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Abstract

The striatum is a complex structure in which the organization in two compartments (strio-

somes and matrix) have been defined by their neurochemical profile and their input-output

connections. The striosomes receive afferences from the limbic brain areas and send pro-

jections to the dopamine neurons of the substantia nigra pars compacta. Thereby, it has

been suggested that the striosomes exert a limbic control over the motor function mediated

by the surrounding matrix. However, the functionality of the striosomes are not completely

understood. To elucidate the role of the striosomes on the regulation of the nigral dopamine

neurons, we have induced specific ablation of this compartment by striatal injections of the

neurotoxin dermorphin-saporin (DS) and dopamine neurotransmission markers have been

analyzed by immunohistochemistry. The degeneration of the striosomes resulted in a

nigrostriatal projections imbalance between the two striatal compartments, with an increase

of the dopamine neurotransmission in the striosomes and a decrease in the matrix. The

present results highlight the key function of the striosomes for the maintenance of the striatal

dopamine tone and would contribute to the understanding of their involvement in some neu-

rological disorders such as Huntington’s disease.

Introduction

The caudate putamen (CPu) is one of the main nuclei of the basal ganglia which engages a

variety of functions like the control of voluntary movement, learning from habit formation to

complex motor sequences, decision-making and motivational behavior [1–3]. The CPu

receives glutamatergic afferents from different cortical areas, the thalamus and the amygdala,

as well as dopaminergic inputs from the substantia nigra pars compacta (SNc) [4]. Two pri-

mary striatofugal projection pathways have been established according to their projection tar-

gets: i) direct pathway, which innervates the substantia nigra pars reticulata (SNr); and ii)

indirect pathway which also provides efferents to the SNr, through relay connections to globus

pallidus (GP) and subthalamic nucleus (STh) [4]. The most abundant striatal neurons (90%)

consist of medium-sized spiny projecting neurons (MSNs) which use GABA as neurotransmit-

ter. The remaining striatal neurons (10%) are interneurons that have been classified into four
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Carvajal A, Rivera A (2018) Selective ablation of

striatal striosomes produces the deregulation of

dopamine nigrostriatal pathway. PLoS ONE 13(8):

e0203135. https://doi.org/10.1371/journal.

pone.0203135

Editor: Jeff A. Beeler, Queens College, UNITED

STATES

Received: April 25, 2018

Accepted: August 15, 2018

Published: August 29, 2018

Copyright: © 2018 Shumilov et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by Junta de

Andalucı́a (grant numbers CTS-0161 to A.R. and

BIO121 to M.A.R) and Universidad de Málaga.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0203135
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203135&domain=pdf&date_stamp=2018-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203135&domain=pdf&date_stamp=2018-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203135&domain=pdf&date_stamp=2018-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203135&domain=pdf&date_stamp=2018-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203135&domain=pdf&date_stamp=2018-08-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203135&domain=pdf&date_stamp=2018-08-29
https://doi.org/10.1371/journal.pone.0203135
https://doi.org/10.1371/journal.pone.0203135
http://creativecommons.org/licenses/by/4.0/


populations according to their neurochemical profile [5]: i) cholinergic neurons (ChAT); ii)

GABA interneurons that express somatostatin (SS), neuropeptide Y (NPY) and nitric oxide

synthase (NOS); iii) GABA interneurons that contain parvalbumin (PV); and iv) GABA inter-

neurons that express calretinin (CR).

Despite the noticeable homogeneous distribution of the striatal neurons, the expression of a

range of neurochemical markers and the specificity of incoming and outcoming projections in

different striatal subregions disclose a rather complex organization of the CPu [6–8]. Firstly,

three striatal domains have been defined along the dorsolateral to the ventromedial axis based

on their afferent connections, which have been called sensorimotor, associative and limbic

domains [8]. Secondly, two compartments, embedded within this topographic organization,

have been described: the striosome and matrix [6,7,9,10]. The striosomal compartment (~15%

striatal volume) is a labyrinthine structure with connections predominantly coming from lim-

bic areas, whereas the surrounded matrix is mainly related to sensorimotor and associative

regions [7,11]. More recent studies have demonstrated that the striosomes provide direct pro-

jections to dopamine neurons of the SNc [12,13], which in turn project back to the CPu. In

addition to these different connectivity features, the differential expression of a great variety of

neurotransmitter-related signals has been extensively described in both compartments [7].

Among them, the μ opioid receptor (MOR) is especially enriched in the striosomes and has

been used as a marker for these structures [14,15].

