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In defense related programs, the use of capability-based analysis, design, and acquisition has been significant. In order to confront
one of the most challenging features of a huge design space in capability based analysis (CBA), a literature review of design space
exploration was first examined. Then, in the process of an aerospace system of systems design space exploration, a bilayer mapping
method was put forward, based on the existing experimental and operating data. Finally, the feasibility of the foregoing approach
was demonstrated with an illustrative example. With the data mining RST (rough sets theory) and SOM (self-organized mapping)
techniques, the alternative to the aerospace system of systems architecture was mapping from P-space (performance space) to C-
space (configuration space), and then from C-space to D-space (design space), respectively. Ultimately, the performance space was
mapped to the design space, which completed the exploration and preliminary reduction of the entire design space. This method
provides a computational analysis and implementation scheme for large-scale simulation.

1. Introduction

Recently, capability-based analysis, design, and acquisition
have had a significant impact in defense related programs.
The paradigm shift to capabilities-based acquisition is caus-
ing a fundamental shift in the way defense-related systems
are both engineered and purchased. New mission needs
and technological advancements have led to novel directives
that are causing defense acquisition planning to utilize a
capability-based approach. In particular, advancements in
communication and transportation, combined with new and
diverse enemies, have led to a call for increased joint oper-
ations, more integrated operations, and a better method of
designing and acquiring systems and SoS (system of systems)
to support these needs.

This capability-based mentality shares a natural link
with architecting, in that capabilities are achieved through a
series of activities. These activities can be represented as an
operational architecture. Through the architecting process,
they can be mapped to candidate solutions, which can then
be evaluated and compared.These solutions provide theways

and means by which a capability is achieved. This kind
of approach has been suggested to help address high level
capability needs and help avoid the stove piping that has often
plagued defense acquisition [1].

The challenge presented by the sheer number of possible
alternatives is compounded in SoS problems. In fact, not
only is the number of alternatives extremely large, but
the alternatives also vary in their specifications, including
alternatives across all aspects of the DOTMLPF (doctrine,
organization, training, materiel, leadership, people, and facil-
ities) spectrum. It is difficult to gather enough information
early on tomake an informeddecision, but it is also difficult to
even determine the criteria by which two extremely different
solutions can be compared. Even justifying the acquisition
of a new system can be difficult, because it must be shown
that the same mission level cannot be achieved with a new
arrangement or new uses of existing systems. To further
illustrate this challenge, consider a simple mission, which
is comprised of completing 10 activities. Then consider that
these activities can be performed in two different sequences,
thus creating two operational alternatives. Furthermore, each
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activity can be performed by one of three candidate systems.
Three possible organizations could be responsible for con-
ducting this mission and, last, consider that there are two
types of networks being considered for enabling communi-
cation in the architecture. There are then 2 organizational
alternatives ×310 system alternatives ×3 organizational alter-
natives ×2 network alternatives, resulting in a total of 708,588
alternatives.

Thus, there are several criteria for a design space explo-
ration method for CBA. First, it must be able to capture and
define the large number of architectural alternatives available
for consideration during the early phases of acquisition
and systems engineering. Next, it must provide a way to
filter through the design space and find only the promising
alternatives for evaluation, while eliminating those that are
either unrealistic or are not expected to meet mission goals.
Finally, because even the filtering processes will still leave
large numbers of alternatives to be evaluated, there must
be a way to quickly and accurately evaluate the remaining
alternatives.

2. Literature Review

Currently, the research of aerospace system of systems archi-
tecture alternatives for design space exploration focuses
mainly on the design of the experiment, the approximation
model, and optimization algorithms.

2.1. Design of Experiment. Design of the experiment [2] is a
mathematicalmethod of statistical analysis that allows for the
study of the development of a reasonable alternative using
data space technology. DOE has become an indispensable
tool in computer-aided design optimization [3]. The main
DOE methods include Monte Carlo sampling (MCS) [4],
Latin hypercube sampling (LHS) [5], orthogonal array sam-
pling (OA) [6], D-optimal design (DO) [7], and uniform
design (UD) [8].

