figures and tables of the present work. The
latter point is instead much more difficult to evaluate. We have
carefully tested the reliability of the optimization schemes used
in this work, and indeed the profiles reported in the following
figures, although not perfectly smooth, are pretty regular, both
for energy and charge-transfer values. Moreover, the most
interesting configurations (cis, trans, and structures close to
TSCT and TSDIR) have been optimized with some extra
effort, thus the results reported in the tables are fully reliable.
In this work we also report several results computed at the

level of the fixed-node projection Monte Carlo scheme that has
been realized by performing LRDMC calculations with mesh
size a = 0.3 au. Although we have not performed, for

Figure 2. Comparison between CASSCF frontier (π and π*) and AGP frontier (ψ1 and ψ2, see eq 18) orbitals; corresponding combinations, given
the unitary transformation Û (eq 21), are also shown.
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computational reasons, the continuous extrapolation of the
lattice mesh size a→ 0, we know from previous works32,56 and
preliminary calculations that the bias given by the finite mesh
size a = 0.3 au is almost negligible in the evaluations of the
considered energy differences.

4. RESULTS AND DISCUSSION

In this section, we present the energetic and electronic features
of the MEPCT, MEPDIR, and BLA paths computed using
VMC and LRDMC with the JAGP ansatz. A high-level
treatment of electron correlation is crucial for the correct
description of the energy surface of the ground state
isomerization of PSB3. As discussed in ref 11, dynamical
electronic correlation modifies the mapped CASSCF potential
energy surface in two ways: the TSCT transition state is found
lower in energy than the TSDIR, at variance with the CASSCF
findings, and the CASSCF CI is seen shifted to larger BLA
values when dynamical correlation is included in the
calculations. The energies along the three paths have been
computed using a number of electronic structure methods,
namely multiconfigurational approaches,11 multireference
perturbation theory,11 DFT schemes,13,67 EOM-CC,12 and
SORCI.15 All the most accurate methods qualitatively predict
similar changes in the potential energy surface with respect to
CASSCF. In particular, in the case of MRCISD+Q (the most
accurate method tested previously), TSCT becomes more

stable than TSDIR by 4.7 kcal/mol (compared to CASSCF
where it is less stable by 1.2 kcal/mol), and the CI gets shifted
to a BLA value of ∼0.03 Å (compared to ∼0.00 Å for
CASSCF).
Before starting, we validated our computational protocol by

looking at the electronic properties of the cis isomer of PSB3
such as the dipole moment μ and the charge transfer of the
ground state S0, defined as the partial charge on the allyl moiety
H2CCH−CH (the net charge of the system is +1). The
charge transfer character at cis-PSB3 is 0.313 at the CASSCF/6-
31G* level of theory and 0.355 at the MRCISD+Q level of
theory, as derived from Mulliken population analyses11 (see
Table 1). Because we cannot define Mulliken charges in our
QMC framework, we compute the charge transfer by finding
the portion of the electronic density in the region of the allyl
moiety up to the plane perpendicular to the C2C3 bond and
cutting it in the middle. This method of obtaining the charge-
transfer character is tested on densities extracted from DFT and
wave function methods and is shown to produce very similar
charge transfer character as Mulliken charges.
The single-reference nature of the S0 state is highlighted by

the fact that charge-transfer values computed with standard
DFT (with PBE and B3LYP functionals) and HF are in good
agreement with the MRCISD+Q result. The effect of applying
pseudopotentials on the carbon and nitrogen atoms on the
charge transfer is found to be negligible when comparing all-

Table 1. Singlet Ground State Energy (in Hartree, H), Total Dipole μ (in Debye, D) and Charge-Transfer Value for the cis
Isomer of PSB3, Evaluated with Several Computational Methods, As Defined in the First Columna

method ref core energy [H] μ [D] charge transfer

CASSCF(6,6)//6-31G* 11 AE 0.313
MRCISD+Q//6-31G* 11 AE 0.355
PBE//cc-pVTZ this work AE 3.784 0.375
PBE//VTZ-ANO this work ECP 3.758 0.369
B3LYP//cc-pVTZ this work AE 3.718 0.380
B3LYP//VTZ-ANO this work ECP 3.639 0.376
HF//cc-pVTZ this work AE 3.441 0.405
HF//VTZ-ANO this work ECP −41.7258 3.472 0.396
VMC/SDb this work ECP −41.7048(9) 3.625 0.365
VMC/J1‑bodySD