Nowadays, the functions of the striosome are not completely understood. Nevertheless, sev-

eral studies have revealed an important role of this compartment in opiate reward-driven

behaviors [16], decision-making and motor learning tasks [17], and behavioral adaptation

[18]. Besides, the imbalance between striosome-matrix function has been related to several

neurologic disorders, e.g. Huntington’s disease, drug addiction or Parkinson’s disease [7].

One of the methods employed to study striosomal function has been the selective ablation

of neurons expressing MOR by using a dermorphin-saporin toxin (DS). Dermorphin is a high

selective MOR agonist which induces receptor internalization [19], whereas saporin is a toxin

that yields the inactivation of the ribosomes [20]. Therefore, the internalization of DS produces

the degeneration of neurons expressing MOR and their efferent projections [21], while non-

MOR neurons remain unaffected. This method has successfully been used to induce the abla-

tion of both MOR enriched medullary neurons [22] and striosomal MSNs of the CPu [21,23–

25].

The main objective of this study was to increase our knowledge in the role of the striosomal

projection onto the dopamine neurons of the SNc and its impact on the nigrostriatal dopamine

pathway. Furthermore, the effect of DS lesion on striatal interneurons have also been deter-

mined. To address this question, we have improved the lesion of the striosomes with DS, in

order to obtain a higher degree of striosomal ablation in the whole CPu.

Material and methods

Animals

Male Sprague Dawley rats (n = 12) (Charles River, Barcelona, Spain) weighing 150–250 g were

maintained on a standard light/dark cycle (12/12 h) and constant room temperature

(20 ± 2˚C). The rats had free access to food pellets and filtered water. Animal care and use fol-

lowed guidelines from the European Union Council Directive (2010/63/EU) as well as the

Spanish Government (Real Decreto 53/2013) and the experimental procedure was approved

by the Ethical Committee of the University of Málaga (CEUMA 2012-0017-A). All efforts were

made to minimize animal suffering and to reduce the number of animals used.
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Intrastriatal injections

Unilateral intrastriatal injections of dermorphin-saporin conjugate (DS) (Advanced Targeting

System, San Diego, CA, USA) were performed to induce the selective ablation of the striosomal

compartment. To ensure the highest degree of injury, the infusion of DS was made at two dif-

ferent levels along the rostro-caudal axis of the CPu. The contralateral hemisphere was injected

at the same conditions with 0.9% NaCl (vehicle) and it was used as control. Animals (n = 9)

were deeply anaesthetized with ketamine (75 mg/kg, i.p.) and medetomidine (0.5 mg/kg, i.p.)

and placed in a stereotaxic frame (Panlab, Barcelona, Spain). Two drills in each hemisphere

were carried out to open the skull at the following coordinates from Bregma (in mm): i) AP =

+1.6, L = ±2.5, V = -5; ii) AP = -0.3, L = ±3.0, V = -5 (Fig 1A) [26]. The infusion of 2 μl of either

DS (17 μg/μl in saline) or vehicle per site was made using a 26-gauge Hamilton microsyringe

(Hamilton1, Bonadunz, Switzerland) at a constant flow of 0.5 μl/min. Control animals

(n = 3) received injections of unconjugated saporin (SAP, 17 μg/μl) (Advanced Targeting Sys-

tem, San Diego, CA, USA) and vehicle at the same striatal levels as those previously described.

After injections, the skin was sutured and a topical antiseptic was applied. During the surgery

and recovery, animals were kept warm using a heating pad and they received the appropriate

post-operative care.

Fig 1. Schematic representation of procedures. (A) Diagrams of coronal brain plates modified from a rat brain atlas [26] depicting

the sites where the stereotaxic injections were made. (B) Template obtained from a MOR immunolabeled brain section showing the

distribution of the striosomes (s) into the dorsal striatum. The template is applied over the photomicrography of a section

immunolabeled for TH, DAT or VMAT-2 (in this figure illustrated by TH) to quantify the optical density of each marker in the

striosomal (s) and matrix (m) compartments. Abbreviations: AP: anteroposterior; L: lateral; V: ventral. Scale bar is 1 mm.

https://doi.org/10.1371/journal.pone.0203135.g001
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Tissue preparation

Eight days after intrastriatal injections, rats were deeply anesthetized with sodium pentobarbi-

tal (60 mg/kg, i.p.) and perfused transcardially with 0.1 M phosphate-buffered saline, pH 7.4

(PBS) followed by 4% paraformaldehyde (w/v) in PBS. The brains were removed, post-fixed in

the same fixative (overnight), cryoprotected with 30% sucrose diluted in PBS with 0.02%

sodium azide (72 h) and frozen in dry ice. Rostro-caudal series of coronal sections (30 μm

thick) were obtained with a freezing microtome (CM 1325, Leica, Weztlar, Germany) and

stored at 4˚C in PBS containing 0.02% sodium azide until use.

