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Abstract: Reliable object tracking that is based on video data constitutes an important challenge in
diverse areas, including, among others, assisted surgery. Particle filtering offers a state-of-the-art
technology for this challenge. Becaise a particle filter is based on a probabilistic model, it provides
explicit likelihood values; in theory, the question of whether an object is reliably tracked can be
addressed based on these values, provided that the estimates are correct. In this contribution, we
investigate the question of whether these likelihood values are suitable for deciding whether the
tracked object has been lost. An immediate strategy uses a simple threshold value to reject settings
with a likelihood that is too small. We show in an application from the medical domain—object
tracking in assisted surgery in the domain of Robotic Osteotomies—that this simple threshold strategy
does not provide a reliable reject option for object tracking, in particular if different settings are
considered. However, it is possible to develop reliable and flexible machine learning models that
predict a reject based on diverse quantities that are computed by the particle filter. Modeling the task
in the form of a regression enables a flexible handling of different demands on the tracking accuracy;
modeling the challenge as an ensemble of classification tasks yet surpasses the results, while offering
the same flexibility.

Keywords: secure object tracking; reject option; particle filtering; assisted surgery

1. Introduction

Novel technological developments have led to great advances in computer assisted
surgery, whereby image-guided support of surgeons plays a particularly important role
besides direct robotic assistance [1]. Some advances can be observed in recent years,
including, among other approaches, dedicated open source platforms to advance and
evaluate technical progress [2]. Assistive systems often rely on visual information, such
as videos or depth images, and imaging sensors play a crucial role for a wide array of
medical domains. One such domain with a potentially high benefit constitutes the field of
osteotomy, where the exact position and pose of the bone has to be known precisely. In
this context, current practice is to use markers, such as 3D-printed templates, to assist the
surgeon [3]. However, the design and production of these templates constitutes a significant
overhead that could be avoided by markerless tracking systems. Such intelligent tracking
methods enable the reliable identification or segmentation of the images into semantically
meaningful parts, e.g., relevant organs, bone structure, or malignant parts, and tracking
these over time.

Several approaches address optical tracking in the medical domain, such as models
that are based on optical flow [4], or probabilistic frameworks [5]. In the last decade, particle

Sensors 2021, 21, 2114. https://doi.org/10.3390/s21062114 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6977-0714
https://orcid.org/0000-0002-0739-612X
https://orcid.org/0000-0001-5719-297X
https://orcid.org/0000-0003-2160-4527
https://doi.org/10.3390/s21062114
https://doi.org/10.3390/s21062114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21062114
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21062114?type=check_update&version=2


Sensors 2021, 21, 2114 2 of 12

filtering became one of the most prominent methods for reliable positioning and tracking
in the medical domain and beyond [6,7]. Particle filtering basically constitutes a technique
for an efficient Monte Carlo simulation to solve filtering problems that arise when internal
states of dynamic systems, such as the location of a specific constituent in an image, need
to be estimated based on partial observations that are subject to sensor noise. Thereby, a
crucial part of the model is the design of a suitable probability model that captures the
true underlying probability but is sufficiently easy to compute. There exists extensive
work regarding appropriate probabilistic models in continuous and discrete settings [8,9]
as well as extensive research on the accuracy of the result and how to arrive at unbiased
estimators [10–13]. Usually, real-time performance is required, such that computationally
complex models are prohibited and considerable work addresses computation schemes on
the edge [14].

