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Abstract

Background

Despite decades of extensive research, bovine respiratory disease (BRD) remains the most

devastating disease in beef cattle production. Establishing a clinical diagnosis often relies

upon visual detection of non-specific signs, leading to low diagnostic accuracy. Thus, post-

weaned beef cattle are often metaphylactically administered antimicrobials at facility arrival,

which poses concerns regarding antimicrobial stewardship and resistance. Additionally,

there is a lack of high-quality research that addresses the gene-by-environment interactions

that underlie why some cattle that develop BRD die while others survive. Therefore, it is nec-

essary to decipher the underlying host genomic factors associated with BRD mortality ver-

sus survival to help determine BRD risk and severity. Using transcriptomic analysis of at-

arrival whole blood samples from cattle that died of BRD, as compared to those that devel-

oped signs of BRD but lived (n = 3 DEAD, n = 3 ALIVE), we identified differentially expressed

genes (DEGs) and associated pathways in cattle that died of BRD. Additionally, we evalu-

ated unmapped reads, which are often overlooked within transcriptomic experiments.

Results

69 DEGs (FDR<0.10) were identified between ALIVE and DEAD cohorts. Several DEGs

possess immunological and proinflammatory function and associations with TLR4 and IL6.

Biological processes, pathways, and disease phenotype associations related to type-I inter-

feron production and antiviral defense were enriched in DEAD cattle at arrival. Unmapped
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reads aligned primarily to various ungulate assemblies, but failed to align to viral

assemblies.

Conclusion

This study further revealed increased proinflammatory immunological mechanisms in cattle

that develop BRD. DEGs upregulated in DEAD cattle were predominantly involved in innate

immune pathways typically associated with antiviral defense, although no viral genes were

identified within unmapped reads. Our findings provide genomic targets for further analysis

in cattle at highest risk of BRD, suggesting that mechanisms related to type I interferons and

antiviral defense may be indicative of viral respiratory disease at arrival and contribute to

eventual BRD mortality.

Introduction

Although extensively researched, bovine respiratory disease (BRD) continues to be the most

significant disease in post-weaned beef cattle in North America. BRD is a multifactorial disease

complex, with contributing causative factors including primary viral infection, bacterial colo-

nization of the upper and lower respiratory tract, and stressful events related to abrupt wean-

ing, co-mingling with recently transported cattle, and novel feeding or housing environments

[1–5]. These factors result in host-pathogen interactions that are exceedingly complex and

definitive diagnosis of the inciting etiological agent(s) is not usually made. BRD diagnosis will

typically rely on non-specific clinical signs including elevated rectal temperature, depressed

demeanor, increased respiratory rate and effort, and anorexia [5–8]. However, this clinically

based diagnosis has been shown to lack sensitivity and specificity [9, 10]. Therefore, post-

weaned beef cattle at high risk of developing BRD are often mass medicated with antimicrobi-

als at facility arrival (i.e. antimicrobial metaphylaxis) [11–13]. With growing public concerns

regarding the relationship between the use of metaphylaxis in beef cattle and antimicrobial

resistance, there is a need to recognize cattle at increased risk of developing BRD in order to

implement more targeted therapeutic regimens.

In order to identify new methods of accurate BRD diagnosis, our previous research con-

trasted the whole blood transcriptomes of cattle that naturally acquired or resisted BRD [14].

Specifically, we identified upregulation of inflammatory-mitigating molecules and pathways at

arrival in cattle that failed to develop naturally occurring clinical BRD. This prior research did

not examine differentially expressed genes or pathways that segregate with disease severity.

Therefore, we hypothesize that whole blood transcriptome profiles of cattle at arrival can iden-

tify biological functions that influence BRD severity; specifically, functions which distinguish

cattle that are likely to die versus cattle that survive.

In the present study, we analyzed the at-arrival whole blood transcriptomes of post-weaned

beef cattle that developed BRD. Specifically, we compared at-arrival whole blood transcrip-

tomes from cattle that naturally acquired BRD within the first 28 days following arrival, strati-

fying cattle into severity groups defined by BRD-associated mortality. Our objectives were to

uncover differentially expressed genes and associated processes and pathways that segregate

with cattle at highest risk of BRD-associated mortality and to determine if reads from diseased

cattle align to pathogens that promote inflammatory processes. Given the lack of sensitivity in

clinical screening for BRD and the need to improve understanding of gene-by-environment

interactions involved in BRD, the identification of gene products whose expression correlates
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with the risk of BRD-associated mortality would advance management and diagnostic strate-

gies for improving the outcome of post-weaned beef cattle in high-risk situations.