Single immunohistochemical labeling

Free-floating sections were processed for standard single immunohistochemical labeling as

previously described [27]. The sections were incubated for 24–48 h at RT with one of the fol-

lowing primary antibodies: rabbit polyclonal anti-μ opiod receptor (MOR, 1:50,000); mouse

monoclonal anti-tyroxine hydroxylase (TH, 1:1,000); rabbit polyclonal anti-dopamine trans-

porter (DAT, 1:1,000); or rabbit polyclonal anti-vesicular monamine transporter 2 (VMAT-2,

1:1,000) (Table 1). The primary antibodies were diluted in PBS with 0.2% Triton X-100

(PBS-TX) and 0.1% sodium azide.

Double immunohistochemical labeling

Two-color dual antigen immunostaining was performed to visualize the striatal interneurons

(ChAT, SS, PV and CR) together with the striosomal compartment labeled with MOR anti-

body. We used the protocol previously described in which two sequential immunohistochem-

istry for light microscopy was performed [28]. Sections were first incubated for 24 h at RT

with one of the following primary antibodies: goat polyclonal anti-choline acetyltransferase

(ChAT, 1:750); goat polyclonal anti-somatostatin (SS, 1:5,000); goat polyclonal anti-calretinin

(CR, 1:10,000); or mouse monoclonal anti-parvalbumin (PV, 1:5,000) (Table 1). After washing,

the sections were further incubated for 1 h at RT in the appropriate biotinylated-conjugated

secondary antibody (horse anti-goat IgG or goat anti-mouse IgG; 1:500; Vector Laboratories,

Burlingame, CA, USA) followed by extravidin-HRP (1:2,000, Sigma-Aldrich, St. Louis, MO,

USA). The staining was developed with 3,3’-diaminobenzidine (DAB; 0.05%) and enhanced

with nickel ammonium sulfate (0.08%), yielding a dark purplish color. Then, a second staining

for 48 h at RT with anti-MOR (1:50,000) was performed, and processed with goat anti-rabbit

Table 1. Primary antibodies employed in this study.

Antibody Type Specie Reference (catalog #) Dilution

Calretinin Poly- G Swant (CG1) 1:10,000

Choline acetyltransferase Poly- G Millipore (AB144P) 1:750/1:500a

Dopamine transporter Poly- R Millipore (AB1591P) 1:1,000

μ opioid receptor Poly- R Millipore (PC165L-100UL) 1:50,000/1:2000a

Parvalbumin Mono- M Sigma-Aldrich (P3171) 1:5,000

Somatostatin Poly- G Santa Cruz (sc-7819) 1:5,000

Tyrosine hydroxylase Mono- M InmunoStar (P22941) 1:1,000

Vesicular monoamine transporter 2 Poly- R Millipore (AB1598P) 1:1,000

Abbreviations: Mono-, monoclonal; Poly-, polyclonal; G, goat; M, mouse; R, rabbit.
aDilution used for double immunofluorescence staining.

https://doi.org/10.1371/journal.pone.0203135.t001
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IgG (1:500; Vector Laboratories, Burlingame, CA, USA), extravidin-HRP (1:2,000) and DAB

alone, yielding a brown color.

Double immunofluorescence labeling for MOR and ChAT, SS, PV or CR was performed

using green and red fluorescent staining, respectively. Sections were incubated for 48 h at RT

with anti-MOR (1:2,000) followed by incubation for 24 h with anti-ChAT (1:500), anti-SS

(1:5,000), anti-PV (1:5,000) or anti-CR (1:10,000) (Table 1). Then, the sections were incubated

for 1 h at RT in a mixture of Alexa 488 donkey anti-rabbit IgG and Alexa 568 horse anti-goat

IgG or Alexa 568 donkey anti-mouse IgG (1:1,000; Thermo Fisher, Waltham, MA, USA). At

the end of the staining, the sections were counterstained with 4’,6- diamidino-2-phenylindole

(DAPI, 1:250; Molecular Probes, Eugene, OR, USA) and observed with a Leica SP8 laser confo-

cal microscopy (Leica, Wetzlar, Germany).