Popular models can typically incorporate some form of generic measurement noise,
yet major disturbances, such as occlusions, pose a challenge. Hence, it is a matter of
ongoing research as to how to design robust tracking schemes that enable a re-detection of
the object after it has been lost and realize a larger robustness and invariance to noise, as an
example, by means of multiple correlation filters or robust representations, such as hidden
layers of deep networks [15–17]. However, in realistic scenarios, it is unavoidable that
tracked objects are lost in some settings, as an example, in the case of a total occlusion of the
tracked object. In critical settings, such as assisted surgery, it is desirable to equip tracking
algorithms with the notion of a reject option—meaning that tracking algorithms are capable
of detecting on their own if the tracking is no longer reliable and a major discrepancy of the
tracked object and the result of the tracking algorithm is to be expected. In such cases, an
autonomous or assisted re-initialization of the tracking algorithm could be done and major
harm due to a lost tracking be prevented. Work in this direction exists that focuses on
rejecting outlier measurements [18], which uses non-parametric kernel density estimation.
The latter is well known to be impractical already for a medium number of dimensions [19].
In contrast, the sum of likelihoods of updated particles is used for a decision on rejecting
in [20]. The authors of [21] mitigate the effect of corrupted observations by updating
only a subset of the particles, where an observation is considered to be corrupted if the
largest particle likelihood is below a pre-defined threshold. We consider this detection
mechanism, which is also investigated by Chow [22] in a more general setting, as a baseline
in our evaluation. In this contribution, we investigate the challenge of how to equip a
recent state-of-the-art particle filtering technology for object tracking, which is based on
numerically stable representations of particle weights in the logarithmic domain [23], by
efficient possibilities to equip the tracking result with a notion of reliability in the form of
a reject option, which filters too large deviations of the tracked quantities from their true
values. We investigate this, in particular, with respect to changing configuration settings of
the particle filter.

The question of how to enhance models with a notion of their reliability and an
according reject constitutes an open research challenge for more general models than
particle filters, as considered in our approach. For example, in classification tasks, the notion
of selective classification or classification with a reject option has already been introduced
quite early on [22]. It has been shown that a simple threshold strategy yields an optimum
reject in the sense of cost optimization, provided that the true underlying probability is
known. The latter is usually not the case, and the models inferred from data provide
approximations of the true values only, provided probabilistic, rather than frequentist,
modeling takes place. As a consequence, it has been investigated, in how far deterministic
models can be extended to incorporate a reject option by suitable loss modeling [24], how
confidence values can be approximated by suitable alternatives that are provided by the
given model [25], and how reject options can be learned in parallel to the task at hand [26].
Note that statistical frameworks exist—such as conformal prediction [27]—which compute
confidence values from a given model and data in such ways that strong mathematical
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guarantees hold. Yet, these approaches are usually time consuming and they cannot be
used in an online tracking task where real-time conditions hold.

In this contribution, we address the question of how to equip a state-of-the art particle
filter for tracking by efficient schemes that implement a reliable reject option to detect cases
where the tracking is invalid. Because particle filters are based on a probabilistic modeling
and, hence, provide likelihood values, a natural baseline builds a reject option on a global
threshold strategy: settings are rejected if the likelihood is too small, following the strategy,
as investigated by Chow [22]. It turns out that the results of this threshold strategy are not
satisfactory for a benchmark problem from the domain of assisted surgery. We propose
modelling the problem as a machine learning task, and we propose two possible ways to
formalize the problem: as a regression task that predicts the amount of displacement, or as
an ensemble of classification tasks that detect settings for which the misplacement is larger
than a given threshold. We will formalize these two approaches and evaluate those in a
realistic benchmark and different settings of the particle filter.

2. Materials and Methods
2.1. Experimental Prerequisites

A novel approach to jaw reconstruction surgery utilizes bone cut from the patient’s
pelvis (Figure 1a) to create a graft for the jaw (Figure 1b) with low risk of getting rejected
by the body [28]. For the cutting procedure a custom 3D model is created as a template
for the surgeon. So far, this model was printed and then placed on the bone, which is
expensive and time consuming. In a new approach [29], a robotic arm is equipped with
a depth camera to track a representation of the template in the depth image while using
a particle filter [23], and a projector to display cutting outlines onto the bone (Figure 2)
during surgery. However, this new approach leads to the risk that the projection is off
when the tracking is inaccurate.

(a) (b)

Figure 1. Schematic view of material for jaw reconstruction surgery. (a) Three-dimensional (3D)
model of graft fitted to patient’s pelvic bone. To reconstruct the geometry of the jaw, two separate
transplants are necessary (colored in grey and purple). (b) Use of bone graft to reconstruct jaw.
Because of the separation into two transplants the bend of the jaw bone can be rebuilt.