Results

Differential gene expression analysis

Alignment of reads from the six biological replicates to the ARS-UCD1.2 bovine reference

assembly identified 32,976 unique genes. Following filtering for low expression, 15,755 genes

were used for differential expression analysis between DEAD and ALIVE groups. Multidimen-

sional scaling (MDS; Fig 1), which depicts the similarity of expression profiles between each

animal in the analysis, demonstrated clustering of the three DEAD cattle (red; IDs 33, 52, 76).

This indicates that the expression patterns of DEAD cattle are highly similar and are distin-

guishable from the cattle within the ALIVE group (blue; IDs 51, 75, 85). In contrast, the gene

expression patterns of the three animals within the ALIVE group are clearly more dissimilar

than the expression patterns of cattle in the DEAD group.

The three animals within the DEAD cohort are highly similar in gene expression and more

distinct than the three animals within the ALIVE cohort, with leading fold-change of approxi-

mately 2-fold between the furthest points within the DEAD cohort. One animal within the

ALIVE cohort (S_51) is the most dissimilar animal in terms of gene expression. Points repre-

sent each sample and their transformed Euclidean distance in two dimensions, discerned as

leading log2-fold change between the pairwise distances of the top 500 genes that best differen-

tiate each animal.

A total of 69 genes were differentially expressed (FDR< 0.10) between DEAD and ALIVE

groups; 37 genes were upregulated and 32 downregulated in DEAD cattle compared to ALIVE

cattle. A heatmap was generated from these 69 DEGs using z-scores calculated from Trimmed

Mean of M-values (TMM) normalized counts (Fig 2). The resulting hierarchical clustering of

DEG expression patterns for each individual segregates the six individuals into two groups

according to their respective ALIVE and DEAD status and also provided a dendrogram of

expression similarities. The complete list of DEGs with accompanying statistics are provided

in S1 File.

Heatmap depicting gene expression directionality and hierarchical clustering of DEGs in

each sample. Red or blue color intensities, respectively, correspond to increasing or decreasing

gene expression. Dendrograms in the rows identify gene expression clusters. Note that

Fig 1. Multidimensional scaling of RNA expression at arrival identifies expression clustering in cattle that die of

BRD.

https://doi.org/10.1371/journal.pone.0250758.g001
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clustering of samples (columns) based on gene expression similarity segregates the samples

into ALIVE and DEAD cohorts.

Gene ontology, pathway, and disease phenotype enrichment

Gene ontology (GO) term enrichment of DEGs identified 34 significantly overrepresented bio-

logical processes (FDR < 0.05; Table 1). The top biological processes were primarily related to

type I interferon signaling and response, viral defense mechanisms, and innate immune regu-

lation involving cytokine signaling. These biological processes are chiefly composed of genes

with higher expression in DEAD cattle, particularly those of the IFIT, ISG, HERC, and OAS

Fig 2. Hierarchical clustering of gene expression from arrival blood separates ALIVE and DEAD cohorts.

https://doi.org/10.1371/journal.pone.0250758.g002
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mRNA families. Utilizing Reactome [15, 16], six pathways were identified as significantly over-

represented (FDR< 0.05; Table 2). These identified biological pathways are involved primarily

in type I interferon signaling and antiviral mechanisms, represented predominantly by higher

IFIT, ISG, HERC, BST, and OAS mRNA family expression. Similar to the biological processes,

these pathways are largely represented by genes higher in expression in DEAD cattle. The pre-

dominant disease phenotypes identified by GLAD4U [17] consisted of viral-induced diseases,

which were heavily influenced by certain genes increased in expression in DEAD cattle,

including BST2, HERC5, IFIT1, ISG15, MX2, and OAS2 (Table 3). In summary, these analyses

of biological processes, pathways, and disease phenotypes represented by DEG information

indicate that cattle within the DEAD cohort have increased expression of genes involved in

type I interferon production and viral-associated responses at arrival.

Table 1. Top enriched GO-BP terms (FDR< 0.05).