2.2. Approximation Model. In order for large-scale comput-
ing to simplify the design space and to generate a full under-
standing of space exploration, especially for large-scale mul-
tidisciplinary design space exploration and optimization, the
approximation modelwas introduced into the design process.
The main approximation models are the response surface
model (RSM) [9], the radial basis function neural network
(RBFNN) [10], and the kriging model [11].

2.3. Optimization Algorithm. In engineering design, optimi-
zation algorithms are often used to search among global
optimal solutions in the design space; the method can be
divided into two categories: exactmethods and approximation
methods. The exact methods include branch and bound [12],
mathematical programming [13], and coordination decom-
position [14]. The exact methods can be proven to be the
optimal global solution but are only capable of solving smaller
problems. The approximation methods can obtain a solution
quickly in large-scale problems but cannot ensure that the
resulting solution is optimal [15].

2.4. Comparative Analysis. DOE is an essential basic experi-
mental approach in engineering design optimization, which
represents the performance of the design space through
different distributions of sampling points. However, while the
DOE method is capable of sampling within the developed
design space and then analyzing on the sampled points, it
cannot explore the design space through the sampling itself
nor can it divide or reduce the scope of the design space.

As mentioned earlier, design space exploration is one
of the application directions of the approximation model.
Approximate models, however, require repeated sampling
when used in design space exploration problems, which will
increase the load of computation. At the same time, there are
no design space exploration methods that are suitable for the
aerospace system design process.

Optimization algorithms of design space exploration,
which belong to the latest developments in design optimiza-
tion, can be used to explore and optimize the design space
to find the global optimal solution or a feasible solution. The
costs and computational load of the optimization algorithm
for large-scale design space exploration are very high and
inappropriate for an aerospace system of systems design and
optimization in the early phase.

Above all, we can see that there is a lack of effective
methods to utilize various existing experimental and his-
torical data, as well as data from aerospace SoS, leaving a
need for knowledge-based design space exploration methods
as a guide for system design optimization. For one thing,
since a large amount of computer technology and simu-
lation software in engineering applications is required for
the process of aerospace SoS design, when there are large
numbers of simulations and experiments, there will be
massive amounts of data stored in the data warehouse. It is
important to take advantage of this useful data for subsequent
SoS design optimization and to then support aerospace SoS
design space exploration. Secondly, the existing design space
exploration methods are used to approximate and explore
directly within the aerospace systemdesign space. In the early
phase, however, there is typically a lot of uncertainty and a
definite lack of knowledge. The existing methods have a too
large computational load and cannot hold up to the design
practices and processes. It is imperative to guide the designer
to focus on the design space area of concern.

3. Proposed Approach

3.1. The General Framework of the Method. Traditional aero-
space SoS optimization is a process that flows from the design
space to the performance space, called “Forward Mapping.”
However, successful experiences and experimental data are
difficult to use in the design and development process.
Additionally, acquisition staffs tend to pay more attention
to the overall SoS performance, hoping to map the route
from the performance space (the actual SoS performance and
performance evaluation results) to the design space, in order
to complete the design space exploration, which can help
accurately locate the design space area of concern. Limiting
the aerospace SoS design optimization to a smaller space
saves time spent searching in an unnecessary area, making
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Figure 1: The general framework of the method.

the whole design optimization more targeted. Mapping from
the “performance space” to the“design space,”referred to here
as “reverse mapping,” complies with the general rules of
aerospace equipment acquisition, as shown in Figure 1.

3.2. Bilayer Exploration Process

Layer 1: RST-Based Mapping from P-Space to C-Space. As
shown in Figure 2, this paper studied the aerospace system of
systems design space explorationmethods of the architecture
alternatives, primarily learning from previous design experi-
ence to better guide the overall design optimization with use
of RST reasoning, based on the analysis of similar cases.