The projection cannot be static, since displacements of the body are unavoidable dur-
ing surgery. Hence, a tracking of the shape and an according adjustment of the projection is
necessary. There exist several reasons why tracking can be wrong—as an example, a major
challenge consists in the fact that the tracking target might be partially or fully occluded by
the surrounding tissue or a person.
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Project graft model

Track in depth image

Figure 2. Experimental Setup: 3D camera tracks model of bone graft in depth image of patient’s
pelvis (blue). Projector displays cutting lines at tracked position for the surgeon (red).

Our goal is to find a method that identifies when the track is inaccurate, so the surgeon
can be notified to stop cutting, and a manual reset may be conducted, if needed. Thereby,
we want to find a technology that works for different parameterizations of the particle filter
that we will introduce in Section 2.2, such that an easy transfer in between different settings
becomes possible. Because it might be specific to the situation, which deviation of the
tracking from the ground truth is crucial, we also consider different degrees of inaccuracy
that will be explained in Section 2.4. This way, our method can also be applied to other
setups that utilize particle filter tracking.

For this purpose, we utilize the data and particle filter implementation from the
study [29]. In the following, we first summarize the according particle filter methodology
before we then provide more details on the used data sequences.

2.2. Particle Filter Tracking

Assume a depth image at time t is denoted

Imt =

 x1,1 . . . x1,n
...

. . .
...

xm,1 . . . xm,n

 (1)

where m and n are the width and height of the depth image and xi,j the distance to the
camera of the pixel at position i, j. The basic objective of the particle filter tracking is to find
the pose

ρ̂t =


p̂t
q̂t
ν̂t

ν̂rot
t

 ∈ R14 (2)

consisting of position p̂t as 3D coordinates in the room, and orientation q̂t as a quaternion,
for the 3D model of the graft that has the biggest pixel overlap to the depth image Imt
at time t. ν̂trans

t is the current translational velocity of the particle and ν̂rot
t the current

rotational velocity. The tracking algorithm that has been implemented and evaluated in the
approach [29] consists of the following steps: it is manually initialized at approximately the
correct position. Subsequently, within an iterative loop, we predict K possible new poses
Pt+1 = (ρ1

t+1, . . . , ρK
t+1) (particles) by sampling according to a noise distribution

ρt+1 ∼ n(ρt) =


pt + νtrans

t+1 dt
qt + 0.5(qtν

rot
t+1)dt

v f · νtrans
t +N (0, ntrans)dt

v f · νrot
t +N (0, nrot)dt

 (3)
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with the parameters for the translational noise ntrans, rotational noise nrot, and a velocity
factor v f . N refers to the normal distribution. The new velocities are obtained by adding
gaussian noise to the old ones. Additionally, the velocity is assumed to be decaying due to
a loss of energy that is modeled by the multiplication of the velocity factor. Using the new
velocities, the new position and orientation are calculated by applying the backward Euler
integration method. Note that the new orientation is the Nlerp between our old orientation
and the new orientational velocity. For each new particle, we generate an expected depth
image Imρk

t+1
that is based on simple geometric principles, and we calculate the weight

wρk
t+1

(Imt+1, Imρk
t+1

) =
m,n

∑
i=1,j=1

ll(Imt+1(i, j), Imρk
t+1

(i, j)), (4)

where ll is the log likelihood estimating how likely the observed pixel xo fits the expected
pixel xe and it is calculated as

ll(xo, xe) =



0 if xe invalid
ln(wuni ∗ (1/(d̂− ď)+
wgaus ∗ N (xe, d f · x2

e + bn)+
wexp ∗ (λe−λxo )/(1− e−λxe)) if xe ≥ xo

ln(wuni ∗ (1/(d̂− ď)+
wgaus ∗ N (xe, d f · x2

e + bn)) if xe < xo

ln(wuni ∗ (1/(d̂− ď)) if xo invalid

(5)

where wuni, wgaus, wexp are configurable as uniform, Gaussian, and exponential weight,
and the camera intrinsic values d̂, ď as maximum and minimum depth value, d f as depth
factor, and bn as the camera’s base noise. In the first case, the expected depth at this pixel
is invalid, i.e., it belongs to the background, therefore any observation fits. In the second
case, occlusion is a possible reason why the observation is closer than the expectation. This
possibility is modeled with an additional exponential probability term as compared to the
third case. In the case of an invalid observation, the uniform weight is taken as a random
measurement (case 4). The tracking pose ρ̂t+1 is then determined by the particle with the
maximum log likelihood

ρ̂t+1 = ρ
argmaxk w

ρk
t+1

t+1 . (6)

See the reference [23] for details.