Gene Set Description Size P Value FDR

GO:0060337 Type I interferon signaling pathway 84 0 0

GO:0071357 Cellular response to type I interferon 84 0 0

GO:0034340 Response to type I interferon 89 1.11E-16 4.81E-13

GO:0051607 Defense response to virus 235 2.70E-12 8.76E-09

GO:0009615 Response to virus 319 5.55E-11 1.44E-07

GO:0098542 Defense response to other organism 473 1.19E-10 2.58E-07

GO:0019221 Cytokine-mediated signaling pathway 705 4.88E-10 9.06E-07

GO:0045087 Innate immune response 827 3.00E-09 4.88E-06

GO:0043207 Response to external biotic stimulus 899 7.70E-09 1.00E-05

GO:0051707 Response to other organism 897 7.51E-09 1.00E-05

GO:0002252 Immune effector process 1141 9.64E-09 1.14E-05

GO:0009607 Response to biotic stimulus 926 1.07E-08 1.16E-05

GO:0045071 Negative regulation of viral genome replication 50 1.85E-08 1.85E-05

GO:0035455 Response to interferon-alpha 20 3.03E-08 2.63E-05

GO:0071345 Cellular response to cytokine stimulus 1015 2.99E-08 2.63E-05

GO:0034097 Response to cytokine 1100 7.29E-08 5.92E-05

GO:1903901 Negative regulation of viral life cycle 74 1.37E-07 1.04E-04

GO:0006952 Defense response 1518 2.86E-07 2.07E-04

GO:0045069 Regulation of viral genome replication 87 3.09E-07 2.11E-04

GO:0048525 Negative regulation of viral process 88 3.27E-07 2.12E-04

GO:0006955 Immune response 1919 5.73E-07 3.55E-04

GO:0019079 Viral genome replication 114 1.19E-06 7.02E-04

GO:1903900 Regulation of viral life cycle 135 2.74E-06 1.55E-03

GO:0043901 Negative regulation of multi-organism process 165 7.32E-06 3.96E-03

GO:0002376 Immune system process 2778 8.67E-06 4.35E-03

GO:0050792 Regulation of viral process 171 8.71E-06 4.35E-03

GO:0043903 Regulation of symbiosis, encompassing mutualism through parasitism 198 1.77E-05 8.52E-03

GO:0035456 Response to interferon-beta 33 2.24E-05 1.04E-02

GO:0043900 Regulation of multi-organism process 367 2.74E-05 1.23E-02

GO:0009605 Response to external stimulus 2282 2.87E-05 1.25E-02

GO:0002697 Regulation of immune effector process 381 3.38E-05 1.41E-02

GO:0032020 ISG15-protein conjugation 6 4.07E-05 1.65E-02

GO:0019058 Viral life cycle 285 1.01E-04 3.96E-02

GO:0035457 Cellular response to interferon-alpha 10 1.21E-04 4.64E-02

https://doi.org/10.1371/journal.pone.0250758.t001
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Protein-protein interactions and co-expression of DEGs

The 69 DEGs identified between DEAD and ALIVE were used to predict protein-protein

interactions and gene product co-expression in STRING v11.0 (Fig 3) [18]. This analysis iden-

tified interactions consisting of 16 DEGs (nodes) connected by 57 interactions (edges), in

which 13 of 16 DEGs were increased in expression in DEAD (Fig 3A). A strong pattern of co-

Table 3. Top enriched disease phenotypes (FDR< 0.05).

