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Regression calibration with instrumental
variables for longitudinal models with interaction
terms, and application to air pollution studies
M. Stranda,b*, S. Sillauc, G. K. Grunwaldb and N. Rabinovitchd

In this paper, we derive forms of estimators and associated variances for regression calibration with instrumental vari-
ables in longitudinal models that include interaction terms between two unobservable predictors and interactions between
these predictors and covariates not measured with error; the inclusion of the latter interactions generalize results we pre-
viously reported. The methods are applied to air pollution and health data collected on children with asthma. The new
methods allow for the examination of how the relationship between health outcome leukotriene E4 (LTE4, a biomarker
of inflammation) and two unobservable pollutant exposures and their interaction are modified by the presence or absence
of upper respiratory infections. The pollutant variables include secondhand smoke and ambient (outdoor) fine particulate
matter. Simulations verify the accuracy of the proposed methods under various conditions. © 2015 The Authors.
Environmetrics published by John Wiley & Sons Ltd.
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1. INTRODUCTION
Exposures to ambient air pollution and secondhand smoke (SHS) have been implicated as health risks, particularly for some conditions
such as asthma (Chilmonczyk et al., 1993; Roemer et al., 1993; Peters et al., 1997; Vedal et al., 1998; Ostro et al., 2001; Wallace et al.,
2003; Rabinovitch et al., 2006, 2011). In terms of subject exposure, measurement error is inherent to air pollution studies because most have
used fixed (central) monitors at a distance from study subjects. Even for studies that have used personal monitors, determining fractions
of pollution due to SHS and outdoor sources involves estimation. Regression calibration with instrumental variables (RCIV; Carroll et al.,
Chapter 6, 2006; Buonaccorsi, Chapter 5, 2010; Buzas and Stefanski, 1996) can be used to minimize bias in health-effect estimates due to
measurement error by employing data from both fixed and personal monitors as well as other variables related to exposure.

Regression calibration methods are well established and have been extended for longitudinal or clustered data within recent decades, most
commonly by employing linear mixed models (Bartlett et al., 2009); nonlinear mixed models, Ko and Davidian, 2000; or generalized linear
mixed models (GLMM; Carroll et al., 1997; Wang et al., 1998, 1999). Specific extensions for RCIV using GLMMs have also been made
(Li and Wang, 2012). These articles provide framework for estimation but do not give explicit forms for specific models with interaction
terms. Other recent measurement error methods articles involve interaction terms, but not longitudinal data or instrumental variables (e.g.,
Wong et al., 2004; Huang et al., 2005). We previously derived explicit forms of RCIV estimators and variances for longitudinal models with
interaction terms between the unobservable predictors, that is, the true exposure measurements of interest, while adjusting for covariates
not involved in interactions (Strand et al., 2014). Here, we extend these forms to allow interaction between the unobservable predictors
and the covariates. This extension allows us to account for situations where the health–exposure relationship may be modified by subject
characteristics or conditions.

Regression calibration with instrumental variables algorithms employ unbiased but measured-with-error variables (unbiased surrogate
variables) and variables that are linearly related to the true predictors of interest (instrumental variables) to obtain consistent and nearly
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unbiased estimators of the coefficients of the true predictors. Two particular algorithms are often used to carry out RCIV, one that obtains
the calibrated estimates as functions of estimates from the two separate model fits (RCIV1) and another that obtains predicted values from
one model fit, then plugs these predicted values into a second model in place of the unknown predictors (RCIV2). Carroll et al. (2006) and
Hardin and Carroll (2003) describe methods to obtain asymptotic variances for estimated coefficients of interest in generalized linear models
using “stacked estimating equations” for RCIV1 and/or RCIV2 estimators, but recommend the use of empirical (sandwich) variances due
to model approximations with this approach. Thurston et al. (2003) proved that RCIV1 and RCIV2 estimators have the same asymptotic
variances when the outcome follows a generalized linear model of exponential family form and when there may be multiple covariates
measured with error. In this article, we determine both model-based and empirical asymptotic variances of RCIV1 estimators in linear mixed
models with specific interaction terms by applying the delta method. This approach allows for true covariance structures to be retained
(based on underlying models and assumptions), although in practice, we have found that approximations to covariance structures have
worked adequately.

Our motivating application involves a longitudinal air pollution and health study conducted on children with asthma at the National Jewish
Health in Denver and reported in Rabinovitch et al. (2011) and Strand et al. (2014). In the first article, we examined the relationship between
a biomarker of inflammation, leukotriene E4 (LTE4), and two instrumental variables related to pollutant exposures: urinary cotinine (related
to SHS exposure) and outdoor fine particulate matter (related to personal ambient fine particulate matter exposure), plus their interaction.
Using these instrumental variables plus a small number of days of measured-with-error but unbiased exposure concentrations from personal
monitors (the unbiased surrogate variables), we then used RCIV in the second article to estimate the slopes of the two unobserved pollutant
exposure variables, plus their interaction. Both reports demonstrated that while increases in exposures to ambient fine particulate matter and
SHS each had adverse effects on health, greater dose–response relationship for one pollutant occurred when the other pollutant was at lower
levels. Some preliminary analyses suggested that the health–pollutant relationships for subjects might depend on whether or not children had
upper respiratory infections (URIs or “colds”). The extended models presented in this paper allowed us to examine this, and could be used
to study other potential effect modifiers.

In this paper, we first derive the form of regression calibration estimators for the extended RCIV1 model, which includes interactions
between unobservable predictors and observable covariates, and derive asymptotic standard errors for all estimators in this model using the
delta method. We then revisit the air pollution and health data to better understand the role of URIs in the health-exposure relationship.
Finally, the precision and accuracy of the estimation method are assessed via simulation.

2. METHODS
2.1. The models

We consider linear mixed models, including random intercepts to account for subject heterogeneity in the responses, and a serial correlation
structure for within-subject repeated measures. Although fitting models does involve approximation to the covariance structures as will be
discussed later, including these two features in the approximated structures has allowed us to obtain reasonably accurate inferential results
for parameters of interest, as verified through Monte Carlo simulation.