Similar, relevant cases are first selected, according to the
capability gap and required operational activities, in order to
determine the initial aerospace system configuration, which
provides foundational data for subsequent derivation of
configuration rules. Secondly, it must be determined whether
or not the parameter attributes are complete. Thirdly, if
the attribute data of the configuration program is complete,
then the configuration rules from the complete configuration
decision table are derived, using RST. If incomplete data is
included, then reasoning with corresponding use of RST in
the incomplete configuration decision table is utilized.

In the process of complete rule reasoning, the selected
attributes are first analyzed and the continuous data is
discretized, using the FCM (fuzzy C-means) algorithm,
which preprocesses data for the use of RST. Secondly, in
accordance with the selected configuration, similar cases are

collected from the corresponding performance estimates,
along with a variety of configuration attribute data, constitut-
ing a configuration decision table. Again, the simplest related
configuration rules from the configuration decision table
are acquired with RST. Finally, when the performance space
and the configuration space are positioned corresponding to
configuration rules, themapping fromP-space toC-space can
be completed.

In the incomplete configuration reasoning process, dis-
cretized continuous data must first be put into an incom-
plete configuration scheme. In accordance with the selected
configuration, similar cases can be collected in the corre-
sponding performance estimates, along with a variety of
configuration attribute data, marking any uncertainties or
missing data in the configuration alternatives with an “∗.”
The configuration decision table can then be compiled.Again,
due to the incomplete data, there will be uncertain causality.
The optimal configuration rules can thus be determined
with the similarity function in Section 3.3. The optimized
configuration rules should be assessed. If the rules meet
the design specifications and system requirements of the
design staff, the performance space and the configuration
space can be positioned according to the configuration rules,
completing the mapping from P-space to C-space. If not,
the requirements of attribute decision can be relaxed, and
the optimized generalized configuration rules can then be
calculated with the optimization of general configuration
rule functions, as defined in Section 3.3. Once again, the
new optimal general configuration rules must be assessed
to determine whether they meet the design specifications
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Figure 2: The Bilayer exploration process.

and requirements. If so, the iteration is terminated. Finally,
according to the configuration rules, positioning the perfor-
mance space, and the configuration space area according to
configuration rules, themapping fromP-space toC-space can
be completed.

Layer 2: SOM-BasedMapping fromC-Space to D-Space.Upon
completion of the preliminary configuration of aerospace
SoS, relevant experimental data or the actual running infor-
mation can primarily be selected from similar cases, accord-
ing to the given aerospace systems within the configuration.
Secondly, the relevant surrogate models can be established,

using relevant information and data, and then preliminary
optimization can be made based on the model. Again, the
design variables and the objective functions were analyzed
using the SOM. A detailed study of the relationship between
design variables and the objective function can then be
made, using the color changes of a two-dimensional hexag-
onal grid, eliminating the unimportant design variables and
reducing the associated interval of design variables. Finally,
the dimensions and the design variables of concern can be
determined for the design space and then a new design
space can be constructed with a smaller design optimization
range than the original, including local and global optimums.
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The smaller range of a more targeted and relatively transpar-
ent design space optimization can improve efficiency, saving
design time, and cost.

3.3. RST-Based Exploration Algorithm

3.3.1. Aerospace System C-Space Modeling. Aerospace system
configuration can be defined as

𝑆 (𝑈, 𝐴, 𝑉, 𝑓) , (1)

where 𝑈 is a nonempty set of alternatives, 𝐴 is a set of
nonempty attributes of a selected configuration,𝑉 is the range
of 𝛼, 𝛼 ∈ 𝐴, and 𝑓 is an information function, 𝑓: 𝑈 → 𝑉

𝛼
,

giving each attribute of each object an information value,
where 𝛼 ∈ 𝐴, 𝑥 ∈ 𝑈, and 𝑓(𝑥, 𝑎) ∈ 𝑉

𝛼
.

The decision table for aerospace SoS C-space and P-space
is defined as follows:

𝑆 = (𝑈, 𝐴 ∪ {𝑑} , 𝑉, 𝑓) , (2)

where 𝑈, 𝐴, 𝑉, and 𝑓 have the same meaning within the
configuration space model and {𝑑} is a decision attribute.
The entire aerospace SoS performance space is divided
through the actual aerospace system and the user evaluation.
Therefore, designers can get {𝑑} attribute values from the
performance space.