2.3. Tracking Scenario

As a concrete tracking scenario that is representative for assisted surgery, we use a
rosbag [30] that was recorded during a test surgery on a cadaver at University Hospital
RWTH Aachen. This bag contains the depth image data during the whole surgery as a
sensor_msgs/PointCloud2 [31] and a tracking output as geometry_msgs/Pose [32] (Figure 3).
Because this output was under human supervision and manually reset and corrected, we
can utilize it as our ground truth ρ̃t. This allows for us to rerun the tracking while replaying
the bag to record different outputs of the tracking algorithm in different configurations.

For each run, we save the parameter configuration Xconf ∈ R7 which contains: transla-
tional noise (ntrans), rotational noise (nrot), velocity factor (v f ), exponential weight (wexp),
gaussian weight (wgaus), uniform weight (wuni), and particle count (K). Table 1 shows the
chosen value ranges.



Sensors 2021, 21, 2114 6 of 12

Figure 3. Recorded rosbag of test surgery on corpse shows depth image with a registered color image.
The projection on the bone can be seen in light green, the current tracking output in green.

Table 1. Parameter configurations. [a, b], step = c would mean the values are chosen between a and
b in steps of c.

Translational Noise ntrans Rotational Noise nrot Velocity Factor v f

[0.0005, 0.01], step = 0.0005 [0.005, 0.1], step = 0.005 [0.8, 0.99], step = 0.01

Exponential Weight wexp Gaussian Weight wgaus Uniform Weight wuni

[0.2, 0.39], step = 0.01 [0.5, 0.69], step = 0.01 [0.01, 0.2], step = 0.01

particle Count K

[100, 2000], step = 100

Additionally, we record the particle filter output Xout ∈ R4 that contains the maxi-
mum log likelihood l̂l = maxk wρk

t
the effective sample size ess = −ln(∑K

i=1 2ew
ρi ) where

normalized weights are used for computation and the mean and variance of all weights.
Lastly, we save the labels Y ∈ R2 which contain the distance of our current track to
the ground truth δt =

√
( p̂t − p̃t)2 and the angular difference between two quaternions

αt = 2acos((q̂t ∗ q̃−1
t )4). The two most common problems during tracking are occlusions in

the depth image (Figure 4a) by the surgeon and sudden displacements when the body’s po-
sition is readjusted for easier cutting (Figure 4b). For our data set, we chose two sequences
where either an occlusion or displacement takes place that present considerable problems
for the tracking algorithm. Both of the sequences are around 450 frames long. We reran the
tracking with the different parameter configurations on both sequences by replaying the
aforementioned rosbag. An overview of the recorded data set can be seen in Table 2.

Table 2. Overview of the recorded data set.

Recorded parameters 7
Recorded outputs 4
Recorded labels 2

No. of different param configurations 8000
Tracking Problems 2
Recording Length ∼450 frames
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(a) (b)

Figure 4. Example settings in which tracking by particle filters faces difficulties. (a) Partial occlusion
of area to track. Here, a newly recorded track (in blue) is still stable. (b) Newly recorded track
(in blue) is lost after body was relocated.

2.4. Formalization of an Inaccurate Track

We need to define when the tracking is too inaccurate and we consider the track
lost in order to train our machine learning models. This is a priori unclear, since suitable
choices depend on the current task. The track can be off in its position, which can be
measured as the distance to the ground truth, and in its orientation measured as the angle
difference to the ground truth. We choose 20 equidistant threshold pairs in order to evaluate
different constellations for possible inaccurate tracking, thus enabling a larger flexibility
for practical applications

σi =

(
di
ai

)
, di ∈ [0.05, 0.2] ai ∈ [0.13, 0.26] ∀i ∈ [1, 2, . . . , 20], (7)

where di represents the tolerance value for the distance (in m) to the ground truth and ai
the tolerance value for the according angular difference (in rad). The pairs are ordered from
very strict (σ1 = (0.05, 0.13)) to very tolerant (σ20 = (0.2, 0.26)). Tracks that are off by more
than di in distance or ai in angle are considered to be lost in regards to the chosen threshold
pair, i.e., one such pair defines the ground truth for the subsequent prediction tasks.