The continuous outcome variable Yij for subject i at time j , i D 1; � � � ; n and j D 1; � � � ; ri is expressed as a function of the unobservable
predictors (X1ij , X2ij and their interaction), covariates measured without error that are involved in interactions with at least one of the
unobservable predictors (denoted as Z�ij ), covariates without error that are not involved in interactions with the unobservable predictors
(denoted as Zij ), and random terms to incorporate the correlation due to longitudinal measurement of subjects. If each Z� term is allowed
to interact with all terms in Xij D .1;X1ij ; X2ij ; X1ij � X2ij / and we let Zij D .Z1ij ; Z2ij ; � � � ; Zkij /, Z�ij D .Z�1ij ; Z

�
2ij ; � � � ; Z

�
mij /,

then the model of interest is

Yij D Xijˇ
X C Zijˇ

Z C
�

Z�ij ˝ Xij
�
ˇZ� C bYi C �ij (1)

where bYi � N.0; �2
bY
/ is a random intercept term for subjects and �i D .�i1; �i2; � � � ; �ir i /

t � N.0;R�i /. We assume that the random
intercept and error terms are independent of each other and that the subjects are independent. We use the spatial power structure for R�i ,

which has the form Cov.�ij ; �ij 0/ D R�i .j; j
0/ D �

jtij�tij 0 j
� �2� , for days tij and tij 0 in the study period associated with observations j and

j 0, respectively, for subject i . This is a generalization of the AR(1) structure and is useful when data are collected intermittently, such as in
our data application. (In our application, we do not consider days without data to be missing values because data collection was designed
to be intermittent.) The fixed-effect parameter vectors are defined as ˇX D .ˇX0 ; ˇ

X
1 ; ˇ

X
2 ; ˇ

X
3 /
t , ˇZ D .ˇZ1 ; ˇZ2 ; : : : ; ˇZk /t , ˇZ� D

.ŒˇZ
�

1 �t ; ŒˇZ
�

2 �t ; � � � ; ŒˇZ
�

m �t /t , where ˇZ
�

p D .ˇ
Z�p
0 ; ˇ

Z�p
1 ; ˇ

Z�p
2 ; ˇ

Z�p
3 /t , for p D 1; :::; m. The ˝ symbol indicates the Kronecker product;

because Xij and Z�ij are both row vectors, the resulting product will also be a row vector with 4m elements: (Z�1ijXij ; : : : ; Z�mijXij ). Let

ˇ D .ŒˇX�t ; ŒˇZ�t ; ŒˇZ� �t /t denote the entire set of 4.mC 1/C k fixed-effect parameters in model (1).
In our data application, Y is natural log leukotriene E4, or ln(LTE4), andX1 andX2 are SHS and fine ambient particulate matter exposure

concentrations, respectively. Both of the pollutant variables are considered in terms of fine particulate matter (technically, particulate matter
less than 2.5 microns in diameter, or PM2:5), and measured in �g per m3. Our primary models included an indicator for URI, or “cold”
status (Z�1 D 1 for presence, 0 for absence) as the covariate allowed to interact with X variables, and study year (Z1; : : : ; Z4; the last year
was the reference year) as covariates not involved in interactions.

If not all interactions between Z� and X variables are required, then the model can be reformulated as

Yij D Xijˇ
X C Zijˇ

Z C

mX
pD1

Z�pijX.p/ij ˇ
Z�p
.p/
C bYi C �ij (2)
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where X.p/ij is the (nontrivial) subset of Xij to be included in interactions withZ�pij , for p D 1; : : : ; m and ˇ
Z�p
.p/

is the corresponding subset
of ˇZ

�

p .
Instead of observing the predictors of interest,X1 andX2, we observe instrumental variablesM1 andM2 that are linearly related to them:

X1ij D �0 C �1M1ij C b
X1
i C !1ij

X2ij D �0 C �1M2ij C b
X2
i C !2ij

(3)

where b
Xp
i � N.0; �2

bXp
/ are random intercepts for subjects, for p D 1; 2, and !1ij and !2ij are error terms with !pi D

.!pi1; !pi2; : : : ; !pir i /
t � N.0;R!pi /. As with (1) [or (2)], we assume that the random intercept and error terms are independent (for

each equation), subjects are independent, and assume the spatial power structure for R!pi . Instrumental variables in our application are
cotinine (M1, measured in ng per mg of creatinine), a metabolite of nicotine that can be measured in the urine and used as a biomarker of
exposure to SHS, and ambient fine particulate matter concentrations measured by a fixed outdoor monitor (M2, measured in �g per m3).

We can generalize (3) so thatM1 andM2 are included in both equations. Such an expanded model was considered in Strand et al. (2014).
One of the difficulties of this model is that matrices associated with estimators have linear dependencies that need to be dealt with. It does
not produce problems with estimators, but just complicates derivations. In this article, we will only consider (3) and not the expanded version
primarily for the sake of simplifying notation, although results could be generalized to that case. In addition, the use of (3) seemed to be
adequate for the data application, although the expanded version was used in the previous article to demonstrate the methods.

The primary difficulty in measuring X1 and X2 is because they are mixed together when measured, along with pollution from other
sources. Although we do not observe X1 and X2, in our application, there is a small amount of data for “unbiased but measured-with-error”
versions of these variables, denoted asW1ij D X1ij CU1ij andW2ij D X2ij CU2ij , respectively, where Upij has mean 0 and is assumed

to be independent of b
Xp
i , p D 1; 2. Incorporating W1 and W2 into (3) yields

W1ij D �0 C �1M1ij C b
X1
i C !

0
1ij

W2ij D �0 C �1M2ij C b
X2
i C !

0
2ij

(4)

where !0pij D !pij C Upij , for p D 1; 2. Portions of total measured fine particulate matter attributable to SHS (W1) and ambient sources
(W2) were estimated using personal monitors, chemical signatures, and methods as described in Strand et al. (2014). This approach is
expensive, cumbersome, and still results in measurements with error. But as long as we can assume that theW variables are unbiased for the
X variables, we can apply RCIV. In (4), let !0pi D .!0pi1; !

0
pi1; : : : ; !

0
pir i

/t denote the error vector for subject i and p D 1; 2. We use the
spatial power structure for R!0pi , although it is likely to just be an approximation.

Letting Mij D .1;M1ij ;M2ij ;M1ij �M2ij /, the health outcome model fit for RCIV1 is

Yij DMij�
M C Zij�

Z C
�

Z�ij ˝Mij

�
�Z� C bY �i C ��ij (5)

This is essentially model (1) with Mij used in place of Xij , that is, unobservable predictors are replaced with their instrumental counterparts.
Collectively, we define � D .Œ�M�t ; Œ�Z�t ; Œ�Z� �t /t as the 4.m C 1/ C k fixed-effect parameters in model (5) that correspond with the
parameters in ˇ for model (1). Asterisks are included on the random terms in (5) to distinguish them from those in (1). A version of (5) that
involves partial interactions can also be written [analogous to how (2) relates to (1)].

Models (4) and (5) are fitted to obtain estimates that are then combined via RCIV1 to achieve the calibrated estimates, which are derived
in the next section. The true covariance structure for response variables in models (4) and (5) as well as between responses in (4) and (5)
based on underlying models (1) and (3) are displayed and/or discussed in Appendix A. These covariance structures are quite complicated,
but our work has shown that using the “spatial power plus random intercept” structures as approximations in models (4) and (5) works
reasonably well. This is true for models here as well as those studied in Strand et al. (2014). To recognize these forms as only approximations,
asterisks are included on the covariance parameters to distinguish them from parameters in true underlying structures. While using these
simpler covariance structures has appeared to be adequate, we also found that ignoring the repeated measures completely leads to very over-
inflated variances.