Semi-quantitative analysis

Semi-quantitative analysis of optical density (OD) of MOR, TH, DAT and VMAT-2 immuno-

reactivity (IR) through the rostro-caudal axis (eight levels from Bregma +1.96 mm to -0.56

mm) was performed as described elsewhere using the image analyzing system NIH ImageJ

1.48v (http://rsb.info.nih.gov/nih-image/) [27,29]. The measures were performed from gray-

scale photomicrographs obtained with a digital camera (VC50) coupled to an optical micro-

scope (Olympus VS120) (10x or 100x objectives). OD values were corrected with the OD from

an immunonegative area. We have previously demonstrated that this semi-quantitative meth-

ods is suitable to analyse changes in the immunolabeling of a marker under an experimental

condition [29]. The percentage of striosomal ablation was calculated as the difference between

the OD of MOR IR in the vehicle- and DS-injected hemispheres. The measure of TH, DAT

and VMAT-2 IR in the striosomes and matrix was performed using two consecutive MOR

immunolabeled slices (anterior and posterior) which are used as a template to identify these

two compartments in each section analyzed (Fig 1B) [30,31]. In the case of SNc, OD of TH IR

was measured in individual dopamine neurons.

The number of interneurons per mm2 (ChAT, SS, PV and CR) was counted and compared

between the unlesioned and lesioned hemispheres. Semi-quantitative analysis was also per-

formed to determine the OD of each individual interneuron. This analysis was carry out

through the rostro-caudal axis in the lateral and medial part of the CPu.

In all cases, data were expressed as mean percentage OD of control (mean ± SEM).

Statistical analysis

Statistical analysis was made with Kolmogorov-Smirnov test, Student’s t-tests or Mann-Whit-

ney U test when appropriate. Data were analyzed using SIGMASTAT 2.03 software. Statistical

significance was set at P< 0.05.

Results

Intrastriatal dermorphin-saporin infusion induces striosomes ablation

Unilateral injection of DS at two different levels of the rostro-caudal axis of the CPu induced a

severe depletion of MOR IR in the striosomes and the subcallosal streak compared with the

vehicle-injected hemisphere (Fig 2A). The percentage of decreased MOR IR ranged between

50–80% (Fig 2B), except in two rats in which striosomal ablation was lower than 40% and con-

sequently these animals were discarded from the study. No changes in MOR IR were observed

in the nucleus accumbens (vehicle: 100% ± 4; DS: 107% ± 4, Mann-Whitney U test = 8747.5,
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P = 0.162, n.s.). In control animals (n = 3), SAP injections did not produce changes in MOR

IR of the CPu (Fig 2D and 2E).

In the control hemisphere, the frequency of striosomes in categories of MOR IR levels fitted

a normal distribution (Kolmogorov-Smirnov test, KS = 0.158, P = 0.142). However, in the

lesioned hemisphere, a dramatical displacement of the striosomes frequency toward categories

of lower MOR IR was observed (Fig 2C). No differences were found between the SAP- and the

vehicle-injected hemispheres (Fig 2F).

In order to evaluate the spread of striosomal ablation induced by DS, MOR IR was analyzed

in the three functional domains of the CPu, i.e., the sensorimotor (SS), associative (AS) and

limbic (L) domains through the rostro-caudal axis. DS significantly decreased MOR IR in the

Fig 2. Unilateral dermorphin-SAP intrastriatal injections produced striosomes ablation. (A and D) Representative

photomicrographs showing the effect of unilateral intrastriatal injections of DS (A) and SAP (D) on MOR IR. Vehicle injected

hemisphere was used as control. (B and E) Graphs represent optical density values of MOR IR in the striosomes after DS (#1 to #7; B)

and SAP (C1 to C3; E) injection in each rat. Data represent mean ± SEM and are expressed as percentage of vehicle-injected

hemisphere. (C and F) Analysis of the number of striosomes in categories ranked by percentages of MOR IR in the rats injected with

DS (C) or SAP (F). Data represent mean ± SEM. Statistical analyses of the data were performed with Mann Whitney U test,
���P< 0.001. Scale bars are 1 mm. Abbreviations: Acb: nucleus accumbens; cc: corpus callosum; CPu: caudate putamen; DS:

dermorphin-SAP; MOR: μ opioid receptor; SAP: saporin.

https://doi.org/10.1371/journal.pone.0203135.g002
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three domains, although it was more evident at the rostral (% ablation: SS, 75–90%; AS, 95–

110%; L, 70–80%) than in the caudal levels (% ablation: SS, 45–50%; AS, 30–45%; L, 10–30%)

(Fig 3).