3.3.2. The Definition of Upper and Lower Approximation in
the C-Space. In the aerospace SoS configuration model, each
attribute subset 𝑀 ⊆ 𝐴, IND(𝑀) expresses metarelations
between any two configuration alternatives, called indis-
cernible relations, which are defined as follows:

IND (𝑀) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | ∀𝛼 ∈ 𝑀, 𝛼 (𝑥) = 𝛼 (𝑦)} ,

(3)

where𝑀 ⊆ 𝐴 (𝑀 is a subset of the entire attribute 𝐴) and 𝑋

is a subset of all optional configurations, 𝑈.
For𝑋, the upper and lower approximation of𝑀 is defined

as

𝑀𝑋 = ∪{𝑌 ∈

𝑈

IND (𝑀)

| 𝑌 ⊆ 𝑋} ,

𝑀𝑋 = ∪{𝑌 ∈

𝑈

IND (𝑀)

| 𝑌 ∩ 𝑋 ̸= 0} .

(4)

As seen from the definitions, for the selected configura-
tion 𝑋, the lower approximation represents the minimum
optional configuration set similar to𝑀 and the upper approx-
imation represents the maximum optional configuration set
similar to𝑀.

3.3.3. The Definition of the Division Matrix and Division
Function in the Configuration Space. The division matrix of
selected attributes 𝑀 in the configuration decision tables is
defined as follows:

(𝐶
𝑖𝑗
)={𝛼 ∈ 𝑀 | 𝛼 (𝑥

𝑖
) ̸= | 𝛼 (𝑥

𝑗
)} for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(5)

The division function is defined as follows:

𝑓 (𝑀) = ∏ ∑

(𝑥,𝑦)∈𝑈×𝑈

𝛼 (𝑥, 𝑦) . (6)

The division matrix and division function are used to
infer the smallest reduction, which is a small subset of the
attributes that can reflect implicit relationships in the selected
configuration decision tables.

With the introduction of new technology or new systems,
the relevant information is incompletely or vaguely stored,
which leads to incomplete configuration space information.
At this time, any attribute value field, 𝑉

𝛼
, may contain

unknownormissing attribute values, representedwith an “∗.”

3.3.4. The Similarity of the Configuration Alternatives. In the
configuration alternatives decision table, SIM(𝑀) is defined
as

SIM (𝑀) = {(𝑥, 𝑦 ∈ 𝑈 ∪ 𝑈 | ∀𝑎 ∈ 𝑀,𝑓
𝑎
(𝑥)

= 𝑓
𝑎
(𝑦) or 𝑓

𝑎
(𝑥) = ∗ or 𝑓

𝑎
(𝑦) = ∗)} ,

(7)

where SIM(𝑀) is a compatible relationship; there is
no distinction between any two configuration collections
through a variety of attribute values.

𝑆
𝑀
(𝑥) represents a set of configuration alternatives, sim-

ilar to a configuration:

𝑆
𝑀

(𝑥) = {𝑦 ∈ 𝑈 | (𝑥, 𝑦) ∈ SIM (𝑀)} . (8)

Generalized decision function 𝜕
𝐴
(𝑥) is as follows:

𝜕
𝐴
(𝑥) = {𝑓

𝑑
(𝑦) | 𝑦 ∈ 𝑆

𝑀
(𝑥)} . (9)

In the incomplete configuration decision table, the role of
𝜕
𝐴
(𝑥) is to relax the evaluation rating requirements of the

performance of the configuration alternatives, which might
include multiple decision attributes.

3.3.5. Calculation of Determined Rules of the System Configu-
ration Optimization. Any configuration rules where 𝑡 → 𝑑

(where 𝑡 is a conditional attribute value and 𝑑 is the decision
attribute value) are called the determination rules, only if
𝑡 → 𝑑 is unambiguous in 𝑆 and ‖𝑡‖ ⊆ ‖𝑑‖.