2.2. Point estimation

Let Wij D .1;W1ij ; W2ij ; W1ij �W2ij /. Based on models (1) and (4), and assuming (bX1i C !
0
1ij ) and (bX2i C !

0
2ij ) are uncorrelated, we

can write E.Wij jMij / DMijC, where

C D

0
BBBBB@

1 �0 �0 �0�0

0 �1 0 �1�0

0 0 �1 �0�1

0 0 0 �1�1

1
CCCCCA (6)
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For our models and assumptions,

E
�
Yij jMij ;Zij ;Z

�
ij

�
D Ex

�
E
�
Yij jXij ;Mij ;Wij ;Zij ;Z

�
ij

�
jMij ;Zij ;Z

�
ij

�
D Ex

�
E
�
Yij jXij ;Zij ;Z

�
ij

�
jMij ;Zij ;Z

�
ij

�
�

D Ex

�
Xijˇ

X C Zijˇ
Z C

�
Z�ij ˝ Xij

�
ˇZ� jMij ;Zij ;Z

�
ij

�
D Ex.Xij jMij /ˇ

X C Zijˇ
Z C

h
Z�ij ˝Ex.Xij jMij /

i
ˇZ� �

D Ex.Wij jMij /ˇ
X C Zijˇ

Z C
h
Z�ij ˝Ex.Wij jMij /

i
ˇZ� #

DMijCˇX C Zijˇ
Z C

h
Z�ij ˝ .MijC/

i
ˇZ�

In the aforementioned equations, we employ the following assumptions that are standard in deriving regression calibration estimators: �

Wij and Mij are surrogates for Xij in predicting Yij , such that E.Yij jXij ;Mij ;Wij ;Zij ;Z�ij / D E.Yij jXij ;Zij ;Z
�
ij / (see Carroll et al.,

2006 for a definition of surrogacy involving distributions); � E.Xij jMij ;Zij ;Z�ij / D E.Xij jMij /; # random terms between models in (4)
are uncorrelated and Mij is uncorrelated with Upij , p D 1; 2, such that E.Xij jMij / D E.Wij jMij /. For a given application, whether
these assumptions are met should be considered carefully. Violations to these assumptions are a matter of degree; small violations may be
inconsequential, but larger violations could be very problematic. We return to this again in the Discussion.

In order to determine forms of estimators of ˇX, ˇZ and ˇZ� , we first equate terms in the preceding mean derivation with those in the
mean of (5), given Mij and covariates:

MijCˇX DMij�
M

Zijˇ
Z D Zij�

Zh
Z�ij ˝ .MijC/

i
ˇZ� D

�
Z�ij ˝Mij

�
�Z�

By properties of the Kronecker product, we can re-express Z�ij ˝ .MijC/ D .Z�ij � Im/˝ .MijC/ D .Z�ij ˝Mij /� .Im ˝C), and hence,
the last aforementioned equation becomes�

Z�ij ˝Mij

�
.Im ˝ C/ˇZ� D

�
Z�ij ˝Mij

�
�Z�

where Im is an m � m identity matrix. We also note that .Im ˝ C/�1 D .Im ˝ C�1/. By utilizing all of these equations and replacing
parameters with their maximum likelihood estimators in the mixed model fits, we obtain

ǑX D OC�1 O�M

Ǒ Z D O�Z

Ǒ Z
�

D .Im ˝ OC�1/ O�
Z�

where OC indicates that all parameters in C are replaced with their estimators; this matrix is invertible as long as estimates yield a nonsingular
matrix, which is expected. (e.g., O�1 and O�1 must be nonzero.) The matrices C�1 and OC�1 can also easily be written in algebraic form.

Often, not all interactions may be of interest. A formulation of the model and estimators for partial interactions is given in Appendix B.

2.3. Variance of Ǒ

As in Strand et al. (2014), we employed the delta method to obtain the approximate asymptotic variance of Ǒ . We use the term “approximate”
because of the approximations of covariance structures in the model; asymptotic methods are inherently approximate. Based on the delta
method, Var. Ǒ / D �†�t where

† D

0
B@
†� †�� †��

†�� †� †��

†�� †�� †�

1
CA (7)

is the covariance matrix for estimators of fixed-effect parameters in (4) and (5) and� is a matrix of partial derivatives with .i; j /th element
@ˇŒi�
@˛Œj �

, where ˇŒi � denotes the i th element of ˇ and ˛Œj � denotes the j th element of ˛ D .�0; �1; �0; �1;� t /t . The diagonal elements in (7)
are the covariance matrices for fixed-effect estimators in model (4) (first two diagonal matrices) and model (5) (third diagonal matrix), and
the off-diagonal matrices contain covariances between fixed-effect parameter estimators between models. Specific forms of † and � based
on models (1), (4), and (5) and the defined estimators are given in Appendix C. In (7), note that†�� D †

t
��

,†�� D †
t
��

,†�� D †t�� .
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Table 1. Descriptive statistics of variables involved in the analysis

Statistic Y W1 W2 M1 M2 Z�1

Number of subjects with data available 85 64 50 85 90 86
Average number of responses per subject 24.5 11.5 11.3 24.6 392.7 59.1
Minimum of subject means 3.85 0.80 1.41 �0.75� 2.48 0
Average of subject means 4.49 1.51 1.92 1.67 2.67 0.18
Maximum of subject means 5.93 3.22 2.34 5.32 2.80 0.73
Average of subject SD’s 0.35 0.42 0.41 0.64 0.62 0.31
SD of subject means 0.36 0.49 0.19 1.35 0.07 0.17

Y =ln(LTE4);W1=ln(SHS exposure+1);W2=ln(ambient fine particulate matter exposure + 1);M1=ln(cotinine);
M2=ln(ambient fine particulate matter from fixed monitor); Z�1=upper respiratory infection (1=present,
0=absent), that is, ‘cold’. Units for pollutant exposure variables and ambient fine particulate matter measured
at the fixed monitor were �g/m3; units for LTE4 were pg per mg of creatinine; units for cotinine were ng per
mg of creatinine (all before transformation). Results are combined across study years, Z1; : : : ; Z4.

� Negative values occurred due to natural log transformation.