Fig 3. Dermorphin-SAP significantly reduced MOR immunoreactivity through the rostro-caudal axis of the

caudate putamen. Graphs represent the optical density values of MOR IR in eight consecutive coronal sections

through the rostro-caudal axis of each functional domain of the rat striatum (A: sensorimotor; B: associative; C:

limbic). I1 and I2 indicate the anteroposterior Bregma levels of the injection sites. Data represent mean ± SEM and are

expressed as percentage of vehicle treated hemisphere. Statistical analysis of the data was performed with Mann

Whitney U test, ���P<0.001.

https://doi.org/10.1371/journal.pone.0203135.g003
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Dermorphin-saporin reduces the number of ChAT and SS interneurons

In order to evaluate whether DS had an effect on striatal interneurons, four markers were used

for their identification, i.e., ChAT, SS, CR and PV. In the medial part of the CPu, ChAT inter-

neurons completely disappeared (Fig 4A and 4C), but remained intact in the lateral part (num-

ber, levels of ChAT IR and nuclear morphology) (Fig 4A, 4B and 4F; Table 2). In the case of SS

interneurons, DS also reduced the number of these cells in the CPu. A severe depletion of SS

interneurons was observed in the lateral part (>75%) (Fig 4G and 4H; Table 2). The remaining

SS cells displayed lower levels of IR and a condensed nucleus (Fig 4L; Table 2). A total removal

of SS interneurons occurred in the medial part (Fig 4G and 4I; Table 2).

CR (Fig 5A and 5B) and PV (Fig 5E and 5F) interneurons were not affected by DS injection.

In fact, the number and the IR levels of CR and PV interneurons in both the lateral and medial

part of the CPu showed no significant differences between the DS and vehicle injected hemi-

spheres (Table 2). Besides, the nucleus of the CR and PV interneurons of the lesioned side dis-

played the same morphological features than those of the unlesioned hemisphere (insets in Fig

5C, 5D, 5G and 5H).

None of the interneurons in the nucleus accumbens and the cerebral cortex were altered by

intrastriatal DS injection.

Because the effect of DS over the striatal interneurons depend on the presence of MOR in

these cells, a double immunofluorescence staining was performed. We found that ChAT inter-

neurons of the medial part (Fig 4E) and all SS interneurons (Fig 4J–4L) of the CPu expressed

MOR. On the contrary, MOR was not present either in ChAT interneurons of the lateral part

(Fig 4D and 4F), nor in CR (Fig 5C and 5D) and PV (Fig 5G and 5H) cells.

Intrastriatal dermorphin-saporin treatment alter nigrostriatal dopamine

pathway

To study the effect of the striosomal ablation on the nigrostriatal dopamine pathway, TH,

DAT and VMAT-2 have been used as markers of the dopaminergic innervation. MOR immu-

nolabeling in adjacent sections were performed to identify striosomes and matrix compart-

ments (Fig 6B).

A homogeneous distribution of immunoreactivity for TH (Figs 6A and 7A–7A”), DAT

(Figs 6C and 7B–7B”) and VMAT-2 (Fig 7C–7C”) was observed in the vehicle-injected CPu.

However, in the DS lesioned side, changes in the distribution and/or levels of IR for these

three markers were observed. A patched pattern of labeling resulted for both TH (Fig 6A–6A”)

and DAT (Fig 6C–6C”), which were found to correlate with partial ablated striosomes identi-

fied in adjacent sections by immunohistochemistry for MOR (Fig 6B–6B”). In the case of

VMAT-2 IR, a homogeneous distribution persisted in the lesioned side, although a decrease of

the IR was observed. Semi-quantitative analysis of TH, DAT and VMAT-2 IR was performed

in the three functional domains of the CPu. A significant rise of TH IR (SS: 94%; AS: 90%; L:

87%; Fig 7A–7A”) and DAT IR (SS: 73%; AS: 72%; L: 58%; Fig 7B–7B”) and a decrease of

VMAT-2 IR (SS: 30%; AS: 40%; L: 40%; Fig 7C–7C”) was observed in the ablated striosomes.

In the matrix, a decrease of TH IR (SS: 44%; AS: 40%; L: 48%; Fig 7A–7A”), DAT IR (SS: 36%;

AS: 31%; L: 30%; Fig 7B–7B”) and VMAT-2 IR (SS: 40%; AS: 44%; L: 50%; Fig 7C–7C”) was

evident. It was noted that the increase or decrease of TH IR was associated with a higher or

smaller amount of TH IR processes, respectively. Besides, a swelling of TH IR varicosities in

the whole lesioned CPu was observed (Fig 6D–6F).