c this work ECP −41.7130(7) 3.633 0.365
VMC/JSD-proj this work ECP −42.8361(2) 3.895 0.363
VMC/JSD-opt this work ECP −42.8373(2) 3.900 0.360
VMC/JAGP this work ECP −42.8490(2) 3.983 0.356
LRDMC/JAGP this work ECP −42.9160(3) 4.066 0.352

aJ1‑bodySD, JSD-proj, and JSD-opt are defined in the text, and the basis sets for the QMC calculations are defined in section 3. In the core column, AE
stands for all-electron calculation and ECP for energy-conserving pseudopotential calculation. The reported numbers in the last column represent
the net charge on the allyl moiety. VMC and LRDMC errors on μ and charge-transfer are of the order of 10−3. bWave function optimization by
DFT/LDA; EDFT/LDA = −42.6663848 H. cWave function optimization by DFT/LDA; EDFT/LDA = −42.6769218 H.

Table 2. Energy Differences ΔE (in kcal/mol) between the Singlet Ground State of cis PSB3 Isomer and The Singlet Ground
State trans Isomer, the TSCT, and TSDIR obtained by Gozem et al.11 from CASSCF-Based Calculationsa

method ref ΔE trans ΔE TSCT ΔE TSDIR ΔES‑T cis

VMC/JSD this work −2.9(2) 44.7(2) 51.1(2) 62.9(2)
VMC/JAGP this work −2.9(2) 45.2(2) 51.7(2) 66.2(2)
LRDMC/JAGP this work −3.0(2) 45.5(2) 51.4(2) 63.9(2)

MRCISD+Q 11, 12 −3.1 48.7 54.9
XMCQDPT2 11 −2.8 46.9 50.5
EOM-CCSD 12 −3.0 46.6 52.5

aThe energy difference ΔES−T between the first singlet and the first triplet electronic states of the cis isomer is also reported. The reported QMC
results are compared with MRCISD+Q, XMCQDPT2, and EOM-CCSD calculations.
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electron (AE) and ECP results obtained using similar basis sets,
as shown in Table 1. A further evidence of the reliability of our
approach is given by the performance of several variants of the
single-determinant (SD) wave function (J1‑bodySD, where only
the 1-body term for the Jastrow is used; JSD-proj, the SD wave
function is projected out from the full AGP; JSD-opt, the SD
wave function is optimized after projection) in the VMC

framework (e.g., taking into account only the first term of the
AGP expansion in eq 14) that, using ECP, are in full agreement
with the more accurate VMC/JAGP (0.358, the best variational
result) and the MRCISD+Q. LRDMC/JAGP only slightly
corrects (0.352) the VMC/JAGP result for the charge transfer.
The same conclusions are easily extended to the dipole
moment.

Figure 3. Left column: (a) thermal isomerization energy profile (with respect to the cis PSB3) and (b) ratio between λLUMO and λHOMO (see eq 14)
along the MEPCT reaction coordinate. Right column: (c) thermal isomerization energy profile and (d) ratio between λLUMO and λHOMO along the
MEPDIR reaction coordinate. SD stands for single determinant, e.g., a single configuration (with ratio λLUMO/λHOMO exactly equal to zero). Error
bars are within the symbols. For both paths CASSCF and MRCISD+Q energy profiles are taken from refs 11,12.

Figure 4. Charge transfer along the MEPCT and MEPDIR paths. CASSCF and MRCISD charge-transfer profiles are taken from refs 11,12.
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4.1. MEPCT and MEPDIR Paths. As first, we consider the
energy difference between the cis and trans isomers of PSB3.