Both model-based and empirical forms of Var. Ǒ / were calculated (Appendix C). When random terms between models in (4) as well as
between those in (4) and (5) are uncorrelated, †�� D 0, although †�� and †�� are not necessarily 0. For model-based variances, we set
all of these submatrices to 0, primarily to avoid non-convergence or non-positive definite matrix issues. For the empirical-based estimates
of Var. Ǒ /, we did not set off-diagonal elements to 0. One disadvantage of doing this is the same subject-day records must be used to fit
different models in (4) and (5) so that off-diagonal covariances can be estimated (with our given approach).

In the following are our steps to calculate model-based and empirical forms of Var. Ǒ / used in the data application and simulations,
followed by some important notes.

Steps to calculate the model-based form of Var. Ǒ /:

1. Set off-diagonal submatrices in (7) to 0.
2. Obtain diagonal submatrices in (7) from mixed model fits. Numerical forms of the diagonal covariance matrices are obtained easily

with common statistical packages (for example, using the COVB option in ODS OUTPUT in SAS PROC MIXED or in the y.fit$varFix
object in R, when using the lme function from the nlme package).

3. Compute Var. Ǒ / D �†�t using forms of� as shown in Appendix C, replacing parameters with their estimates.

Steps to calculate the empirical form of Var. Ǒ /:

1. Calculate empirical versions of submatrices in (7) using forms shown in Appendix C, where the middle “Var” and “Cov” quantities
are calculated based on squared residuals or residual cross products.

2. Compute Var. Ǒ / D �†�t using forms of� as shown in Appendix C, replacing parameters with their estimates.

3. APPLICATION
In our analyses, we consider the same data as described and analyzed in Strand et al. (2014), with the addition of the time-varying “cold”
indicator variable, obtained through surveys with the children. The variables are defined in Section 2.1, with summary statistics presented in
Table 1. Within a study year, data collection occurred approximately from October through April. Data from the first 2 study years (2002–
2004) were available to fit (4), while data from all 4 years (2002–2006) were available to fit (5). Consequently, model-based variances but
not empirical variances were calculated for Ǒ . For ease of interpretation of parameter estimates, we mean-corrected the W variables in the
fit of (4). Instrumental data were much more abundant and easier to collect than data from personal monitors, making RCIV a natural choice
for analysis. Our assumed model for (1) was

Yij D ˇ
X
0 C ˇ

X
1 X1ij C ˇ

X
2 X2ij C ˇ

X
3 X1ijX2ij C ˇ

Z1Z1ij C ˇ
Z2Z2ij C ˇ

Z3Z3ij C ˇ
Z4Z4ij

C ˇ
Z�1
0 Z�1ij C ˇ

Z�1
1 Z�1ijX1ij C ˇ

Z�1
2 Z�1ijX2ij C ˇ

Z�1
3 Z�1ijX1ijX2ij C b

Y
i C �ij

(8)

Table 2 shows results of model (4) and (5) fits, while Table 3 shows estimates of the key parameters in (8) via RCIV1. (Note that year 4 was
set as the reference, so ˇZ4 D 	Z4 D 0.) Our data suggested that the instrumental (M ) variables were only weak to moderately associated
with the personal exposure data. This was one of the reasons why more data were sought to fit (4), even though unbiased surrogate data did
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Table 2. Estimates of parameters in (4) and (5) for the data application (SE in parentheses)

Predictor or Regression of W a
1 Regression of W a

2 Regression of Y
covariance quantity (personal SHS exposure) (personal ambient fine (LTE4)

on M1 particulate matter) on M2 on M1;M2, M1 �M2

Intercept O�0 D �0:26 (0.07) O�0 D �0:52 (0.09) O	M0 D 4:12 (0.08)
Cotinine (M1) O�1 D 0:14 (0.03) O	M1 D 0:09 (0.03)
Ambient PM2:5 (M2) O�1 D 0:17 (0.03) O	M2 D 0:05 (0.02)
M1 �M2 O	M3 D �0:02.0:01/

Cold (Z�1 ) O	
Z�1
0 D 0:20 (0.15)

Z�1 �M1 O	
Z�1
1 D �0:07 (0.08)

Z�1 �M2 O	
Z�1
2 D �0:05 (0.05)

Z�1 �M1 �M2 O	
Z�1
3 D 0:03(0.03)

Year 1 (Z1)b O	Z1 D 0:11 (0.04)
Year 2 (Z2)b O	Z2 D 0:24 (0.04)
Year 3 (Z3)b O	Z3 D 0:30 (0.04)
Random subject variance O��2

bX1
D 0:15 O��2

bX2
D 0:02 O��2

bY
D 0:11

Correlation O��
!01
D 0:47 O��

!02
D 0:08 O��� D 0:42

Residual variance O��2
!01
D 0:22 O��2

!02
D 0:17 O��2� D 0:12

W variables were mean-corrected before the fit of (4). There were 458, 560 and 1438 records for analysis in the
regression models for W1, W2 and Y , respectively; see the text for more detail about the variables and models.
Correlations are meaningful for responses on consecutive days. Ambient fine particulate matter is denoted as
ambient PM2:5.

aMean corrected before model fit.

bRelative to Year 4.

Table 3. Estimates of parameters (or linear combinations of parameters) in model (8) for ln(LTE4) based on the RCIV1 estimation method

No cold Cold Difference

Model term Estimate (SE) P-value Estimate (SE) P-value P-value

Intercept ǑX
0 D 4:33 (0.049) <0.001 ǑX

0 C
ǑZ�
0 D 4:41 (0.06) <0.001 0.02

SHS slope (at mean ǑX
1 D 0:22 (0.11) 0.04 ǑX

1 C
ǑZ�
1 D 0:27 (0.20) 0.18 0.75

ambient PM2:5)
Ambient PM2:5 slope ǑX

2 D 0:07 (0.11) 0.52 ǑX
2 C

ǑZ�
2 D 0:09 (0.30) 0.76 0.92

(at mean SHS)
Interaction ǑX

3 D �0:86 (0.48) 0.07 ǑX
3 C

ǑZ�
3 D 0:23 (1.45) 0.88 0.36

Ambient PM2:5 slope 1.37 (0.73) 0.06 �0.25 (2.04) 0.90 0.34
(in absence of SHS)

Model-based asymptotic standard errors were derived using the delta method as described in Section 2.3, and p-values are based on Wald
Z-tests assuming asymptotic normality. Because W variables were mean corrected before analysis, interpretations for SHS and ambient
PM2:5 slopes (rows 2 and 3) are relevant at the mean of the other pollutant, and the intercept is the estimate of mean ln(LTE4) for the
reference year (Year 4) at the mean of both pollutants. The larger SEs for “Cold” are due to fewer subject-days for these conditions, relative
to “No cold”. Ambient fine particulate matter is denoted as ambient PM2:5.

