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Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the
inflammatory response, and these peptides have been used to treat some inflammatory
and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino
acid sequences is critical for the discovery of novel and efficient anti-inflammatory
peptide-based therapeutics and the acceleration of their application in therapy. In
this paper, a random forest-based model called iAIPs for identifying AIPs is
proposed. First, the original samples were encoded with three feature extraction
methods, including g-gap dipeptide composition (GDC), dipeptide deviation from the
expected mean (DDE), and amino acid composition (AAC). Second, the optimal feature
subset is generated by a two-step feature selection method, in which the feature is
ranked by the analysis of variance (ANOVA) method, and the optimal feature subset is
generated by the incremental feature selection strategy. Finally, the optimal feature
subset is inputted into the random forest classifier, and the identification model is
constructed. Experiment results showed that iAIPs achieved an AUC value of 0.822
on an independent test dataset, which indicated that our proposed model has better
performance than the existing methods. Furthermore, the extraction of features for
peptide sequences provides the basis for evolutionary analysis. The study of peptide
identification is helpful to understand the diversity of species and analyze the evolutionary
history of species.
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1 INTRODUCTION

As a part of the nonspecific immune response, inflammation response usually occurs in response to
any type of bodily injury (Ferrero-Miliani et al., 2007). When the inflammatory response occurs in
the condition of no obvious infection, or when the response continues despite the resolution of the
initial insult, the process may be pathological and leads to chronic inflammation (Patterson et al.,
2014). At present, the therapy for inflammatory and autoimmune diseases usually uses nonspecific
anti-inflammatory drugs or other immunosuppressants, which may produce some side effects
(Tabas and Glass, 2013; Yu et al., 2021). Several endogenous peptides found in the process of
inflammatory response have become anti-inflammatory agents and can be used as new therapies for
autoimmune diseases and inflammatory disorders (Gonzalez-Rey et al., 2007; Yu et al., 2020a).
Compared with small-molecule drugs, the therapy based on peptides has minimal toxicity and high
specificity under normal conditions, which is a better choice for inflammatory and autoimmune
disorders and has been widely used in treatment (de la Fuente-Núñez et al., 2017; Shang et al., 2021).
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Due to the biological importance of AIPs, many biochemical
experimental methods have been developed for identifying AIPs.
However, these biochemical methods usually need a long
experimental cycle and have a high experimental cost. In
recent years, machine learning has increasingly become the
most popular tool in the field of bioinformatics (Zhao et al.,
2017; Liu et al., 2020; Luo et al., 2020; Sun et al., 2020; Zhao et al.,
2020; Jin et al., 2021; Wang et al., 2021a). Many researchers have
tried to adopt machine learning algorithms to identify AIPs only
based on peptide amino acid sequence information. In 2017,
Gupta et al. proposed a predictor of AIPs based on the machine
learning method. They constructed the combined features and
inputted them in the SVM classifier to construct the prediction
model (Gupta et al., 2017).

In 2018, Manavalan et al. proposed a novel prediction model
called AIPpred. They encoded the original peptide sequence by
the dipeptide composition (DPC) feature representation method,
and then, they developed a random forest-based model to identify
AIPs (Manavalan et al., 2018). AIEpred is a novel prediction
model and is proposed by Zhang et al. AIEpred encodes peptide
sequences based on three feature representations. Based on
various feature representations, it constructed many base
classifiers, which are the basis of ensemble classifier (Zhang
et al., 2020a).

In this paper, we proposed a novel identification model of
AIPs for further improving the identification ability. First, we
encoded the samples with multiple features consisting of AAC,
DDE, and GDC. It has been proven that multiple features can
effectively discriminate positive instances from negative ones in
various biological problems. Second, we selected the optimal
features based on a feature selection strategy, which has

achieved better performance in many biological problems.
Finally, we used the random forest classifier to construct an
identification model based on the optimal features. The
experimental result shows that our proposed method in this
paper has better performance than the existing methods.

2 MATERIALS AND METHODS

Figure 1 gives the general framework of iAIPs proposed in this
paper. The framework consists of four steps as follows: 1) Dataset
preparation—It collects the data required for the experiment. 2)
Feature extraction—It converts the collected sequence data from
step 1 into numerical features. 3) Feature selection—removes
redundant features from a feature set. 4) Prediction model
construction. Each step of the framework will be described as
follows.