2.5. Reject Strategies Based on Machine Learning Methods

We investigate three different approaches for determining when the current track
is lost.

Threshold strategy: because particle filters are based on probabilistic models, we can
implement a simple thresholding based approach, as proposed by Chow [22] as a baseline.
Intuitively the maximum log likelihood gives confidence for the current track. Accordingly,
we utilize a threshold τ to predict a lost track for a chosen pair of parameters σ = (d, a)
characterizing the desired accuracy:

l̂l < τσ (8)

τσ could be chosen according to a desired likelihood, yet this requires a suitable scaling
of the values and its relation to the geometric accuracy. In our approach, we optimize the
threshold value τ that is based on the training data by evaluating a set of candidate values
in the range [−200, 200].

Ensemble of binary classification tasks: we consider two approaches for framing the
current problem of deciding whether the current track is lost (as defined by the selected
pair σi) as a machine learning task. Firstly, we model our problem as a binary classification
task for each σ:

fσ : R11 −→ {0, 1}, fσ(x) = y (9)
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Here, the input to the machine learning model x is chosen as a vector of representative
quantities of the particle filter. It is the four-dimensional vector of the particle filter outputs
Xout and the seven parameters Xconf, whereby the values are averaged over a 20 frame
window, and

y =

{
1 if ∃δi ∈ (δt, . . . , δt+20), δi > dσ or ∃αi ∈ (αt, . . . , αt+20), αi > aσ

0 otherwise
(10)

This way, a separate classifier is used for every desired accuracy regarding distance
and angle difference. We train our classification models on the same distance and angle
difference combinations as in our baseline evaluation and with a 10 frame overlap between
windows. We use Support Vector Machine (SVM) [33] with a linear kernel and Random
Forests [34] as the classification models. We also apply SMOTE sampling [35] to combat
any imbalance in our data set. See [36] for the implementation that we used.

Note that SVM and Random Forests both provide a certainty value of the class by
means of the distance to the decision boundary or the percent of trees that predict a certain
class, respectively. By shifting the threshold from 0 to a different value, we can extend
a model that is optimized for a specific threshold pair σ to neighboring ones. This gives
rise to a sparse ensemble of models: instead of using the models fσ for all pairs σ, we
can rely on a small number of classifiers, which extend a model fσ to a neighborhood of
different thresholds σ′ by moving the classifier’s threshold φ. The range σ′ contains every
σi for which a decision threshold φ exists, so that classifier f φ

σ still yields target values for
precision and recall. We then find the minimum number of classifiers, so that their ranges
σ′ contain every σi at least once. If a threshold σi is contained in multiple ranges, then the
classifier that yields the highest combined precision and recall is chosen. This ensemble of
classifiers can then be evaluated on the test set for each threshold combination.

Regression task: ss a second modeling approach, we train a regression model:

f : R11 −→ R2, f (x) = y (11)

where x is the same as above and y =

(
d
a

)
is a prediction of the distance and angle

difference. In this case, only one model is trained for every choice of threshold pairs σ.
Given a specific threshold pair σi = (di, ai), a decision is done that is based on the question
whether di ≥ d and ai ≥ a for f (x) = (d, a) being the predictions of the regression model
on x. In the following, we evaluate such regression against the same set of distance and
angle difference combinations. As candidate models for this regression task, we consider a
Linear Regression [37], Support Vector Regression with Gaussian Kernel [38], and Random
Forest Regression [39]. All of the models are implemented using the scikit learn library [40].

3. Results

All methods are evaluated in a 10-fold cross-validation scheme, adjusted for time
series data in order to ensure time consistency: In each split, consecutive data samples
amounting to 1

11 of a time sequence are used for testing while all the preceding samples are
used for training. In the next split, the old test samples are added to the training set and
the successive 1

11 of the time series are employed for the next test set, such that every data
sample is used for testing at maximum once.