not exist in the last 2 years of the study. Figure 1 shows predicted values based on calibrated estimates; the figure demonstrates that while
predicted values for LTE4 generally increase as pollutants increase, there was noticeable negative interaction between pollutants for those
without colds (p D 0:07); when one pollutant was lower, the dose–response relationship between LTE4 and the other pollutant was stronger.
Such a pattern was not observed for those with colds (p D 0:88 for interaction). The quartiles used in Figure 1 were determined based on
distributions of predicted values ofW1 andW2 from fits of (4). This differs from the approach taken for the figure in Strand et al. (2014), for
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Figure 1. Relationships between LTE4 and exposure to one pollutant, modified by exposure to a second pollutant, for children on (A) days without colds
and (B) days with colds. Solid lines show estimated mean LTE4 as a function of secondhand smoke (SHS), by quartiles of ambient fine particulate matter.
Dashed lines show estimated mean LTE4 as a function of ambient fine particulate matter, by quartiles of SHS. Quartiles were determined from distributions
of predicted values from model fits of (4). Quartile symbols are Q1=25th percentile, Q2=50th percentile, Q3=75th percentile. Predicted mean values were
obtained using RCIV1 methods, using estimates, as shown in Table 3, and scaled for the average across years. Because the response variable was analyzed on

the natural log scale, the predicted values have the form c � exp.x Ǒ
X
C ´�1x Ǒ

Z�1
/ on the original scale, where c D 1:18 for the average across years. The

graph illustrates that for no-cold days, increases in LTE4 per unit increase in one pollutant are steepest when the second pollutant is lower. However, when
children have colds, LTE4 is higher and there is less interaction between pollutants on health. Both outcome and predictors were analyzed on the natural log

scale but inverted back for presentation, resulting in curves

which quartiles from distributions of observed values ofW1 andW2 were used. The distributions of predicted values are less variable, and so
using quartiles from these distributions leads to estimates more on the interior of the distributions of exposures rather than on the extremes.

The estimated slope of the SHS exposure variable in predicting log LTE4—fixing ambient fine particulate matter exposure at its mean
level—was approximately three times greater than for ambient fine particulate matter (fixing SHS exposure at its mean level), both for those
without and with colds (Table 3). Although this difference was not significant for either those with or without colds (p > 0:2), the consistency
of estimates between sick and well children is notable. For those without colds, the SHS slope at a fixed level c for ambient fine particulate
matter was greater than the slope of ambient fine particulate matter slope at level c of SHS with marginal significance (p D 0:047), while
it was very insignificant for those with colds. (This is a different test than when comparing at the mean of the “other” pollutant because the
means of the two pollutants differed.) The weaker significance of tests involving those with colds is at least in part due to fewer records
under those conditions (approximately 20%).

In the absence of SHS, well children had a marginally significant relationship between ambient fine particulate matter and log(LTE4),
while there was no apparent relationship when children were sick (last row, Table 3). The comparison of SHS slopes in absence of ambient
fine particulate matter is less relevant and not included because children are generally exposed to ambient fine particulate matter, but not
necessarily cigarette smoke.

The increase in LTE4 per IQR increase in one pollutant at the mean of the other pollutant ranged from approximately 3 to 15% both for
those with and without colds. Fixing both SHS and ambient fine particulate matter at mean values, those with colds had LTE4 values that
were approximately 8% higher than those without (p D 0:02; obtained as Œexp.4:41/ � exp.4:33/�=exp.4:33/, based on intercepts shown
in Table 3). This suggests that having a cold has an acute effect on LTE4 that is approximately the same as an IQR increase in a pollutant
(fixing non-involved pollutants at mean values).

The larger random subject variances for W1 and Y models are expected; the first occurring due to differences in smoking behaviors of
those living with the study subjects, and the second due to natural subject heterogeneity in LTE4 levels. Both the random subject variance
and within-subject correlation were relatively low for W2 models, but for consistency, we kept the terms in that model. Appendix D has a
discussion of the predicted values for models without covariate interaction terms.

4. SIMULATION
Simulations were conducted in order to determine accuracy of the regression calibration estimators and to assess the coverage rates of
confidence intervals. The models used were similar to those in the data application, without year indicators (i.e., noZ variables in the model).
One indicator covariate (Z�1 ) was included and was allowed to interact with both X variables as well as their interaction (i.e., the “full”
interaction model (1) was considered). Z�1 was included to mimic the “cold” variable, with the same approximate rate of event occurrence
(´�1 D 1 for about 20% of the data). The simulations generally used parameter settings that lead to parameter estimates similar to those
observed in the data application.
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The simulation conditions were as follows: sample sizes ranged from n D 50 to n D 500 subjects, with r D 10 to r D 20 repeated
measures per subject on consecutive days. Complete records were simulated so that both model-based and empirical variance estimators
could be determined. Errors and random subject intercepts were generated from normal distributions. Additional conditions (e.g., different
correlation parameter values or error distribution types) were considered in Strand et al. (2014) for models without covariates.

Overall, the results here are similar to those presented in Strand et al. (2014) for models without covariate interaction terms, but more
complex pollutant models. The results of some of the simulations are presented in Tables 4 and 5. Generally, the results indicate that the
methods described in Section 2 yield confidence intervals for parameters of interest that have appropriate (nominal) coverage rate, with some
slight overcoverage when using model-based variances, for smaller sample sizes.

Table 4. MSE and Bias simulation results for RCIV1

MSE Bias

Para- n D 50 n D 100 n D 200 n D 100 n D 500 n D 50 n D 100 n D 200 n D 100 n D 500

meter r D 10 r D 10 r D 10 r D 20 r D 10 r D 10 r D 10 r D 10 r D 20 r D 10

ˇX0 3.12 1.83 1.20 1.04 0.87 0.04 0.07 �0.003 0.003 �0.005
ˇX1 2.08 1.26 0.80 0.69 0.58 �0.04 �0.05 0.01 0.001 0.005
ˇX2 1.64 0.97 0.64 0.57 0.46 �0.02 �0.04 0.0003 �0.003 0.003
ˇX3 1.09 0.67 0.43 0.37 0.31 0.02 0.02 �0.005 0.000 �0.003
ˇZ
�

0 6.22 3.70 2.79 2.66 2.23 �0.05 �0.17 0.06 0.01 �0.08
ˇZ
�

1 5.65 4.48 4.25 4.18 4.03 0.02 0.11 �0.05 �0.005 0.05
ˇZ
�

2 4.35 3.42 3.25 3.20 3.07 0.02 0.09 �0.03 �0.007 0.04
ˇZ
�

3 2.93 2.30 2.17 2.13 2.05 �0.01 �0.06 0.02 0.004 �0.03

One thousand replicates per condition, using normal errors; r D number of consecutive-day repeated measures per subject;
n D subject sample size. Covariance and fixed-effect parameter settings were chosen so that fitted models had similar parameter
estimates as those observed for the data application; for fixed-effect parameters, the following values were used: ˇX0 D 1:4,

ˇX1 D 1:9, ˇX2 D 1:4, ˇX3 D �0:9, ˇ
Z�1
0 D 3:1, ˇ

Z�1
1 D �2:05, ˇ

Z�1
2 D �1:6, ˇ

Z�1
3 D 1:1 (related to X variables that were not

mean corrected). For more details, see Section 4.