The lesion of the striosomes produced the rise of TH IR (by 50%) in a subset of nigral dopa-

mine neurons (32% of total), whereas the remaining cells (68% of total) showed TH IR levels

similar to those observed in the control hemisphere (Fig 8).
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Discussion

The functions mediated by the striosomes of the CPu are not completely understood, although

data collected in the last few decades suggest that they exert a limbic control over the

Fig 4. ChAT and SS striatal interneurons are affected by dermorphin-SAP lesion. (A-C; G-I) Photomicrographs illustrating by

dual labeled immunohistochemistry with anti-MOR (brown) and anti-ChAT (A-C) or anti-SS (G-I) (dark blue) the impact of DS on

these cells in both the lateral (B-H) and medial part (C-I) of the CPu. (D-F; J-L) Confocal laser photomicrographs illustrating the co-

localization of MOR (green) with ChAT (D-F) and SS (J-L) (red). The nuclei are counterstaining with DAPI (blue). Insets show a

high magnification of the interneuron nucleus. Abbreviations: CPu: caudate putamen; DS: dermorphin-SAP; m: matrix; s: striosome.

Scale bar is 50 μm in A-C, G-I; 10 μm in D-F, J-L; 5 μm in the insets.

https://doi.org/10.1371/journal.pone.0203135.g004

Selective ablation of striatal striosomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0203135 August 29, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0203135.g004
https://doi.org/10.1371/journal.pone.0203135


surrounding sensorimotor and associative matrix [7]. Single-cell and tract-tracing experiments

have revealed that striosomes directly projects to the dopaminergic neurons of the SNc

[12,13,32]. The goal of the current study was to analyze the role of the striosomes on the regu-

lation of nigrostriatal dopamine pathway. In order to examine this question, we have induced

selective ablation of the striosomes by intrastriatal infusion of the neurotoxin DS.

DS was used for the first time to induce the deficit of brainstem medullary cells which

express MOR [22]. Later on, this methodology was also applied to induce the degeneration of

the striosomes in the mouse and rat CPu [21,23–25]. These studies showed that a unique injec-

tion of DS into the CPu induced an incomplete depletion of the striosomes, since it was

restricted around the injection site. As the CPu is a large nucleus, it is conceivable that DS is

not able to reach all the striosomes along the rostro-caudal axis. In order to induce a maximal

neuronal degeneration of the striosomes, we have improved this method performing the infu-

sion of DS at two different sites of the rostro-caudal axis. We have systematically tested the

effect of two-sites infusion of DS and we have demonstrated a severe depletion of the strio-

somes in the whole CPu.

It should be noted that the ablation of the striosomes of the rostral CPu is greater than in

the caudal part. This result supports the newly emerging understanding of the nonuniform

characteristics of the striosomal compartment, which is manifested by a biochemical composi-

tion diversity [6]. For example, a rostro-caudal MOR density gradient has been well docu-

mented, with higher expression of this receptor in the striosomes of the rostral CPu [33] (own

observation). Therefore, the striosomal neurons of the caudal levels, with fewer MOR, would

be less affected by the DS neurotoxic. The different vulnerability of the striosomes to DS could

also be explained by the presence of calbindin in some striosomes, specifically in those of the

ventro-medial CPu [34]. It is known that calbindin has a protective role preventing cell degen-

eration as a result of its ability to bind calcium [35].

It is well known that MOR is mainly expressed by the MSNs of the striosomes [36–38].

However, there is also evidence of its presence in ChAT interneurons located in the limbic/

prefrontal territory of the CPu [39–41], whereas it seems to be absent from those in the senso-

rimotor division [39]. Here, we provide unequivocal evidences for the exclusive presence of

MOR in a subset of ChAT interneurons located in the medial division of CPu, since double

Table 2. Effect of striatal DS injection on the interneurons of the rat caudate putamen.

cells/mm2 Lateral CPu Medial CPu

Vehicle DS Vehicle DS

ChAT 19.0 ± 2.5 13.1 ± 2.9 26.4 ± 1.9 0

SS 13.2 ± 1.2 2.9 ± 1.1��� 12.5 ± 1.2 0

PV 23.2 ± 0.9 22.2 ± 1.3 11.7 ± 1.6 11.0 ± 2.3

CR 10.5 ± 2.4 9.6 ± 1.71 20.3 ± 2.7 20.7 ± 3.1

OD (% of control) Lateral CPu Medial CPu

Vehicle DS Vehicle DS

ChAT 100 ± 1.5 100 ± 1.2 100 ± 1.7 -

SS 100 ± 2.4 75 ± 2.4��� 100 ± 2.3 -

PV 100 ± 1.8 100 ± 2.7 106 ± 2.6 107 ± 3.1

CR 100 ± 2.8 100 ± 3.3 100 ± 2.0 98 ± 2.1

Data represent the number of cells/mm2 and the optical density value (OD) of ChAT, SS, PV and CR immunoreactivity (mean ± SEM). Statistical analysis was

performed by Student t’ test

��� P < 0.001 DS vs. vehicle.