Gene Set Description Size P Value FDR Genes

PA444621 Influenza, Human 144 2.07E-

11

4.56E-

08

BST2, HERC5, IFIT1, ISG15, ISG20, MX2, RSAD2, TIMD4

PA444614 Infection 643 3.08E-

11

4.56E-

08

APOBEC3A, BST2, HERC5, IFIT1, IFIT2, IFIT3, ISG15, ISG20, MX2, OAS2, RSAD2,

TIMD4

PA446038 Virus Diseases 580 2.15E-

10

2.12E-

07

APOBEC3A, BST2, HERC5, IFIT1, IFIT2, IFIT3, ISG15, ISG20, MX2, OAS2, RSAD2

PA444435 Hepatitis 253 1.85E-

09

1.37E-

06

APOBEC3A, BST2, IFIT1, ISG15, ISG20, OAS2, RSAD2, TIMD4

PA166170066 Virological response 282 4.34E-

09

2.57E-

06

BST2, IFIT1, IFIT2, IFIT3, ISG15, ISG20, MX2, RSAD2

PA447230 HIV 862 1.37E-

08

6.73E-

06

APOBEC3A, BST2, HERC5, HNRNPA2B1, IFIT2, IFIT3, ISG15, ISG20, MX2, OAS2,

RSAD2

PA445746 Stomatitis 126 2.20E-

08

9.31E-

06

BST2, IFIT1, IFIT2, IFIT3, MX2, RSAD2

PA444020 Encephalitis, Tick-Borne 26 5.00E-

08

1.85E-

05

IFIT1, IFIT2, OAS2, RSAD2

PA444014 Encephalitis 89 7.68E-

06

2.31E-

03

IFIT2, MX2, OAS2, RSAD2

PA444445 Hepatitis C 195 7.82E-

06

2.31E-

03

BST2, IFIT1, ISG15, OAS2, RSAD2

PA445546 Retroviridae Infections 494 6.10E-

05

1.29E-

02

APOBEC3A, BST2, HERC5, ISG15, MX2, RSAD2

PA446213 HIV Infections 495 6.17E-

05

1.29E-

02

APOBEC3A, BST2, HERC5, ISG15, MX2, RSAD2

PA445640 Sexually Transmitted Diseases 496 6.24E-

05

1.29E-

02

APOBEC3A, BST2, HERC5, ISG15, MX2, RSAD2

PA446295 Lentivirus Infections 498 6.38E-

05

1.29E-

02

APOBEC3A, BST2, HERC5, ISG15, MX2, RSAD2

PA444601 Immunologic Deficiency

Syndromes

500 6.52E-

05

1.29E-

02

APOBEC3A, BST2, HERC5, ISG15, MX2, RSAD2

PA446768 Encephalitis, Viral 66 1.14E-

04

2.12E-

02

IFIT2, OAS2, RSAD2

PA443855 Dengue 76 1.74E-

04

3.03E-

02

IFIT3, OAS2, RSAD2

https://doi.org/10.1371/journal.pone.0250758.t003

Table 2. Top enriched signaling pathways (FDR< 0.05).

Gene Set Description Size P Value FDR

R-HSA-909733 Interferon alpha/beta signaling 69 0 0

R-HSA-913531 Interferon Signaling 197 4.89E-15 4.87E-12

R-HSA-1280215 Cytokine Signaling in Immune system 688 1.77E-10 1.18E-07

R-HSA-168256 Immune System 1997 2.44E-08 1.22E-05

R-HSA-1169410 Antiviral mechanism by IFN-stimulated genes 78 2.08E-07 8.28E-05

R-HSA-1169408 ISG15 antiviral mechanism 71 6.75E-06 2.24E-03

https://doi.org/10.1371/journal.pone.0250758.t002

PLOS ONE Whole blood RNA-Seq of post-weaned beef cattle associates type I interferon with respiratory disease mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0250758 April 26, 2021 6 / 18

https://doi.org/10.1371/journal.pone.0250758.t003
https://doi.org/10.1371/journal.pone.0250758.t002
https://doi.org/10.1371/journal.pone.0250758


expression between those 16 gene products was also identified as depicted in Fig 3B. The high-

est co-expression scores (> 0.75) were identified for IFIT1-3/5, SPARC, COL1A1, RSAD2,

ISG15, HERC5/6, OAS2, and MX2. In summary, 12 DEGs that were increased at arrival in cat-

tle who died from BRD are known to code for proteins that possess strong interactions and co-

expression. Additionally, two genes increased in expression in ALIVE (COL1A1, SPARC)

demonstrated strong predicted co-expression and interaction. All co-expression interactions

and associated scores may be found in S2 File.

De novo assembly and analysis of unmapped reads

From 6,968,239 unmapped reads contributed from all 6 samples, 6,953,629 survived quality

trimming (99.79%) and were used to assemble a de novo transcriptome. The resulting 65,516

constructed contigs (S3 File) were analyzed against the NCBI non-redundant nucleotide (nt)

database. Over 90% of the assembled contigs mapped to the Bovidae family, followed by align-

ments to various mammalian, bacterial (many part of the bovine microbiota), parasitic (Onch-
ocerca ochengi), and fungal species (Basidiomycota) (Figs 4 and 5). Notably, the de novo
assembly failed to map to any viral contigs within the NCBI nt database. Homology to viral

DNA was not identified.

Alignment of unmapped reads to viral genome sequences

Trimmed unmapped reads from each calf were analyzed in two parts: 1) against all known

virus sequences and 2) against all known bovine viral pathogen sequences. Top hits from align-

ments against all viral assemblies demonstrated a sparse number of reads across all 6 animals

(231–535 reads; total: 2,257, average: 376.2; S4 File). The majority of reads aligned to non-

mammalian viruses, namely the Choristoneura fumiferana granulovirus and Diolcogaster

Fig 3. Protein-protein interaction networking and co-expression analysis demonstrates close expressional patterns in DEGs. A) Protein-protein

interaction (PPI) analysis depicts strong interactions between multiple DEGs that are involved in type I interferon production and antiviral defense.