Table 5. Simulation confidence interval coverage rates for RCIV1

Model-based variance Empirical variance

Conditions Parameter set Min Max Min Max

n D 50, r D 10 ˇX 96.6 96.9 95.7 96.2
ˇZ� 96.9 98.6 92.4 95.1

n D 100, r D 10 ˇX 94.7 95.1 94.7 95.1
ˇZ� 95.2 96.9 94.5 95.3

n D 200, r D 10 ˇX 95.5 95.9 95.0 95.7
ˇZ� 97.5 98.1 95.4 96.5

n D 100, r D 20 ˇX 94.2 94.8 94.3 94.9
ˇZ� 96.1 96.7 94.0 95.3

n D 300, r D 10 ˇX 94.5 95.0 94.6 95.0
ˇZ� 95.9 96.6 94.8 95.1

n D 500, r D 10 ˇX 94.5 95.3 95.1 95.4
ˇZ� 95.4 95.9 94.2 95.5

One thousand replicates per condition; r D number of consecutive-day repeated
measures per subject; n D subject sample size. Values are minimum (or maxi-
mum) confidence interval (CI) coverage rate among four parameters in set. For
1000 replicates, a correct method will have coverage within 1.4% of 95%, with
95% probability; CI coverages outside of this range are in bold. Other conditions
are the same as mentioned in Table 4.
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The properties of estimators and confidence intervals seemed to differ slightly between coefficients related to “main effects” (ˇX0 ; : : : ; ˇ
X
3 )

and interactions (ˇZ
�

0 ; : : : ; ˇZ
�

3 ). In particular, more precision was apparent for estimators of “main effect” coefficients, likely because of
more data available to estimate them (subject-days with no colds); the interaction coefficients (ˇZ

�

0 ; : : : ; ˇZ
�

3 ) involve comparisons between
“cold” versus “no-cold” conditions.

Mean bias was not significantly nonzero (for ˛ D 0:05 with t-tests) across simulation sets. There were slight trends of bias in some
simulations, although it did not appear to adversely affect confidence interval coverage rates, and the bias tended to average out between sets
of parameter estimates. For example, when ˇX0 and ˇX3 had negative bias, ˇX1 and ˇX2 were positive, and vice versa. Similar results were
observed for ˇZ

�

0 ; : : : ; ˇZ
�

3 although even more pronounced (likely because of greater standard errors for those estimates). These patterns
were not consistent across simulations, and together with the nonsignificant observed bias, there is no indication of systematic problems with
the estimation method.

The results suggest that using empirical variances may be more reliable (when possible), although model-based variances did not perform
too poorly. Because of the fact that the variances are asymptotic in nature, it is not recommended that sample sizes much less than 100
subjects be used. The simulations discussed earlier and presented in the tables generated data from random terms that were independent
between as well as within models. A set of simulations was also conducted using correlated random terms between models in (4) in order to
determine how violating the assumption affected results, as discussed in Section 5.

5. DISCUSSION
In our analyses, we found that while pollutants appeared to have additive effects when children were sick, there was a marginally significant
interaction between pollutants when they were not sick, such that the health–pollutant relationship for one pollutant was stronger when
the other pollutant was lower. This difference in interaction terms (i.e., the three-way interaction) suggests a complex relationship between
exposure to pollutants and cold status of children with asthma, with respect to LTE4 levels. One possible explanation for the observed results
is that when they are not sick, children are more able to maintain homeostatis by limiting LTE4 responses during co-exposures to pollutants,
relative to when they are sick. However, more research is certainly warranted in order to not only test this hypothesis but also to verify the
observed patterns here.

The conditions and restrictions of the study should be kept in mind here, which include but are not limited to the following: fine particulate
matter is only one type of air pollution that does not include toxic gases such as carbon monoxide; the study group here involves children with
asthma and not the general population; relatively low levels of fine particulate matter and SHS were observed, and results cannot necessarily
be extrapolated to higher, unobserved levels—ambient fine particulate matter concentrations in parts of China are often well over 10 times
that observed in Denver (e.g., see Venners et al., 2003); and the toxicity of ambient fine particulate matter in Denver may differ from that in
other cities because of different compositions.

Specific forms of regression calibration estimators depend on exactly which terms are included in the models. Special cases for models
with one predictor measured with error could be obtained easily from the results here. Methods could be extended to models with more than
two predictors using the same approach given in this paper; however, notation would become burdensome.

Results here and in Strand et al. (2014) suggest that regression calibration for more complicated longitudinal models with interaction
terms can yield fairly accurate estimators despite approximations made to covariance structures. In both of these studies, some over-coverage
was apparent for relatively small sample sizes (no larger than 100) for model-based variances estimators. Buonaccorsi et al. (2000) also
found overestimated variances of regression calibration estimators associated with random effect models, for estimation without instrumental
variable estimators; he also suggested modified approaches to reduce this overestimation. Whether or not these results are due to the same
issue, the slight overestimation of variances of Ǒ here did not appear to be large enough to consider adjustments, as long as adequate sample
sizes are used.

Certain assumptions were made that allowed us to derive the point estimators, and we discuss a few here with respect to our application.
The non-differential error (or surragocy) assumption essentially states that the unbiased surrogate and instrumental variables do not provide
any more information in predicting the health outcome beyond what the actual exposure variables and covariates do. Because cotinine is
a metabolite specific to nicotine, we believe it is reasonable to assume that it will not provide more information in predicting LTE4 than
actual SHS exposure. An exception to this would be the fact that cotinine may be affected by the gas portion of secondhand smoke, which
could potentially influence LTE4 and is not included in estimated or actual SHS particulate exposure. (In this article, “SHS” only includes
particulate.) Similarly, we believe it is reasonable to assume that outdoor fine particulate matter measured at a fixed location will not provide
more information in predicting LTE4 than the direct exposures to this pollutant. The assumption that W variables are surrogates for X
variables seems even more logical, although the unbiased assumption is not easily verifiable.

Further examination of our data indicated the assumption that random terms between pollutant models in (4) are uncorrelated was violated
to a small degree. However, additional simulations that included correlation of approximately the same magnitude as was observed had
a negligible effect on the point estimates. Another assumption in our models is that the instrumental variables are not measured with
error. There is some potential for error in cotinine and creatinine measurements, although it is not expected to be greater than that of the
W variables.