https://doi.org/10.1371/journal.pone.0203135.t002
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immunolabeling experiments demonstrate that cholinergic interneurons of the lateral CPu are

devoid of MOR. These cholinergic interneurons of the lateral CPu display identical character-

istics (number, ChAT IR and nuclear morphological) than those in the control hemisphere

Fig 5. CR and PV striatal interneurons are not affected by dermorphin-SAP lesion. (A-B; E-F) Dual labeled

immunohistochemistry with anti-MOR (brown) and anti-CR (A-B) or anti-PV (E-F) (dark blue) to demonstrate the

presence of these cells in the vehicle and DS injected hemisphere. (C-D; G-H) Confocal laser photomicrographs

illustrating the co-localization of MOR (green) with CR (C-D) and PV (G-H) (red). The nuclei are counterstaining

with DAPI (blue). Insets show a high magnification of the interneuron nucleus. Abbreviations: DS: dermorphin-SAP;

m: matrix; s: striosome. Scale bar is 50 μm in A-B, E-F; 10 μm in C-D, G-H; 5 μm in the insets.

https://doi.org/10.1371/journal.pone.0203135.g005
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Fig 6. Striosomal ablation affected nigrostriatal dopamine innervation. (A-C) Representative photomicrographs

illustrating the immunoreactivity of TH (A), MOR (B) and DAT (C) in consecutive sections from rats with unilateral

ablation of striosomes. Arrows indicate patches with an enrichment in TH IR and DAT IR in the lesioned hemisphere.

(A’-A”, C’-C”) High magnification photomicrographs taken from the areas of the CPu pointed as boxes in (A) and (C)

in the unlesioned and lesioned hemispheres. These areas are identified as striosomes in the MOR immunolabeling

section (B’-B”). (D-F) Detailed photomicrographs showing TH IR in the CPu of vehicle (D) and DS injected (E and F)

hemispheres. An increase in the size of TH IR varicosities in the striosomes (E) and matrix (F) compartments is

observed in the DS lesioned CPu. Abbreviations: ac: anterior commissure; Acb: nucleus accumbens; cc: corpus

callosum; CPu: caudate putamen; DS: dermorphin-SAP; m, matrix; s, striosome. Scale in C bar is 1 mm (applies to A,

B, C), 50 μm in C” (applies to A’-C”) and 50 μm in D (applies to D-F).

https://doi.org/10.1371/journal.pone.0203135.g006
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[42]. These results corroborate that these cells are not affected by DS lesion. The discrimina-

tion of two subpopulations of cholinergic interneurons, according to their content in MOR,

could clearly explain our observation of a complete disappearance of ChAT cells exclusively in

Fig 7. Changes in the nigrostriatal dopamine pathway after striosomes ablation. Graphs represent the semi-quantitative analysis of TH IR

(A-A”), DAT IR (B-B”) and VMAT-2 (C-C”) in the striosomes and matrix of vehicle and DS injected hemispheres. The analysis is shown in

the three functional domains of the rat CPu (sensorimotor: A, B, C; associative: A’, B’, C’; limbic: A”, B”, C”). Data represent mean ± SEM and

are expressed as percentage of vehicle treated hemisphere. Statistical analysis was performed with Student’s t test; ��� P< 0.001 DS vs. vehicle.

https://doi.org/10.1371/journal.pone.0203135.g007
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the associative and limbic domains. Recently, it has been demonstrated that ChAT interneu-

rons of the lateral striatum are involved in the development of some of the symptoms of Tour-

ette syndrome [42], supporting the concept of different subpopulations of ChAT cells.

In addition, we report for the first time that among the striatal GABAergic interneurons,

only SS cells express MOR. The present findings support our observation that PV and CR

interneurons were not affected by DS, whereas SS interneurons almost disappeared. In this

view, the few remaining SS cells in the lesioned hemisphere showed condensed nuclei, which

are characteristic of cells undergoing degeneration [43].