These antiviral DEGs were all higher in expression in the DEAD cohort. All filled nodes represent DEGs with known or predicted three dimensional

structures. Colored lines (edges) represent known interactions from curated databases (light blue) and published experimentation (pink) and

predicted interactions from gene neighborhood/clusters (green), gene fusions (red), gene co-occurrences (dark blue), text mining (yellow), and co-

expression (black). B) Gene co-expression analysis depicted in the triangle matrix demonstrates correlated expression patterns between individual

gene products. The scale, from white/light red to dark red, indicates the level of confidence between each evaluated interaction.

https://doi.org/10.1371/journal.pone.0250758.g003
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Fig 5. Phylogenetic map of de novo constructed contigs. Phylogenetic mapping of de novo assembled contigs with

associated number of top hit alignments for each organism. The majority of alignments were seen with non-

ARS-UCD1.2 Bos taurus, Bos indicus, and various ungulate assemblies. Assigned alignments are ordered within the

phylogenetic tree, with a representative circle (in blue) based on the percentage of hits.

https://doi.org/10.1371/journal.pone.0250758.g005

Fig 4. Taxonomic identification of de novo constructed contigs. Taxonomic distribution of de novo contig

alignment against the NCBI nucleotide database, using only the top hit. The majority of hits were to Bovidae family

assemblies and various mammalian species. Notably, no viral alignments were seen with the de novo contigs. The non-

mammalian hits primarily consisted of bovine microbiota organisms, with few exceptions (Basidiomycota, Onchocerca
ochengi). The total number of hits from each alignment are organized in descending order, from left to right.

https://doi.org/10.1371/journal.pone.0250758.g004

PLOS ONE Whole blood RNA-Seq of post-weaned beef cattle associates type I interferon with respiratory disease mortality

PLOS ONE | https://doi.org/10.1371/journal.pone.0250758 April 26, 2021 8 / 18

https://doi.org/10.1371/journal.pone.0250758.g005
https://doi.org/10.1371/journal.pone.0250758.g004
https://doi.org/10.1371/journal.pone.0250758


facetosa bracovirus, in addition to BeAn 58058 virus. However, independent analysis of these

reads to the NCBI nt database indicated that these reads aligned to well conserved mammalian

genes, such as U6 splicesomal ncRNA. Due to the homologous nature of these reads to mam-

malian genes, any hits were considered irrelevant. Using the top hits from the alignments

against known bovine viruses, all 6 animals possessed a relatively small number of reads

(5082–7330 reads; total: 35,432, average: 5905.3; S5 File) that only aligned to BVDV1. These

reads were extracted and realigned to both the NCBI nt database and the complete BVDV1

genome (NC_001461.1). When realigned to the NCBI nt database, the extracted reads aligned

to the BVDV1 sequences U86599.1 (Pestivirus type 1 cytopathic genomic RNA, complete

genome) and L13783.1 (Bovine viral diarrhea virus p125 protein gene, partial CDS). However,

the top hits were consistently to ubiquitin C (UBC) mRNA sequences within Bovidae assem-

blies. When realigned to the NC_001461.1 complete BVDV1 genome, no alignment hits were

detected.

Discussion

This study builds upon our previous analysis of transcriptomes at arrival that were derived

from post-weaned beef cattle that ultimately developed BRD versus cattle that remained

healthy [14]. The present investigation was conducted with the intent to identify potential at-

arrival biomarkers and pathways that indicate risk of BRD-associated mortality in post-

weaned beef cattle. Our overarching goal with these studies is to identify gene expression pro-

files and biological pathways in blood samples at arrival that segregate with later BRD morbid-

ity or mortality. By analyzing the transcriptomes of post-weaned cattle before they exhibit

clinical signs of BRD, our approach will also improve understanding of the mechanistic basis

of both susceptibility and resistance to BRD in this cohort. Previous research to determine

early antemortem indications of BRD and risk of severity has yielded varied results [19–22]. At

present, the diagnosis and classification of BRD is primarily assessed using clinical factors that

have proven to be imprecise, effectively limiting BRD management [6, 10, 23]. Nonetheless,

cattle diagnosed with BRD in this investigation using these same clinical factors (including

DART scoring, treatment records, and average daily weight gain) exhibited differences in gene

product and molecular pathway expression at arrival that ultimately segregated with their

BRD-associated mortality [14].

In DEAD cattle, the expression of genes related to type I interferon production/signaling

and viral defense were increased. These viral defense genes included IFIT1/2/3, IRF4, HERC5/

6, OAS2, MX2, and ISG15/20. Several investigations have similarly identified these genes as

relevant in cattle with prolonged inflammation and ongoing viral infection [24–27]. These

findings, when considered with the increased expression of viral defense genes at arrival in cat-

tle that ultimately died of BRD, suggest that cattle in the DEAD cohort were combating a viral

agent at arrival. Though cattle that died of BRD in this investigation did not show clinical evi-

dence of BRD at arrival, viral BRD is often subclinical and may initially present as an upper air-

way disease. Subclinical viral respiratory infection at arrival would not only account for the

observed viral defense pathways in the cattle that died of BRD, but would facilitate secondary

infectious processes in the lung that contribute to the observed BRD mortality [5, 25, 28, 29].