VMC/AGP and LRDMC/AGP values (Table 2), −2.9(2) and
−3.0(2) kcal/mol respectively, and the VMC/JSD value
(−2.9(2) kcal/mol) are fully consistent with the reference
MRCISD+Q (−3.1 kcal/mol),11,12 XMCQDPT2 (−2.8 kcal/
mol),11 and EOM-CCSD (−3.0 kcal/mol).12 The negative
value indicates that trans-PSB3 is more stable than cis-PSB3
because throughout this work the cis-PSB3 energy is taken as
the reference.
At VMC/JAGP level, the TSCT (45.5(2) kcal/mol) is lower

in energy than the TSDIR (51.7 kcal/mol), making the CT
path energetically favored, similarly to what was reported by the
aforementioned correlated approaches.11,12 LRDMC and VMC
findings are equal within the stochastic error to the VMC/
JAGP values, evidence that the trial wave function ΨT is fully
optimized. The singlet−triplet gap for the cis-PSB3 is also
reported, with a difference of 2.3(3) kcal/mol between VMC
and LRDMC using the complete JAGP.
The VMC/JAGP energy profile of the MEPCT path (Figure

3a) is characterized by a shallow plateau around the transition
state structure, at variance with the shape of the MEPDIR path
(Figure 3c); moreover, expensive LRDMC calculations do not
alter the picture. Parts b and d of Figure 3 show the ratio
between λLUMO and λHOMO, according to the AGP expansion
given in eq 14; as already discussed by some of us in the case of
the application of the AGP ansatz on the diradical twisted
ethylene C2H4,

32 very small values of this ratio correspond to a
single-reference wave function, with the lowest molecular
orbitals doubly occupied (the ratio is exactly zero in the limit of
a pure single Slater determinant), whereas large values of the
ratio indicate two (near)-equivalent configurations. Following

Figure 5. Energy profile along the BLA path (with respect to the cis PSB3) and the related λLUMO/λHOMO ratio for the π2 and ππ* configurations,
calculated by VMC and LRDMC methods on the variationally optimized JAGP wave functions. The triplet energy profile is also reported. The
MRCISD+Q, MRCISD, and CASSCF profiles are shown, for comparison, and the conical intersections (CI) obtained with the different approaches
are marked in the plot.

Figure 6. Graphical representation of the charge density difference
between the π2 and the ππ* configurations for VMC/JAGP and
LRMDC/JAGP CI points: the yellow (green) isosurface indicates an
excess (reduction) of 0.01 in terms of electronic charge in the π2 state
with respect to ππ*.
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the analysis in ref 32, the absolute value of λLUMO/λHOMO
approaching to unity means that two configurations are
contributing with the same weight to the electronic structure.
λHOMO and λLUMO correspond to λ1 and λ2 in the simple (2,2)
model in eq 18. The wave function along the MEPCT path
(Figure 3b) is dominated by a single configuration, with the
λLUMO/λHOMO oscillating around the value for the cis isomer
(−0.0635), as expected by the previous investigations on the
MEPCT path of PSB3. Similar arguments can be found in ref
67. The same behavior has been found along the MEPDIR path
(Figure 3b), with no appreciable contribution given by higher-
energy configurations; this result unequivocally shows that the
introduction by QMC of balanced dynamical correlation
strongly alters the CASSCF description of the electronic
structure of PSB3 along the MEPDIR path, similarly to what
found in MRCISD+Q calculations.
The AGP wave function can be formally expanded into a

linear combination of Slater determinants (eq 14), so the
single-electron molecular orbitals are obtained by the
diagonalization of the geminal coupling matrix (eq 10) and
are defined within a correlated framework. The AGP spans the
seniority number Ω = 0 sector in Hilbert space, with double
occupation for each orbital. The terms “closed-shell” and
“open-shell” are widely used to indicate systems without and
with unpaired electrons, respectively, implying that the
molecular orbitals come from single-reference approaches,
like Hartree−Fock or DFT. In the case of highly twisted
configurations of PSB3, for instance, the π2 state, involving
charge transfer with respect to the equilibrium ground state, has
closed-shell character, while the diradical ππ* state has open-
shell character: for ππ* static correlation plays an important
role, and a multiconfigurational approach must be used. Such
definitions strictly depend on the choice of the reference for the
molecular orbitals, as explained in section 2.3. Even though the
AGP wave function is formally characterized by only doubly

occupied orbitals, its application is not limited so far to the
study of closed-shell systems because the molecular orbitals
involved in the AGP expansion are the results of a variational
optimization and they can be qualitatively different from the
Hartree−Fock ones, as explicitly shown in section 2.3. Data
show that the MEPDIR path does not have a diradical character
anymore; the VMC/JAGP description of MEPCT and
MEPDIR paths produces a ground state of closed-shell π2