One may wonder whether regressing the health outcome directly on unbiased surrogate variables is a reasonable alternative to using
regression calibration as described in this article. While easier, this approach not only has the disadvantage that the measurement error in the
predictors will attenuate the estimates by introducing “classical measurement error”, but also much less data are available to fit this model.
This approach yielded effects that were not close to significant (results not presented).
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In our application, we used a binary covariate that interacted with the pollutant variables to illustrate the methods. Because it is just
a binary variable, one could also perform stratified analyses for those with colds and those without, eliminating Z� variables from the
models. However, doing such would not allow for statistical comparisons to be made between those with and those without colds. Using our
presented methods, we could also add continuous covariates into the model such as subject height. In some analyses with other data, we did
find height to be an effect modifier in the pollution–health relationship. However, for these particular data, height was insignificant and did
not contribute to the model and thus was not included.

APPENDIX A. TRUE COVARIANCE STRUCTURES
In order to derive the covariance between measures Yij and Yij 0 in (5), we first define terms. Let V

Xp
ijj 0 D �2

bXp
C R!pi .j; j

0/, where

R!pi .j; j
0/ is the j th row and .j 0/th column of R!pi , and define �

Xp
ij D E.Xpij / for p D 1; 2. Specifically, �X1ij D �0 C �1M1ij and

�
X2
ij D �0 C �1M2ij based on (3) [although the next forms will still be applicable for more general two-pollutant models as considered in

Strand et al. (2014)]. In our derivations, a basic assumption is that random terms between models [including between models in (4) as well
as between models in (4) and (5)] are uncorrelated. These same assumptions were used in deriving the “true” covariance structure in Strand
et al. (2014). To simplify the following notation, let 1Z�ij D .1;Z

�
ij / and ˇX;Z� D .ŒˇX�t ; ŒˇZ� �t /t . We can write

Cov.Xtij jMij ;X
t
ij 0 jMij 0/ D

0
BBBBBBB@

0 0 0 0

0 V
X1
ijj 0 0 �

X2
ij 0 V

X1
ijj 0

0 0 V
X2
ijj 0 �

X1
ij 0 V

X2
ijj 0

0 �
X2
ij V

X1
ijj 0 �

X1
ij V

X2
ijj 0 V4;4

1
CCCCCCCA

where V4;4 D �
X2
ij �

X2
ij 0 V

X1
ijj 0 C �

X1
ij �

X1
ij 0 V

X2
ijj 0 C V

X1
ijj 0V

X2
ijj 0 . Now based on our models,

Cov
�
Yij jMij ;Zij ;Z

�
ij IYij 0 jMij 0 ;Zij 0 ;Z

�
ij 0

�
D f C �2

bY
C R�i .j; j

0/ (A.1)

where f D .ˇX;Z�/t
�
Œ.1Z�ij /

t .1Z�ij 0/�˝ CovŒX
t
ij jMij ;Xtij 0 jMij 0 �

�
ˇX;Z� is a function of fixed-effect and covariance parameters in (1)

and (3) as well as instrumental variables and covariates. Equation (A.1) demonstrates that the covariance between responses within a subject
based on (5) involves the additional term f , relative to the covariance between such responses in (1). Via simulation, we found that using
an approximated covariance structure in the fit of (5) that essentially dropped f from the calculation worked well, with an additional
advantage that unknown parameters in f from models (1) and (3) were removed from the calculation. A substantially nonzero f may not
indicate whether the approximation will work because of the fact that the parameters will take on different values and meanings in the
approximated structure.

The true covariance structures for responses in (4) differ from those in (3) because of the added error Up . If Up is uncorrelated over time
and uncorrelated with !pij , then the covariance structure simply adds Var.Up/ down the diagonal relative to that in (3), and this can easily
be modeled using standard software. However, in our application, the best results appeared to be obtained when using the same structure in
(4) as was assumed in (3), that is, the “random intercept plus spatial power” structure (although it is still likely just an approximation).

The covariance between Yij and Wpij 0 , given instrumental variables and covariates for p D 1; 2 [i.e., covariances between responses in

(4) and (5)] are functions of Z�ij , ˇX, ˇZ� , V
Xp
ijj 0 , and �

Xp
ij (the full form is available from the authors upon request). However, model-based

forms set between-model covariances to 0, as discussed in Section 2.3, and empirical covariance forms employ residuals.

APPENDIX B. PARTIAL INTERACTION MODELS
Often, an analyst may be interested in only including a subset of covariate interactions rather than “all possible” interactions in the model.
In this case, the mean values become

E.Yij jMij ;Zij ;Z
�
ij / DMijCˇX C Zijˇ

Z C

mX
pD1

Z�pijM.p/
ij C.p/ˇ

Z�p
.p/

where C.p/ and M.p/
ij are the subsets of C [in (6)] and Mij , respectively, that correspond to the subset X.p/ij of Xij in (2). To illustrate,

consider the case where there are three covariates; the first (Z�1 ) is allowed to interact with all terms in Xij ; the second (Z�2 ) with all terms

except X1 � X2; and the third (Z1) not with any X terms. We note that X.1/ij =(1,X1; X2; X1 � X2) and X.2/ij =(1,X1; X2). Model (2) in this
case becomes
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Yij D ˇ
X
0 C ˇ

X
1 X1ij C ˇ

X
2 X2ij C ˇ

X
3 X1ijX2ij C ˇ

Z1Z1ij

C ˇ
Z�1
0 Z�1ij C ˇ

Z�1
1 Z�1ijX1ij C ˇ

Z�1
2 Z�1ijX2ij C ˇ

Z�1
3 Z�1ijX1ijX2ij

C ˇ
Z�2
0 Z�2ij C ˇ

Z�2
1 Z�2ijX1ij C ˇ

Z�2
2 Z�2ijX2ij

C bYi C �ij

and

C1 D

0
BBBBB@

1 �0 �0 �0�0

0 �1 0 �1�0

0 0 �1 �0�1

0 0 0 �1�1

1
CCCCCA ; C2 D

0
BBB@
1 �0 �0

0 �1 0

0 0 �1

1
CCCA

The estimators for the partial interaction model can be expressed as

ǑX D OC�1 O�M

Ǒ Z D O�Z

ǑZ
�

p D OC�1.p/ O�
Z�p
.p/
; p D 1; : : : ; m

where O�
Z�p
.p/

are estimated coefficients of Z�pM.p/
ij in the model analogous to (5) but for partial interactions. Note: m D 2 for the illustration.

If we apply the constraint that lower-order terms must always be included in models when higher-order terms are, then there are four
possible nontrivial subsets of Xij that could be used for X.p/ij for each p: .1;X1; X2; X1 � X2/, .1;X1; X2/, .1;X1/, and .1;X2/. Because
there are only four possible forms of C with this reasonable constraint, constructing a program to handle different partial models for real
data would not be too difficult.