For any configuration in 𝑆, 𝑡 → 𝑑 is determined, leaving
no other condition attribute subset to determine the decision
attribute value 𝑑 in values 𝑡, which is to say the configuration
rule 𝑡 → 𝑑 is determined.

For any configuration alternatives 𝑥 ∈ 𝑈 and 𝐼
𝐴
(𝑥) ⊆

𝐼
{𝑑}

(𝑥), Δ
𝑈
(𝑥) is a division function only if Δ

𝑈
(𝑥) =

∏
𝑦∈𝑌

∑𝛼(𝑥, 𝑦), where 𝑌
𝑈

= 𝑈/𝐼
{𝑑}

(𝑥) and Δ
𝑈
(𝑥) is a

function of the determination of the configuration rules. We
can get the optimization determination of configuration rules
of the decision table through the establishment and reduction
of the function.

3.3.6. Calculation of Generalized Rules of the System Configu-
rationOptimization. Δ

𝑔
(𝑥) is a determined division function

of 𝑥 (𝑥 ∈ 𝑈), only when Δ
𝑔
(𝑥) = ∏

𝑦∈𝑌
∑𝛼(𝑥, 𝑦).
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Where 𝑌
𝑔

= 𝑈 \ {𝑦 ∈ 𝑈 | 𝑑(𝑦) ∈ 𝜕
𝐴𝑇

(𝑥)} and Δ
𝑔
(𝑥)

is a function of the optimization of generalized configuration
rules. We can get the optimization of generalized configura-
tion rules from the decision table through the establishment
and reduction of the function.

3.3.7. Fuzzy C-Means Algorithm. We use the fuzzy C-means
method to discrete the continuous data. The definition of
FCM is summarized as follows:

𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, sampling set of an attribute,

𝑥
𝑗
= (𝑥
𝑗1
, 𝑥
𝑗2
, . . . , 𝑥

𝑗𝑘
), 𝑗th 𝑘-dimensional vector of

each attribute,
𝑐, the number of clusters that are specified,
V
𝑖
, the center of the 𝑖th cluster,

V
𝑖
=

∑
𝑛

𝑗=1
(𝑢
𝑖𝑗
)

𝑞

𝑥
𝑗

∑
𝑛

𝑗=1
(𝑢
𝑖𝑗
)

𝑞
, (10)

𝑉 = (V
1
, V
2
, . . . , V

𝑐
), center vector composed of a

cluster center,
𝑞, real number greater than 1,
𝑢
𝑖𝑗
, weight index which control the fuzziness of the

attribute clustering,
𝜀, termination condition determined by the engineer-
ing staff,
‖𝑥
𝑗
− V
𝑖
‖
2, Euler distance of 𝑗th attribute and the

cluster center.

The definition of the membership function of each
attribute vector to each attribute cluster is

𝑢
𝑖𝑗
=

[1/






𝑥
𝑗
− 𝑥
𝑖







2

]

1/(𝑞−1)

∑
𝑐

𝑘=1
[1/






𝑥
𝑗
− 𝑥
𝑘







2

]

1/(𝑞−1)
. (11)

In the process of discretization of continuous data, the
minimal value of the following objective function is required:

𝐽
𝑞
(𝑢
𝑖𝑗
, V
𝑘
) =

𝑛

∑

𝑗=1

𝑐

∑

𝑖=1

(𝑢
𝑖𝑗
)

𝑞




𝑥
𝑗
− V
𝑖







2

; 𝑐 ≤ 𝑛. (12)

The application procedures are summarized as follows.

Step 1. Determine the target that needs to be analyzed and the
related attributes that need to be discretized.

Step 2. Determine a set of sampling points of the configu-
ration attributes 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝑗th 𝑘-dimensional

vector of each attribute’s sampling point.

Step 3. After discretization of the configuration attributes,
allocate the value of 𝑐, 𝑞, and 𝜀.

Step 4. Initialize the membership function matrix 𝑢
0

𝑖𝑗
, which

represents the distance of each configuration attribute point
to the initial cluster center.