The ablation of the striosomal compartment produces a dramatic deregulation of the dopa-

mine nigrostriatal pathway, with an increase of dopamine signaling in the striosomes and a

decrease in the matrix. This observation is consistent with previous studies that have demon-

strated the critical role of MOR in the regulation of striatal dopamine release [16]. The increase

of TH IR in the striosomes could be the consequence of MSNs degeneration in this compart-

ment and, therefore, the disappearance of their inhibitory action onto the dopaminergic neu-

rons of the SNc throughout the direct striatonigral projection (Fig 9) [4,11–13,44]. This result

Fig 8. Striosomal ablation affected a subset of nigral dopamine neurons. (A) Frequency of nigral cells (expressed as percentage of total cells

analyzed) in categories ranked by percentages of TH IR in the control and lesioned hemispheres. Statistical analyses of the data were

performed with Student’s t test, �P<0.05, ��P<0.01. (B and B’) High magnification photomicrographs showing TH IR cells of the SNc. Scale

bar is 5 μm.

https://doi.org/10.1371/journal.pone.0203135.g008

Fig 9. Schematic diagram of striosomal circuits into the basal ganglia. In the striatum the striosomal and matrix compartments are depicted whereas in the SNc the

dorsal and ventral tiers are illustrated. Red lines indicate the direct GABAergic projections from the striosomes to the SNc and their collaterals to the GP and SNr. Green

lines point the dopaminergic projections from the SNc to the striosomes and matrix. Abbreviations: SNc: substantia nigra pars compacta; SNr: substantia nigra pars

reticulata; GP: globus pallidus; STh: subthalamic nucleus; DA: dopamine; Glu: glutamate.

https://doi.org/10.1371/journal.pone.0203135.g009
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is in good correlation with the increase of TH IR in a sub-population of the SNc neurons. A

recent report has highlighted that axons of the striosomal MSNs form contacts with the ven-

trally extending dendrites arising from clusters of dopamine neurons in the ventral tier of the

SNc [44]. It has been described that MOR also exists in scattered non-striosomal cells that

therefore might be affected by DS treatment [45]. However, despite the localization of these

neurons in the matrix compartment, they are similar to striosomal neurons in terms of genet-

ics, neurochemistry, membrane properties, excitability, basal inhibitory synaptic transmission,

response to opioid agonists, and functional connectivity [46]. These neurons have been termed

as “exo-patch”. Thus, the depletion of “exo-patch” neurons by DS might have the same impact

on the dopaminergic neurons of the SNc than the striosomal MSNs.

On the other hand, Matsuda et al. [32] have demonstrated that the axonal arborization of

single nigrostriatal neurons located in the ventral tier of the SNc provides dopamine signals

sent back with some preference for the striosomes. Thus, it is likely that the striosomes exert a

powerful control over a specific cluster of dopaminergic neurons located in the ventral part of

the SNc (Fig 9). Additionally, an indirect pathway involving colaterals of the striosomal MSNs

to the GP [12] could contribute to the increase of reciprocal dopamine signaling (Fig 9). The

rise of DAT and the decrease of VMAT-2 observed in the ablated striosomes could represent a

compensatory mechanim in response to the increase of dopamine signaling.

Another consequence of striosomal MSNs depletion was the decrease of dopamine signal-

ing in the matrix, probably due to the loss of colaterals from striosomal MSNs which project to

the SNr [12] (Fig 9). In this case, a deregulation of the dopamine neurons located in SNc dorsal

tier could occur, since these neurons project back to the matrix [13]. The downregulation of

DAT and VMAT-2 in the matrix might be related to the decrease of dopamine innervation,

rather than a regulatory mechanism. More studies will be necessary to found out the alter-

ations that striosomes ablation produces in the dopaminergic terminals in the matrix. Besides,

the loss of ChAT and SS interneurons, which exert a regulatory control over the MSNs located

in both the striosomes and matrix compartments, could additionally contribute to the deregu-

lation of the striato-nigral-striatal loop. In this sense, the physiological responses of MSNs due

to changes in striatal cholinergic tone are difficult to evaluate, since its will be conditioned by

the type of mediating muscarinic receptor. The MSNs can express: i) the excitatory M1 recep-

tor, which activates Gq/11 proteins and induces the activation of phospholipase C pathway; ii)

the inhibitory M4 receptor, which is coupled to Gi/0 proteins and decreases activity of adenylyl

cyclase; or iii) both M1 and M4 receptors [47–49]. Furthermore, it has been described a pre-

dominant expression of M4 receptor in the striosomal than the matrix compartment [50], sug-

gesting different physiologic responses related to distinct striatal circuits.

In summary, the results of the present paper suggest a crucial role of the striosomes in the

maintenance of the striatal dopamine tone, since the degeneration of this compartment pro-

duces an important imbalance in the dopamine basal ganglia circuits. This is corroborated by

the relationship between the striosomes and the correct execution of complex movements

[51,52].

Our results also highlight the ablation of striosomes as a powerful tool that can help to

understand the complexity of the striatal organization and its relationship with neurological

disorders like Huntington’s disease, X-linked dystonia-parkinsonism or Parkinson’s disease

[1,7,18,53].
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