2.1 Dataset Preparation
A high-quality dataset is critical to construct an effective and
reliable prediction model. To measure the performance of our
model by comparing it with other existing machine learning-
based prediction models, we used the dataset with no change
proposed in AIPpred (Manavalan et al., 2018). The dataset was
first retrieved from the IEDB database (Kim et al., 2012; Vita
et al., 2019), and then the samples with sequence identity >80%
(Zou et al., 2020) are excluded by using CD-HIT (Huang et al.,
2010). The dataset contains 1,678 AIPs and 2,516 non-AIPs. For
this dataset, it is randomly selected as the training dataset, which
is inputted into the classifier and used to construct the
identification model. The training dataset is also used to
measure the cross-validation performance of our model. The
remaining dataset is used as an independent dataset, which will
be used to evaluate the generalization capability of our
identification model. In detail, the training dataset consists of
1,258 AIPs and 1,887 non-AIPs, and the independent dataset
consists of 420 AIPs and 629 non-AIPs.

2.2 Feature Extraction Methods
In the process of peptide identification, finding an effective
feature extraction method is the most important step (Liu,
2019; Fu et al., 2020; Cai et al., 2021). In this study, we tried a
variety of feature extraction methods and used the random forest
classifier to evaluate the performance of those methods. Finally,
we chose three efficient feature extraction methods to encode
peptide amino acid sequences, including amino acid
composition, dipeptide deviation from expected mean, and
g-gap dipeptide composition. The details of each feature
extraction method are described as follows.

2.2.1 Amino Acid Composition
Different peptide sequences consist of different amino acid
sequences. AAC tried to count the composition information of
peptides. In detail, AAC calculates the frequency of occurrence of
each amino acid type (Wei et al., 2018a; Liu et al., 2019; Ning
et al., 2020; Yang et al., 2020; Zhang and Zou, 2020; Wu and Yu,
2021). The computation formula of AAC is as follows:

FIGURE 1 | The framework of iAIPs.
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AAC(j) � N(j)
L

, j ∈ {A,C,D, E, F, ..., Y}

where L denotes the length of the peptide, which is the number of
characters in the peptide, AAC (j) denotes the percentage of
amino acid j, N (j) denotes the total number of amino acid j. The
dimension of AAC is 20.

2.2.2 Dipeptide Deviation From the Expected Mean
According to the dipeptide composition information, DDE
computes deviation frequencies from expected mean values
(Saravanan and Gautham, 2015). The feature vector extracted
by DDE is generated by three parameters: theoretical variance
(TV), dipeptide composition (DC), and theoretical mean (TM).
The formulas of the three parameters are as follows:

DC(j) � nj
L − 1

where nj denotes the occurred frequency of dipeptide j, and L
denotes the length of peptide sequences.

TM(j) � Cj1

CN
× Cj2

CN

Cj1 denotes the number of codons that encode for the first
amino acid, andCj2 denotes the number of codons that encode for
the second amino acid in the dipeptide j. CN denotes the total
number of possible codons.

TV(j) � TM(j)(1 − TM(j))
L − 1

The formula of DDE(i) is as follows.

DDE(j) � DC(j) − TM(j)�����
TV(j)√

2.2.3 G-Gap Dipeptide Composition
GDC is used to measure the correlation of two non-adjacent
residues; its dimension is 400 (Wei et al., 2018b). GDC can be
represented as follows:

GDC(g) � (fg
1 , f

g
2 , ..., f

g
400)

where fg
v is the frequency of v (v � 1,2, . . ., 400), and it can be

calculated as:

fg
v �

Ng
v∑400

v�1 N
g
v

where Ng
v denotes the number of the v-th g-gap dipeptide in a

given peptide. In this study, every peptide has a different length;
the minimum length is 5. Therefore, we set the range of g from 1
to 4. For the different values of g, we represent the feature as
GDC-gap1, GDC-gap2, GDC-gap3, and GDC-gap4.

2.3 Feature Selection
In the Feature extraction methods section, we introduced the
feature extraction method used in this paper. However, like other

feature representation methods, our feature representation may
also produce many noises (Wei et al., 2014; Wang et al., 2020a; Li
et al., 2020; Tang et al., 2020; Wang et al., 2021b). Recently, many
feature selection methods for eliminating noise has been used to
solve many bioinformatics problems (He et al., 2020), such as
TATA-binding protein prediction (Zou et al., 2016), DNA 4mc
site prediction (Manavalan et al., 2019), antihypertensive peptide
prediction (Manayalan et al., 2019), drug-induced hepatotoxicity
prediction (Su et al., 2019), and enhance-promoter interaction
prediction (Hong et al., 2020; Min et al., 2021).