Step 5. Use 𝑢
0

𝑖𝑗
and V
𝑖
to upgrade the center of each configu-

ration property cluster.

Step 6. Calculate 𝑢(𝐿+1)
𝑖𝑗

, which represents the relationship of
each configuration attribute point to its center.

Step 7. If max[‖𝑢(𝐿)
𝑖𝑗

− 𝑢
(𝐿+1)

𝑖𝑗
‖] ≤ 𝜀, then stop iteration;

otherwise return to Step 5.

3.4. SOM-Based Exploration Algorithm. After the C-space
area of concern is determined, using the SOM method, the
configuration space is mapped to part of the design space,
and the subsequent optimization is then capable of meeting
the design specifications and requirements only in the area of
concern.

SOM is an unsupervised learning neural network, which
is a type of data clustering and high-dimensional data visu-
alization method. The purpose of visualization is to project
data onto a graphical representation to provide a qualitative
idea of its properties. Typically, the multidimensional data is
mapped to the two-dimensional space with hexagonal grids.
Therefore, SOM further maps the configuration space region
to the smaller design space area, which is the area of con-
cern in the design space. Unlike conventional geographical
methods, SOM cannot provide any geographical features,
coordinates, distances, and so on, but it can describe closeness
or distribution of the input design variables. After the initial
aerospace system configuration is determined, the input layer
of the 𝑛-dimensional design variables and the 𝑚-objective
function as an input vector can be determined, where 𝑛 and𝑚

are positive integers.The 𝑛+𝑚 neurons can then be assigned.
In the output layer, the 𝑛 + 𝑚 dimensional weight vector =

{V
1
, V
2
, V
3
, . . . , V

𝑛+𝑚
} is randomly assigned to neurons.

In SOM, unsupervised learning clusters similar patterns
together, while preserving the topology of the input space and
maintaining a full connection of the input vectors to neurons
in the output layer. There are two main goals to be achieved.
The first is that the output layer searches for the winning unit
with a closer weight vector to each input vector.

The second is that, in order to be closer to the input design
variables and objective function vectors, weight vectors of the
winning unit and its neighboring neurons will be updated.
As a result, the 𝑛 + 𝑚-dimensional input vectors are pro-
jected onto a sequence of neighboring neurons in the two-
dimensional hexagonal grid. From the color of the neurons
in the output layer, we can compare the change trends of
design variables or the correlation between design variables
and objective functions.

The detailed steps of SOM application are summarized as
follows.

Step 1. Assign the weight vector 𝑉 = {V
1
, V
2
, V
3
, . . . , V

𝑛+𝑚
}.

Step 2. Select 𝑛 design variables and𝑚-objective functions as
the input vectors.

Step 3. Get the neuron that has the least distance from input
vectors.
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Step 4. Update the weight vectors of the winning unit and its
neighboring neurons.

Step 5. If the predefined iterative requirement is satisfied,
stop. All the design variables and objective functions are pro-
jected onto the two-dimensional hexagonal grid. Otherwise,
go to Step 2.

4. Case Study

4.1. Problem Description. In order to better demonstrate
this method, a simple example problem will be used. This
illustration is adapted from an example previously published
by Griendling [16]. Note that the example is not designed to
reflect reality, in order to avoid publication restrictions. The
SEAD mission demonstrated the need for CBAs to explore
a broad range of operational and materiel solutions. The
considered alternatives included variations on operations,
systems, organizational responsibilities, network structure,
interoperability level, and force structure. Since the total
alternative space had over 700,000,000 feasible architectures,
it was decided to first group the alternatives by their system
portfolios and eliminate portfolios with overall poor perfor-
mance.

4.2. Parameter Settings. The following several alternatives
were selected from numerous architecture alternatives as the
basis for the aerospace SoS configuration. After processing
the corresponding attribute values, the list was compiled, as
shown in Table 1.