character, similarly to the MRCISD+Q.13

The results above are again reflected in the charge transfer
profiles along both MEPCT and MEPDIR paths shown in
Figure 4. Indeed, it is clear that in both MEPCT and MEPDIR,
the wave function gains charge transfer character, with TSCT
and TSDIR both having ca. 65% of the positive charge on the
allyl moiety. The picture presented at the VMC/JAGP and
LRDMC/JAGP levels is again at variance with what is found at
the CASSCF level of theory. With CASSCF, MEPDIR passes
through a transition state, TSDIR, which has diradical character
and has almost no charge transfer at all, with all the charge
localized on the nitrogen-containing moiety. This difference is
due to the change in CI position on the energy surface after
introducing a balanced description of electronic correlation in
the calculations. At the CASSCF level of theory, the CI is
peaked and lies in between the TSCT and TSDIR transition
states, causing them to have wave functions with different
character. At correlated levels of theory, the CI is shifted to a
larger BLA value than that corresponding to TSDIR. As a
result, both TSCT and TSDIR lie on the same side of the CI
(which is now intermediate/sloped) and therefore both have
the same wave function character (charge transfer). This
change in local topology causes only one of the transition states
to remain as a saddle point, TSCT, while TSDIR is no longer a
transition state on the S0 potential energy surface. The charge
transfer character in both MEPCT and MEPDIR decreases as

Figure 7. Charge transfer along the BLA path for the π2, ππ*, and triplet configurations, obtained by VMC and LRDMC approaches (stochastic
errors are smaller than point size). The MRCISD and CASSCF profiles are shown for comparison.
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PSB3 moves toward the cis or trans isomers of PSB3,
converging to the values corresponding to the two minima.
Furthermore, the MEPCT maximum (i.e., the TSCT) region

is flatter for the two QMC levels than for MRCISD+Q level;
this may be due to a better treatment of the electronic
dynamical correlation in this region.
4.2. BLA Path. In the CASSCF(6,6)/6-31G* landscape, the

CI is located between the TSCT and TSDIR. Consistently with
the other approaches, PSB3 assumes a closed-shell, charge
transfer character (π2) at smaller BLA values than the CI, while
its wave function becomes covalent and diradical (ππ*) at
larger BLA values (upper panel of Figure 5). As anticipated
above, the crossing between the two states does not produce a
peaked CI, like in the CASSCF case, but instead a sloped and
intermediate CI. Even though we are not able to identify the
exact position of the CI, VMC/JAGP calculations clearly show
that CI moves toward large values of BLA (∼0.075 Å), beyond
the TSDIR. The present result differs from the collection of
data obtained by other correlated approaches, locating the CI
around 0.03−0.04 Å,11−13,15 with the exception of the QD-
NEVPT2/CAS(6,6) analysis (extrapolated value at 0.05 Å).11

When using the LRDMC/JAGP approach, the CI position
(∼0.06 Å) comes closer to MRCISD+Q data. We observe that
the charge transfer (π2) curves obtained using VMC/JAGP and
LRDMC/JAGP are actually more stable, with respect to cis-
PSB3 energy, than that obtained with MRCISD+Q, consis-
tently with the lower energy TSCT of VMC/JAGP and
LRDMC/JAGP. Meanwhile, the diradical (ππ*) curve from
VMC/JAGP or LRDMC/JAGP are less stable that those from
MRCISD+Q. This is what causes the CI from VMC/JAGP and
LRDMC/JAGP to shift to higher BLA than in MRCISD+Q.
Moreover, it is important to point out that relaxing the
structures and the minimum energy paths of PSB3 at the QMC
correlated level may produce slightly different topologies for
the BLA and MEP scans close to the CI.
In the lower panel of Figure 5, the VMC/JAGP points

corresponding to the ππ* state are characterized by a high ratio
(in absolute value) between λHOMO and λLUMO, close to 1. As
already mentioned, this is due to the multiconfigurational
nature of the diradical state, where the frontier orbitals are near-
degenerate and singly occupied. From the AGP analysis, near-
degeneracy for S0 is therefore found in the large-BLA portion of
the path. This reinforces the results of the MEPCT and
MEPDIR paths above because it is clear here that TSCT and
TSDIR both lie on the same side of the CI after introduction of
the dynamical electronic correlation. Also, one can see here that
while TSCT remains a saddle point on the S0 potential energy
surface, TSDIR actually becomes a minimum on the S1 surface
and is no longer a transition state as in CASSCF. The π2 state,
also extending in the diradical portion of space previously
defined by the CASSCF study, is clearly single-reference, and it
dominates the wave function of PSB3 up to a BLA of 0.05 Å.
The reliability of the present results is further confirmed