APPENDIX C. CALCULATING VARIANCE: FORMS OF � AND †
Let the predictors in (5) associated with � t be denoted as .MZ/ij D .Mij ;Zij ;Z�ij ˝Mij /. Then let .MZ/i denote the subject version,
obtained by stacking .MZ/ij rows vertically, for j D 1; � � � ; ri . Define Mpij D .1;Mpij / for p D 1; 2, and let Yi , Wpi , and Mpi denote
subject versions of Yij , Wpij , and Mpij , respectively. (Yi , W1i and W2i are each ri � 1 vectors; Mpi is an ri � 2 matrix; .MZ/i is an
ri � Œ4.mC 1/C k� matrix).

Elements of (7) in the text are calculated as follows.

†� D

 
nX
iD1

Mt
1iV
�1
W1i jM1i

M1i

!�1  nX
iD1

Mt
1iV
�1
W1i jM1i

Var.W1i jM1i /V
�1
W1i jM1i

M1i

! 
nX
iD1

Mt
1iV
�1
W1i jM1i

M1i

!�1

†� D

 
nX
iD1

Mt
2iV
�1
W2i jM2i

M2i

!�1  nX
iD1

Mt
2iV
�1
W2i jM2i

Var.W2i jM2i /V
�1
W2i jM2i

M2i

! 
nX
iD1

Mt
2iV
�1
W2i jM2i

M2i

!�1

†� D

 
nX
iD1

.MZ/tiV
�1
Yi j.MZ/i

.MZ/i

!�1  nX
iD1

.MZ/tiV
�1
Yi j.MZ/i

Var.Yi j.MZ/i /V
�1
Yi j.MZ/i

.MZ/i

! 
nX
iD1

.MZ/tiV
�1
Yi j.MZ/i

.MZ/i

!�1

†�� D

 
nX
iD1

Mt
1iV
�1
W1i jM1i

M1i

!�1  nX
iD1

Mt
1iV
�1
W1i jM1i

Cov.W1i jM1i ;W2i jM2i /V
�1
W2i jM2i

M2i

! 
nX
iD1

Mt
2iV
�1
W2i jM2i

M2i

!�1

†�� D

 
nX
iD1

Mt
1iV
�1
W1i jM1i

M1i

!�1  nX
iD1

Mt
1iV
�1
W1i jM1i

Cov.W1i jM1i ;Yi j.MZ/i /V
�1
Yi j.MZ/i

.MZ/i

! 
nX
iD1

.MZ/tiV
�1
Yi j.MZ/i

.MZ/i

!�1

†�� D

 
nX
iD1

Mt
2iV
�1
W2i jM2i

M2i

!�1 nX
iD1

Mt
2iV
�1
W2i jM2i

Cov.W2i jM2i ;Yi j.MZ/i /V
�1
Yi j.MZ/i

.MZ/i

! 
nX
iD1

.MZ/tiV
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Yi j.MZ/i
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where VYi j.MZ/i D Var.Yi j.MZ/i / and VWpi jMpi
D Var.Wpi jMpi /, for p D 1; 2, based on models (4) and (5) and other terms are

as previously defined. Empirical forms can be obtained by employing residuals to estimate the middle “Var” and “Cov” quantities in the
aforementioned equations. Model-based forms of block diagonal elements reduce to

†� D

 
nX
iD1

Mt
1iV
�1
W1i jM1i

M1i

!�1
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.MZ/tiV
�1
Yi j.MZ/i

.MZ/i

!�1

Model-based block off-diagonal elements were set to 0 for analysis.
The .i; j /th element of � is @ˇŒi�

@˛Œj �
, where ˇŒi � denotes the i th element of ˇ and ˛Œj � denotes the j th element of ˛. The matrix can be

expressed easily by considering submatrices with similar forms. Let

� D

0
BBBBBBBBBBBBB@

�X� �X� �� 0 0 � � � 0

0 0 0 Ik 0 � � � 0

�Z�1 �
�Z�1�

0 0 �� � � � 0

�Z�2 �
�Z�2�

0 0 0 � � � 0

:::
:::

:::
:::

:::
: : :

:::

�Z�m� �Z�m� 0 0 0 � � � ��

1
CCCCCCCCCCCCCA

where

�� D C�1

�tX� D
1

�1�
2
1

0
@ �1c

M
1 0 ��1	

M
3 0

��0c
M
1 cM1 �0	

M
3 �	M3

1
A

�tX� D
1

�21�1

0
@ �1c

M
2 ��1	

M
3 0 0

��0c
M
2 �0	

M
3 cM2 �	M3

1
A

cM1 D �0	
M
3 � �1	

M
1

cM2 D �0	
M
3 � �1	

M
2

Matrices�t
Z�p�

and�t
Z�p�

are the same as�t
X�

and�tX� , respectively, except all “X” are replaced with “Z�p”, for p D 1; :::; m; note that
Ik is a k � k matrix and that dimensions of 0 matrices can be determined from surrounding matrices.

The formulas for� and† given here are similar to those presented in Strand et al. (2014), with some key differences as follows: (i) those
in Strand et al. (2014) are derived for models that have M1 and M2 in both equations for (3) and (4); (ii) formulas given in the Appendix
of Strand et al. (2014) do not include covariates, although non-interactive covariates were generally considered in that article. (Including
non-interactive covariates would essentially involve replacing Mred

i with (Mred
i ;Zi ) for every occurrence in†� ,†�� , and†�� , based on

notation used in that article; note also that conditioning on Zi in formulas was suppressed part-way through that article for convenience.)
Similar steps as those provided here could be taken to generalize † and� to account for the more general forms of (3) and (4).

APPENDIX D. PREDICTED VALUES FOR MODELS WITHOUT COVARIATE
INTERACTION (Z�) TERMS
When there are no covariate interaction terms in (1) (i.e., no Z� variables), predicted values as a function of pollutants, x D .1; x1; x2; x1 �
x2/, have the form exp.x Ǒ

X
C z Ǒ

Z
/ D c � exp.x Ǒ

X
/, where c is a constant that depends on which values of non-interactive covariates

are considered. As an example, consider the analysis performed in Strand et al. (2014) that was the same as the analysis in this article, but
without the cold indicator variable (and hence no covariate interaction terms), and performed only for days when children were not sick. The
value of c depends on the combination of study years being considered. For the reference year (Year 4), c D exp.0/ D 1; for the average
across years, c D exp..0:048C 0:204C 0:292C 0/=4/ D 1:15, based on estimates from that article. Although not specifically stated, actual
plotted values in Figure 1 of Strand et al. (2014) are predicted values averaged over the 4 years.
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