4.3. Experimental Results. Using the standard rough set the-
ory for data mining, the continuous data should be dis-
cretized. In order to facilitate attribute processing, the
attribute set 𝐶 is divided into three categories. Among them,
the first category includes𝐶

1
(cost) and𝐶

2
(time), the second

category 𝐶
3
(risk) and 𝐶

4
(support level), and the third cate-

gory 𝐶
5
(P-success). The first class of continuous attributes

is discrete with equal interval division, the attribute values
of the second class use the range standardized management
approach to discrete data and the third class attribute values
are directly converted to discrete data.

Therefore, the attribute 𝐶
1
is divided by 20 for each

interval, 𝐶
2
is discretized by 25 for each interval, and in 𝐶

3
,

1 represents general and 2 represents high. For attribute 𝐶
5
,

1 represents a success rate of 0.5 or more and 2 represents a
success rate below 0.5. For attribute 𝐶

4
, 1 represents class I

and 2 represents class II.
A sample attribute classification is shown in Table 2.
Calculated by the software Rosetta, the reduction of 𝐶 by

𝐷 can be obtained with {𝐶
1
, 𝐶
2
}; the key of 𝐶 is {𝐶

1
, 𝐶
2
}.

The decision rules deduced from Table 2 are as follows.

Rule 1. If 𝐶
1
= [80, 100) and 𝐶

2
= [95, 120), then evaluation

results = 1.

Rule 2. If 𝐶
1
= [100, 120) and 𝐶

2
= [95, 120), then evaluation

results = 1.

Rule 3. If 𝐶
1
= [80, 100) and 𝐶

2
= [145, 170), then evaluation

results = 1.

Rule 4. If 𝐶
1
= [100, 120) and 𝐶

2
= [95, 120), then evaluation

results = 2.

Rule 5. If 𝐶
1
= [120, 140) and 𝐶

2
= [120, 145), then evaluation

results = 2.

Rule 6. If 𝐶
1
= [80, 100) and 𝐶

2
= [170, 195), then evaluation

results = 3.

Rule 7. If 𝐶
1
= [140, 160) and 𝐶

2
= [170, 195), then evaluation

results = 2.

Rule 8. If 𝐶
1
= [60, 80) and 𝐶

2
= [45, 70), then evaluation

results = 4.

Rule 9. If 𝐶
1

= [60, 80) and 𝐶
2

= [70, 95), then
evaluation results = 5.

Rule 10. If 𝐶
1
= [80, 100) and 𝐶

2
= [70, 95), then evaluation

results = 5.

Rule 11. If 𝐶
1
= [80, 100) and 𝐶

2
= [45, 70), then evaluation

results = 6.

Rule 12. If 𝐶
1
= [60, 80) and 𝐶

2
= [70, 95), then evaluation

results = 5.

Among which

Rule 1 and Rule 2 can be merged together:

if 𝐶
1
= [80, 120) and 𝐶

2
= [95, 120), then

evaluation results = 1;

Rule 9, Rule 10, and Rule 12 can be merged together:

if 𝐶
1
= [60, 100) and 𝐶

2
= [70, 95), then

evaluation results = 5.

Uncertainty rules are as follows.

Rule 13. If 𝐶
1
= [100, 120) and 𝐶

2
= [70, 95), then evaluation

results = 3, and rule certainty factor is 0.5.

Rule 14. If C1 = [100, 120) and 𝐶
2
= [70, 95), then evaluation

results = 4, and the rule certainty factor is 0.5.

In the first mapping layer, the rules list which attributes
have the greatest impact on the performance of the aerospace
SoS.

Configuration rules show that cost and time are the core
attributes of the decision table that influence the evaluation
results.

In the process of aerospace SoS design or selection, the
designer can select the satisfactory alternatives based on the
extracted configuration rules, narrowing the range of options
for candidate configuration alternatives.

In practical applications, decisions can bemade according
to the above rules of certainty and uncertainty.



8 The Scientific World Journal

0.259

0.693

1.13U-matrix

(a)

Cost

83

96

89.5 d

(b)

Time
64.8

57.4

50.1

d

(c)

0.612

0.645

0.679

d

P-success

(d)

4.29

5

5.71
Y

d

(e)

Figure 3: The SOM result I.