looking at the triplet energy profile along the BLA path (blue
triangles in the upper panel of Figure 5, filled and open symbols
for VMC and LRDMC, respectively). Because the comparison
of the π2 and ππ* energies along the BLA scan is a fundamental
step in order to give an accurate representation of the ground
state potential energy surface of PSB3 surrounding the CI, the
triplet energy profile can be considered a lower bound for the
ππ* energy. For diradicals, triplet should be the ground state
spin multiplicity, according to the molecular version of Hund’s
rule:63,64 this is the case, for instance, of the orthogonally

twisted ethylene molecule32 where, due to the homolytic
cleavage of the double bond, the wave function is dominated by
two configurations with the same weight and the two involved
p atomic orbitals have zero overlap. The structures of the BLA
path with diradical character are characterized by a torsion of
about 90 deg around the formal central double bond of PSB3,
similar to the prototypical example given by C2H4 system: the
central double bond is broken and the two p orbitals are
mutually (almost) perpendicular. This manifest similarity
between the twisted diradical PSB3 and the prototypical
C2H4 system yields to reasonably expect that the ground state
of the twisted diradical PSB3 is also a triplet, as we observe a
posteriori with VMC/JAGP and LRDMC/JAGP calculations.
[However, it is not true in general for all diradicals that the
triplet state has a a lower energy that the singlet state, for
example, disjointed and non-Kekule molecules, like the
tetramethyleneethane,31,68 have a very small singlet−triplet
gap with the singlet lower in energy in some specific
geometries, while the ground state of oligacenes larger than
hexacene69 is also a singlet.]
As one can see from the upper panel of Figure 5, the triplet

energy is higher than the π2 singlet energy for BLA values
smaller than 0.055 Å for VMC and 0.05 Å for LRDMC, and
consequently the same certainly occurs for the ππ* state. A
similar gap of ∼10−12 kcal/mol is also found at CASSCF-
(6,6)/6-31G* level in the diradical portion of the BLA path.
These simple arguments, combined with the fact that the

convergence of the wave function optimization for a triplet
state is easier to achieve in the VMC/AGP framework, allow us
to be extremely confident with the robustness of the present
results for the location of CI along the BLA path.
The ground state wave function is dominated by the π2 state

before the CI (i.e., at lower BLA values), while it assumes ππ*
character after the crossing; it is interesting to understand how
the charge distribution changes in the two configurations.
Figure 6 reports, as an example, the charge density difference
between the π2 and ππ* states for VMC/JAGP and LRDMC/
JAGP CI points along the BLA path, more precisely, for the
closest structures to CI found at VMC and LRDMC level. The
shape of the isosurfaces obviously resembles the p atomic
orbitals involved in the πelectronic structure of the twisted
PSB3. The most evident changes in the charged distribution are
observed for the two central carbon atoms, where the double
bond has been broken because of the torsion: the yellow part of
the plot (online color version) corresponds to an accumulation
of electronic charge in the π2 state with respect to the ππ*,
whereas the green isosurfaces indicate the opposite situation.
Such analysis is consistent with the charge transfer nature of

π2 configuration and with the covalent and diradical character
of ππ*. We know from Figure 7 that the charge transfer of π2

along the path oscillates between 0.63 and 0.72, and that the
charge transfer of ππ* is much smaller (∼0.10). A large (small)
value of charge transfer means an excess (reduction) of
electronic charge on the protonated imine heteroallyl moiety,
according to the plot reported in Figure 7 for VMC and
LRDMC calculations, with the charge transfer of the triplet
coinciding with the ππ* values.