One challenge with our study is that differences in gene expression were characterized in

peripheral blood. It has been suggested that the blood transcriptome represents an amalgam-

ation of gene expression patterns and pathways in distinct physiological sites, such as airway

epithelium, lymph nodes, and splenic tissue [30, 31]. Necropsy demonstrated that disease was

limited to the lung in cattle that died. Overt disease was not evident at arrival, but subclinical

disease cannot be ruled out. As these DEGs may indicate viral-induced disease at arrival,
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focused investigation of these genes is warranted for larger future studies. The ability to delin-

eate underlying subclinical viral disease mechanisms in beef cattle at arrival could allow for the

development precision management techniques to more effectively and specifically treat or

prevent disease, leading to more precise antimicrobial usage and decreased dissemination of

antimicrobial resistance.

In this study, we identified increased expression of gene products that interact with toll-like

receptor 4 (TLR4) and interleukin 6 (IL6) in both live and dead cohorts. While there was no

difference in the expression of these specific genes between DEAD vs ALIVE cattle at arrival,

we have previously described increased BGN, MARCO and POMC expression (known to be

involved in TLR4-dependent pro-inflammatory pathways) in arrival blood transcriptomes

from cattle that ultimately developed BRD when compared to cattle that remained clinically

healthy [14]. IL6 and several other type I interferon-associated genes have been reported to be

differentially expressed within lymph node samples of virus-challenged cattle [25, 26]. TLR4

possesses high avidity for lipopolysaccharide (LPS) and some viral structural proteins, and is

capable of inducing type I interferons production and increased levels of IL6 [32–35]. Addi-

tionally, elevated levels of IL6 may reciprocatively induce type I interferon production,

enhancing natural killer cell cytotoxic activity, M1 macrophage maturation, and interleukin 12

(IL12) production [36–39]. It is important to note that IL6 and TLR4 are not differentially

expressed between DEAD and ALIVE groups but are predicted to be active based on associa-

tions with DEG products increased within each cohort. It is possible that TLR4 and IL6, rela-

tively non-specific markers of inflammation, are initiated in both DEAD and ALIVE groups

albeit through differing mechanisms. Several studies have demonstrated that TLR4 expression

is increased in active respiratory disease and is responsible for proinflammatory cytokine

production, in both viral and bacterial induced infections [40–43]. Furthermore, in ALIVE

cattle, the increased expression of several proinflammatory genes was identified: CD300LG,

COL1A1, CX3CR1, KIR2DL5A, LOC104968634 (NK2B), OGN, LOC782922 (PRXL2B),

TARP. These gene products, largely involved in natural killer cell activation, leukocyte adhe-

sion, prostaglandin synthesis, and initiation of the acquired immune system, possess known

interactions or promotion of TLR4 and IL6 activity. In conjunction with TLR4 interactions, it

is possible that the ALIVE cattle were actively combating extracellular antigens or etiological

agents. The commonality between ALIVE and DEAD cattle is antigenic and immunogenic sig-

naling without inflammatory mitigation. Notably, our research did not ascertain the order of

TLR4 and IL6 association, therefore further research is necessary to define mechanistic charac-

teristics and signaling order.

Some of the limitations of this study are the lack of antemortem pathogen identification,

particularly viral isolation at arrival, and the relatively small number of biological replicates

within each cohort. Due to technical and fiscal challenges associated with high-throughput

sequencing, obtaining the optimal number of biological replicates remains a controversial

aspect of RNA-Seq experimentation. However, it is generally accepted that three clean biologi-

cal replicates per group is the minimum sample size necessary for meaningful inferential anal-

ysis [44, 45]. Modeling genes that were differentially expressed between live and dead cohorts

identified increased antiviral pathways in the DEAD cohort. Accordingly, we utilized de novo
alignment and BLAST toolkits to mine unmapped reads for viral sequences that would

account for the gene expression changes and pathways identified in our study. Reads that fail

to map to the host reference assembly have been previously used to identify pathogens within

RNA-Seq datasets [46–50]. The de novo assembly reads aligned predominantly to annotated

ungulate sequences (Figs 4 and 5). This is an expected occurrence in which the unmapped

reads representing gene products in the tested cattle were not identified with the Bos taurus
ARS-UCD1.2 reference assembly. This is not an uncommon occurrence with reference
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assemblies from non-model organisms that reflects errors in the assembly’s structural annota-

tion and has been otherwise reported in transcriptomic experiments using cattle [46, 50].