The direct threshold strategy yields a precision larger than 80% but a recall of close
to 50% only (see Figure 5). Hence the baseline evaluation shows that the maximum log
likelihood is not scaled in such a ways that it allows a robust reject option based on
a threshold.

As a comparison, the results obtained by modeling the task as a regression are signifi-
cantly better. Here, Random Forest regression performs best. It yields both precision and
recall close to 90%, which is an acceptable result and much higher than our baseline.



Sensors 2021, 21, 2114 9 of 12

2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

Pr
ec

is
io

n

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

al
l

Baseline Precision
Baseline Recall
RFR Precision
RFR Recall
RFC Precision
RFC Recall

Figure 5. Overview of our training results shows precision and recall for our baseline evaluation,
the best performing regression model, Random Forest regression (RFR), and the best performing
classification model, Random Forest classification (RFC).

Provided that a separate classification model is designed for every pair of threshold
values σ, we can further improve, i.e., using a Random Forest classification, we obtain a
precision that is close to 1 and recall of around 98% for almost all values. An overview of
all trained models can be seen in Table 3 and a comparison between the best performing
regression and classification model against the baseline is shown in Figure 5.

Table 3. This table shows the summarized results for the different instances of machine
learning models.

Model Average Precision Average Recall

Baseline 0.8344± 0.0133 0.4806± 0.0357
Random Forest Regression 0.8815± 0.0081 0.8877± 0.0088
Support Vector Regression 0.8714± 0.065 0.9033± 0.006

Linear Regression 0.6528± 0.0198 0.9612± 0.0135
Gaussian Process Regression 0.6612± 0.016 0.9315± 0.0188

SVM Classification 0.9811± 0.013 0.8975± 0.0319
Random Forest Classification 0.9935± 0.0007 0.9802± 0.0055

The current classification models, as shown in Table 3, consist of an ensemble of
different classifiers according to every pair of threshold values. Because this can become
quite exhaustive, the question occurs as to whether an acceptable accuracy can be achieved
by using fewer classification models of the same type with different threshold values of
the classifier per instance σ. Therefore, we investigate how to minimize the number of
different classifiers required in the ensemble given a desired quality of precision and recall,
as described in Section 2.5. Tables 4 and 5 show the results of this method. Interestingly,
already a single Random Forest classifier yields precision and recall 0.9, and five models
already cover the full space with precision and recalls of 0.98, yielding flexible as well as
high performant models for a reject option for particle tracking. For SVM classification,
more models are needed for the ensemble. The individual decision boundaries need to be
modified, such that target recall values are met, thus resulting in actually lower precision
values for a higher number of models.
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Table 4. This table shows the minimum amount of Random Forest classification models needed to
still achieve given goals for precision and recall on the training set and their resulting performance
on the test set.

Goal Precision Goal Recall No. of Models Avg. Precision Avg. Recall

0.98 0.98 5 0.9911 0.9803
0.95 0.95 2 0.9891 0.9742
0.9 0.9 1 0.984 0.9691

Table 5. This table shows the minimum amount of support vector classification models that are
needed to still achieve given goals for precision and recall on the training set and their resulting
performance on the test set.

Goal Precision Goal Recall No. of Models Avg. Precision Avg. Recall

0.98 0.98 14 0.9701 0.9711
0.95 0.95 7 0.9712 0.9529
0.9 0.9 2 0.9737 0.9012

4. Discussion

We have investigated efficient possibilities to enhance particle filtering models for
tracking by a reject option, which enables practitioners to react to an alert as soon as
the tracking precision is lower than a predefined threshold. Although particle filters
provide a tracking probability, this quantity is not scaled in such a way that a simple
threshold strategy provides satisfactory results. As a consequence, we have investigated
the possibility to model reject options as a learning task, more precisely as regression or
classification problem. It turns out that an ensemble of classifiers provides the best results,
with an accuracy reaching 0.98, depending on the chosen setting.

The proposed approach provides an immediate possibility to enhance particle filters
for tracking in assisted surgery by an alert strategy to prevent malfunctioning. Because
of the generality of the proposed approach, we expect that the proposed modeling frame-
work is of more general interest to enhance particle filtering from visual sensor data by a
reject option.
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