5. CONCLUSIONS

VMC and LRDMC methods have been used to compute
electronic and energetic properties of PSB3, using the JAGP
ansatz.
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VMC/JAGP and LRDMC/JAGP calculations on three
different CASSCF paths reveal the fundamental role played
by a balanced description of the dynamical correlation for the
correct representation of the ground state energy surface in the
proximity of the conical intersection. The VMC and LRDMC
calculations significantly alter the CASSCF landscape, inverting
the relative stability of the MEPCT and MEPDIR paths,
similarly to what obtained by other correlated ap-
proaches.11−13,15 However, the region surrounding the TSCT
appears more flat when computed at the QMC levels.
On both MEPCT and MEPDIR paths, the PSB3 wave

function assumes a charge transfer and single-reference
character: the MEPDIR path is therefore not diradical anymore
when analyzed at correlated level. This finding is immediately
confirmed by the fact the CI is pushed toward values of BLA
larger than that corresponding to the TSDIR (∼0.075 Å with
VMC/JAGP and ∼0.06 Å with LRDMC/JAGP, while the
reference calculations give a CI located at around 0.03−0.04 Å).
Furthermore, in the present study, the multiconfigurational

nature of AGP has been explained in detail, following the work
reported in ref 32, for the description of the diradical ππ*
configuration of PSB3. Even though the AGP is defined in the
seniority number Ω = 0 subsector of the Hilbert space (e.g., the
set of molecular orbitals is doubly occupied), a unitary
transformation of the AGP-optimized molecular orbitals allows
one to always map the ππ* state of highly twisted PSB3
geometries, with two unpaired electrons, into the AGP Ω = 0
subsector.
The role of the dynamical electronic correlation has been

found to be essential in order to get a reliable description of the
ground state of PSB3 around the CI. Therefore, mechanistic or
dynamics studies using methods which do not incorporate
these effects need to be performed and interpreted critically.
The recent improvements in forces calculations using QMC
approaches70 suggest that there will be soon the possibility to
compute MEPCT and MEPDIR minimum energy paths based
on the VMC/JAGP method, yielding to a more consistent
comparison with the energies and geometries obtained from
CASSCF in order to further clarify the main features of PSB3.

■ APPENDIX: COMPARISON BETWEEN A CASSCF
AND A AGP WAVE FUNCTION ANSÄTZE

In this appendix, we will show the relationships between the
singlet AGP wave function and the complete active space CAS
ansaẗze. In particular, we will demonstrate the equivalence of a
CAS(2,n) of 2 electrons in n molecular orbitals and a geminal
function for a singlet system of two electrons. Later, we will
consider the case of an AGP function with two nearly
degenerate states.
A CAS(2,n) wave function for a singlet state is a linear

combination of Slater determinants, where every Slater
determinant is identified by the occupation numbers of some
reference orthonormal molecular orbitals ψi, i = 1, ...,n and the
spin state of the two electrons, and the coefficients of the
expansion are variationally optimized. If we indicate the
possible combinations of two electrons in n orbitals with the
second quantization notation:

α β

β α

| ⟩ = ̂ ̂ | ⟩

| ⟩ = ̂ ̂ | ⟩

| ⟩ = ̂ ̂ | ⟩

| ⟩ = ̂ ̂ | ⟩

↑
†

↓
†

↑
†

↓
†

↑
†

↓
†

↑
†

↓
†

a a

a a

a a

a a

2, 0, ..., 0 0

, , ..., 0 0

, , ..., 0 0

0, 2, ..., 0 0
...

1, 1,

1, 2,

2, 1,

2, 2,
(25)

where |0⟩ is the empty space, and the operator aî,↑
† (a ̂i,↓† ) creates

an electron of spin up (α) or down (β) in the orbitals ψi and
satisfies the canonical anticommutation relations. Using this
notation, a CAS(2,n) wave function can be simply written as

∑

∑

| ⟩ = ̂ ̂ | ⟩

+ ̂ ̂ + ̂ ̂ | ⟩
=

↑
†

↓
†

<
↑

†
↓

†
↑

†
↓

†

n c a a

c a a a a

CAS(2, ) 0

( ) 0

i

n

ii i i

i j
ij i j j i

1
, ,

, , , ,
(26)

where the coefficients cii and cij are variationally optimized. In
eq 26, we have implicitly used the fact that the coefficients for
the configurations a ̂i,↑† aĵ,↓† |0⟩ and aĵ,↑

† aî,↓
† |0⟩ have to coincide in

order to have a singlet wave function.
We will prove now that the CAS(2,n) wave function can be

generally rewritten in the following form:

∑ λ| ⟩ = ̂ ̂ | ⟩
=

↑
†

↓
†

n b bCAS(2, ) 0
i

n

i i i
1

, ,
(27)

where bî,↑
† and bî,↓

† are respectively the creation operators of a
spin up and down electron in a orbital ψ̃i obtained from a
unitary transformation of the orbitals ψ1, ..., ψn. In other words,
we will prove that the second sum in the right-hand side (RHS)
of eq 26 can be dropped by transforming the reference
molecular orbitals with an opportunely chosen unitary
transformation. Because the RHS of eq 27 is actually the
expression of a geminal in terms of molecular orbitals (or of its
natural orbitals), this will prove that CAS(2,n) is equivalent to
the geminal function that we are using in the AGP framework.
Proof: eq 26 can be written in the following way:

̂ · ̂ | ⟩↑
†

↓
†a Ca 0 (28)

where a↑̂
† (a↓̂

†) is a vector whose elements are the creation
operators aî,↑

† (aî,↓
† ), C is the n × n symmetric matrix whose

elements are cij, and “·” is a scalar product. The matrix C is
diagonalized by a unitary matrix U, such that C = U†ΛU, being
Λ a diagonal matrix with diagonal elements λ1, ..., λn, and the
symbol † indicates the conjugate transpose (in the case of
having the matrix C real, as in this work, we have that U is also
real, thus it is actually an orthogonal matrix). Equation 28 is
easily rewritten as

̂ ·Λ ̂ | ⟩↑
†

↓
†

b b 0 (29)

with b̂↑
† ≡ Ua↑̂

† and b↓̂
† ≡ Ua↓̂

†, and the elements of the vector b̂↑
†

(b̂̂↓
†) are thus the creation operators bî,↑

† (b ̂i,↓† ) of an up (down)
electron in the orbital ψ̃i =∑j = 1

n Uijψj. The unitary transformed
orbitals ψ̃i are orthonormal because U is unitary. It is
straightforward to show that 29 is equal to the RHS of eq
27, and this concludes the proof.
If we define the operator Ĝ that creates a singlet pair of

electrons:
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∑ λ̂ = ̂ ̂
=

↑
†

↓
†

G b b
i

n

i i i
1

, ,
(30)

then, by comparing with eq 27, we have that |CAS(2,n)⟩ = Ĝ|0⟩
On the other hand, an AGP wave function |AGP⟩ for a singlet
system with N electrons, so N/2 singlet pairs, can be written as

| ⟩ = ̂ | ⟩GAGP 0
N/2

(31)

Without loss of generality, we can assume that the orbitals ψ̃i
are such that their corresponding λi in eq 27 are ordered in
decreasing order for their absolute value:

λ λ λ| | ≤ | | ≤ ≤ | |... n1 2 (32)

By substitution of 30 into the RHS of eq 31, and dropping out
the terms that are zero due to the anticommutation relations of
the b† operators, and an irrelevant multiplicative coefficient c =
∏i = 1

N/2λi, we have that the AGP wave function can be expanded
in the following way (in agreement with ref 32):
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AGP 0
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i

N

i i

j N N p n

p

j i

N

i j

i i p p

j k N N p q n

p q

j k i
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k i j

i i p p q q

1

/2

, ,

1 /2 /2 1

/2

, , , ,

1 /2 /2 1

/2
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(33)

For the specific case of diradical molecules, AGP can provide a
reliable description of the system by having n = N/2 + 1, and
|λN/2+1| ∼ |λN/2| ≪ |λN/2−1|. Moreover, for a singlet system of N
electrons, the AGP ansatz is comparable to the complete active
space CAS (2,no) of 2 electrons in no orbitals, if in eq 33 we
have n = N/2 + no, and |λN/2|≪ |λN/2−1|. In this way we have for
j ≤ N/2 and p > N/2 that |λp/λj| ≤ ϵ (where ϵ  |λN/2/λN/2−1|
is small) and the absolute value of the coefficients of the third
term in the RHS of eq 33 are |(λpλq)/(λjλk)| ≤ ϵ2, thus
negligible. Analogous considerations lead to show that at higher
orders of expansion the coefficients are of order ϵm, with m
growing with the order of the expansion, therefore for small
ϵthe only non-negligible terms in the AGP expansion are the
first and second one in the RHS of eq 33.
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