A notable finding in this investigation is the lack of alignments to pathogenic organisms

associated with BRD. This finding was consistent in three instances 1) when assembled contigs

of the de novo transcriptome were mapped to all sequences in the NCBI non-redundant nt

database; 2) when unmapped reads were mapped against all known viral sequences; and 3)

when unmapped reads were mapped against all known bovine viral pathogen sequences. One

key limitation of this experiment is the poly-A tail dependent capture of reads for library prep-

aration. It is possible that pathogen genes within each whole blood sample were never captured

prior to sequencing. Therefore, while we were unable to identify pathogen genes in these

instances, it does not rule out the possibility of these cattle harboring etiological agents at

arrival. All biological replicates possessed reads that matched only to BVDV1 sequences from

the NCBI nt database. However, these reads matched solely to ubiquitin C (UBC) mRNA

within Bovidae assemblies and no alignment was detectible when realigned to the

NC_001461.1 complete BVDV1 genome. This demonstrates that the unmapped reads failed to

align to viruses related to BRD, but rather aligned to bovine genome sequences that have been

incorporated into BVDV1. It has been shown that several BVDV1 sequences possess Bovidae
genomic sequence contamination, specifically to UBC mRNA. This finding agrees with the

alignment discovery reported by Usman and colleagues [46]. Despite the absence of viral

sequences, the identified DEGs and pathways provide evidence that the anti-viral mechanisms

were activated at arrival in cattle within the DEAD cohort.

Conclusions

This study explored the at-arrival whole blood transcriptomes and differentially expressed

genes of diseased cattle, identifying significant gene products and pathways that differentiate

cattle that die from naturally acquired respiratory disease and those that develop BRD but sur-

vive. Our results demonstrate that cattle developing clinical BRD possess increased expression

of genes involved in proinflammation and immune responses at arrival and share TLR4 and

IL6 activity. Cattle that died from BRD demonstrated increased type I interferon and antiviral-

associated gene product expression at arrival. Although the unmapped reads did not align to

viral genomes, our at-arrival findings highlight candidate gene expression profiles that herald

viral respiratory infections, prior to the identification of overt BRD. These findings may sup-

port the development of predictive viral disease assays and thus warrant further investigations

comparing current pathogen detection techniques with the identification of these candidate

biomarkers.

Materials and methods

Study design

All animal use and procedures were approved by the Mississippi State University Institutional

Animal Care and Use Committee (IACUC protocol #17–120). This study examined whole

blood transcriptomes at arrival from crossbred bulls (n = 5) and a steer (n = 1) that went on to

develop clinical BRD within 28 days following facility arrival. These six animals were catego-

rized into two groups based on BRD-attributed mortality. Group 1 (DEAD; n = 3) cattle died

of naturally occurring BRD despite antimicrobial and supportive treatment; all animals within

the DEAD cohort succumbed to BRD prior to administrated euthanasia. Group 2 (ALIVE;

n = 3) cattle were treated for naturally occurring BRD, but subsequently recovered after one or

more therapeutic courses of treatment. Animals in this investigation were a subset of a ran-

domized experiment pertaining to the effect of vaccination and deworming on post-weaned
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beef cattle health and growth factors [51]. Animals enrolled in this study were purchased from

local commercial livestock auctions within Mississippi and housed at the H. H. Leveck Animal

Research Center at Mississippi State University. Further information involving animal man-

agement and enrollment selection is addressed in S6 File and in detail in our previous studies

[14, 51]. At arrival, jugular blood samples were collected into Tempus Blood RNA tubes

(Applied Biosystems), and then frozen and stored at -80˚ C until analysis. RNA extraction,

quality assessment, cDNA library preparation, and RNA sequencing (80 million reads/sample)

was performed by the UCLA Technology Center for Genomics and Bioinformatics (UCLA

TCGB, Los Angeles, CA, USA) as previously described [14]. The whole blood transcriptomes

of the six individuals examined in this investigation have been previously contrasted against at

arrival whole blood transcriptomes from cattle that failed to develop clinical signs of BRD [14].

RNA sequence reads are available in the NCBI sequence read archive (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE136176). In contrast to our prior work, this investigation

contrasts gene expression at arrival in cattle that went on to develop more clinically severe

BRD versus less clinically severe BRD.

Differential gene expression analysis

Program parameters and alignment statistics for reference-based gene count matrix construc-

tion were as previously described [14]. All sequence alignment map (SAM) files produced by

HISAT2 were converted to binary alignment map (BAM) files, sorted, and indexed with SAM-

tools v1.9 [52]. All unmapped reads were extracted using SAMtools for further exploration.

Reference-guided assembly and assessment were performed with StringTie v2.0 and GffCom-

pare v0.11.4, respectively [53–55]. Gene-level read counts for each sample were calculated in

Python v2.7.17 with the program prepDE.py [56].