Table 1: The similar cases and corresponding data.

Alternative Cost Time Risk Support level 𝑃-success Evaluation results
1 99 112 High I 0.67 1
2 110 110 High I 0.55 1
3 95 150 General I 0.71 1
4 108 108 General II 0.52 2
5 125 125 General II 0.49 2
6 86 190 High II 0.67 3
7 146 192 High II 0.68 2
8 108 90 General II 0.71 3
9 60 65 General II 0.72 4
10 74 79 General II 0.80 5
11 102 80 General II 0.66 4
12 94 94 High II 0.54 5
13 80 45 High I 0.61 6
14 66 78 General II 0.59 5

After the first mapping, suppose that the designer needs
to get the alternatives with evaluation results of 6. He can then
choose configuration alternatives according to the rules 𝐶

1
=

[80, 100) and 𝐶
2
= [45, 70) and 𝐶

5
= [0.6, 0.7), meaning that

the costs should be between 80 and 100, time should be no
more than 70 but not less than 45, and the task success rate
will be between 0.6 and 0.7.

Before analysis with the SOM, a surrogate model must
be established to approximately express the relationship
between the variables and objective functions. Sampling 100

sets of data from the existing simulation database using the
Latin hypercube experimental method, a neural network
surrogate model must be established, using SOM to analyze
the relationships between the objective function and design
variables.

Figures 3 and 4 show the results of the analysis, using the
SOM method. 𝑌 represents an optimized objective function
(the highest evaluation value).

Objective function 𝑌 focuses on the right bottom of the
graph; the costs graph is concentrated in the left corner.
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Figure 4: The SOM result II.

Table 2: The classification of sample attributes.

𝑆 𝐶
1

𝐶
2

𝐶
3

𝐶
4

𝐶
5

𝐷

𝑆
1

2 3 2 1 1 1
𝑆
2

3 3 2 1 2 1
𝑆
3

2 5 1 1 1 1
𝑆
4

3 3 1 2 2 2
𝑆
5

4 4 1 2 2 2
𝑆
6

2 6 2 2 1 3
𝑆
7

5 6 2 2 1 2
𝑆
8

3 2 1 2 1 3
𝑆
9

1 1 1 2 1 4
𝑆
10

1 2 1 2 1 5
𝑆
11

3 2 1 2 1 4
𝑆
12

2 2 2 2 2 5
𝑆
13

2 1 2 1 1 6
𝑆
14

1 2 1 2 2 5

For the sake of a bigger value of 𝑌, as the red triangle in
Figure 3(e), more attention should be paid to the correspond-
ing red triangle in Figures 3(b), 3(c), and 3(d).

In this way, the value range of P-success should be (0.645,
0.679), rather than (0.612, 0.679), the cost of area is reduced
to (81, 93), and the value range of time is reduced to (45, 60).

In Figure 4, simple scatter plots and histograms of all
variables are shown. Original data points are in the upper
triangle, map prototype values are in the lower triangle, and
histograms are on the diagonal: black for the data set and red

for the map prototype values. The variable values have been
denormalized.

Therefore, compared with the initial design space, the
interval of design variables has largely narrowed.

5. Conclusions

In this paper, we studied capability-focused aerospace system
of systems architecture alternative design space exploration
problems with bilayer mapping. Our results suggest that the
RST method can effectively map aerospace system perfor-
mance space to the configuration space, while a different
configuration space is mapped to different regions, efficiently
narrowing the design range and providing new ideas for
the quick selection of alternatives. At the same time, the
SOM method can effectively map the configuration space of
aerospace system of systems to the design space and reduce
the design dimension or range. This allows the focus to
remain on the areas of concern. The optimized efficiency
of aerospace system of systems design is fundamentally
improved and, as mentioned above, the proposed method
effectively explores the design space, reducing the design
space range. Starting with the initial stage of the aerospace
system of systems design, the method is optimized in the
conceptual design phase, sufficiently solving the problem of
computing complexity and search difficulty.
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