Filtering, normalization, and analysis of gene counts was performed in R, utilizing the Bio-

conductor [57] software package edgeR v3.26.8 [58, 59]. Data for all six biological replicates

were categorized into two groups based on BRD-associated mortality (n = 3 DEAD; n = 3

ALIVE). Filtering of low gene counts was performed as described by Chen and colleagues

using a total count per million minimum of 0.2 across at least three samples [60]. Library sizes

were normalized using the trimmed mean of M-values method [61] in edgeR. Unsupervised

clustering of the aligned reads was performed using multidimensional scaling (MDS) in order

to plot differences in expression profiles between the 6 animals [62]. Distances between sam-

ples on the MDS plot represent ‘leading fold change’, defined as the root-mean-square average

of the log-fold-changes for the genes best distinguishing each pair of samples. Differentially

expressed genes (DEGs) were identified in edgeR using likelihood ratio testing (glmLRT func-

tion) to improve the ability to analyze samples with large gene count dispersions and low

abundance counts [59]. Differential gene expression was considered significant with a false

discovery rate (FDR) of� 0.10 [63].

Biological interpretation of gene expression data

A heat map of the DEGs was created using the R package pheatmap v1.0.12 [64]. Gene Ontol-

ogy (GO) analysis, biological pathways, and disease associations of the DEGs identified

between DEAD and ALIVE groups were analyzed with the WEB-based Gene SeT AnaLysis

Toolkit (WebGestalt 2019; http://www.webgestalt.org/), using the human orthologs of all

bovine DEGs [65]. Overrepresented biological pathway analysis was performed utilizing the

pathway database Reactome [15, 16]. Disease association analysis with the list of DEGs was

performed using the GLAD4U functional database [17]. Analysis parameters within WebGes-

talt 2019 included between 5 and 3000 genes per category and an FDR cutoff of< 0.05 for
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significance. Protein-protein interaction networks and protein co-expression analysis was con-

ducted with the Search Tool for the Retrieval of Interacting Genes (STRING; https://string-db.

org/) database v11.0 [18] using human orthologs of the bovine DEGs. All interactions required

a minimum interaction (confidence) score of 0.900, defined as the highest confidence score in

STRING v11.0.

Analysis of unmapped reads

All reads in this study were originally aligned to the Bos taurus reference assembly

ARS-UCD1.2. The unmapped reads which failed to align were extracted using SAMtools view

-b option. The subsequent BAM files were converted into unique paired end fastq files with

BEDtools v2.26.0 bamtofastq option [66]. Unmapped fastq files were retrimmed and quality

assessed with Trimmomatic v0.38 and FastQC v0.11.9, respectively, in order to eliminate the

potential of poor quality or inadequate length of sequences leading to misalignment. Trim-

ming parameters were: 1) leading and trailing bases of each read were removed if their base

quality score was below 3, 2) each read was scanned with a 3-base pair sliding window, remov-

ing read segments below a minimum base quality score of 15, and 3) sequences below a read

length of 40 bases were removed. Read samples were concatenated based on directionality,

and then assembled de novo into contigs using Trinity v2.8.5 by employing the program’s

default protocols [67]. Unmapped read trimming and de novo alignment statistics are provided

in S3 File.

Nucleotide sequence homology of the de novo transcriptome was explored against the

NCBI non-redundant nucleotide database (ftp://ftp.ncbi.nlm.nih.gov/blast/db/; accessed Sep-

tember 30, 2019) with NCBI-blast v2.9.0+ (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast

+/LATEST/; blastn parameter, default settings) [68]. The top alignment hit for each contig was

identified and used to create a blastn file that was further analyzed for phylogenetic grouping

and characterization using MEGAN Community Edition v6.18.3 (https://github.com/

danielhuson/megan-ce) using the program’s default protocols for taxonomic identification

[69, 70].

Due to likely inaccuracies in the de novo assembly that trace to false chimeric contigs [71,

72], and persistence of reads that were not incorporated into the de novo transcriptome, we

therefore analyzed all trimmed reads against bovine viral pathogen sequences downloaded

from NCBI (https://www.ncbi.nlm.nih.gov/labs/virus/vssi; accessed January 6, 2020). A total

of 1657 nucleotide files were downloaded and utilized as subject sequences by selecting only

complete nucleotide sequence types found from Bos taurus (taxid: 9913) hosts. In addition, we

also aligned reads from cattle that were not incorporated into the de novo transcriptome to all

known viral sequences at NCBI (release 200, https://ftp.ncbi.nlm.nih.gov/refseq/release/

complete/). Local alignment was performed with the NCBI-blast v2.9.0+ blastn option, using

the same settings parameters as previously mentioned. The resulting blastn file from each sam-

ple was explored with MEGAN Community Edition v6.18.3. Top hits were scrutinized for

potential genomic DNA contamination in the reference subjects by re-aligning the respective

cDNA of the sample read sequence to both the official genome assembly that it annotated as

and to the NCBI nucleotide database.
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