Likewise, we will use a two-step feature selection method to
solve the noise of features. In detail, the feature is first ranked
based on the ANOVA score. Then, based on the orderly features,
we use the incremental feature selection (IFS) strategy to generate
different feature subsets, the feature subset with optimal
performance is selected as the optimal feature subset. In the
Result and discussion section, we will give the experiments about
feature extraction, in which we will verify the effectiveness of our
feature representation.

2.3.1 Analysis of Variance
In this work, the feature is first ranked based on the ANOVA
score. For every feature, ANOVA calculated the ratio of the
variance between groups and the variance within groups, which
can test the mean difference between groups effectively (Ding
et al., 2014). The score is calculated as follows:

S(t) � S2B(t)
S2W(t)

where S (t) is the score of the feature t, S2B(t) is the variance
between groups, and S2W(t) is the variance within groups. The
formula of S2B(t) and S2W(t) is as follows:

S2B(t) �
1

K − 1
∑K
i�1
mi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑mi
j�1 ft(i, j)

mi
− ∑K

i�1 ∑mi
j�1 ft(i, j)∑K
i�1mi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

S2w(t) �
1

N −K
∑K
i�1

∑mi

j�1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ft(i, j) − ∑mi
j�1 ft(i, j)

mi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

where K denotes the number of groups, and N denotes the total
number of instances; ft(i, j) denote the value of the j-th sample
in the i-th group of the feature t.

2.3.2 Incremental Feature Selection
Based on the orderly features, we use the incremental feature
selection strategy to generate different feature subsets; the feature
subset with optimal performance is selected as the optimal feature
subset. In the incremental feature selection method, the feature
set is constructed as empty at first, and then the feature vector is
added one by one from the ranked feature set. Meanwhile, the
new feature set is inputted into a classifier, and then a prediction
model is constructed. We evaluate the performance of the model
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according to some indicators. Finally, the feature subset with the
optimal performance is considered as the optimal feature set.

2.4 Machine Learning Methods
In this paper, we utilized various ensemble learning classification
algorithms to develop identification models, which contain
random forest (Ru et al., 2019; Wang et al., 2020b; Ao et al.,
2021), AdaBoost, Gradient Boost Decision Tree (Yu et al., 2020b),
LightGBM, and XGBoost. In addition, we also tried some
traditional machine learning classification algorithms, such as
logistic regression and Naïve Bayes. The description of these
methods is as follows.

2.4.1 Random Forest
As one of the most powerful ensemble learning methods, random
forest was proposed by Breiman (2001). Due to its effectiveness,
random forest has been widely used in bioinformatics areas.
Random forest can solve regression and classification tasks. To
solve the problem, random forest uses the random feature
selection method to construct hundreds or thousands of
decision trees (Akbar et al., 2020). By voting on these decision
trees, the final identification result is obtained. The random forest
algorithm used in this paper is from WEKA (Hall et al., 2008),
and all parameters are default.

2.4.2 AdaBoost
The AdaBoost algorithm is an iterative algorithm, which was
proposed by Freund (1990). For a benchmark dataset, AdaBoost
will train various weak classifiers and combine these weak
classifiers by sample weight to construct a stronger final
classifier. Among samples, low weights are assigned to easy
samples that are classified correctly by the weak learner, while
high weights are for the hard or misclassified samples. By
constantly adjusting the weight of samples, AdaBoost will
focus more on the samples that are classified incorrectly.

2.4.3 Gradient Boost Decision Tree
Similar to AdaBoost, Gradient Boost Decision Tree (GBDT) also
combines weak learners to construct a prediction model
(Friedman, 2001). Different from AdaBoost, GBDT will
constantly adapt to the new model when the weak learners are
learned. In detail, based on the negative gradient information of
the loss function of the current model, the new weak classifier is
trained. The training result is accumulated into the existing model
to improve its performance (Basith et al., 2018).

2.4.4 LightGBM and XGBoost
Both LightGBM and XGBoost are improved algorithms based on
GBDT. LightGBM is mainly optimized in three aspects. The
histogram algorithm is used to convert continuous features into
discrete features, the gradient-based one-side sampling (GOSS)
method is used to adjust the sample distribution and reduce the
numbers of samples, and the exclusive feature bundling (EFB) is
used to merge multiple independent features. XGBoost adds the
second-order Taylor expansion and regularization term to the
loss function.

2.4.5 Naïve Bayes
Naïve Bayes is a probabilistic classification algorithm based on
Bayes’ theorem, which assumes that the features are independent
of each other. According to this theorem, the probability of a
given sample classified into class k can be calculated as

P(Ck|X) � P(Ck)P(X|Ck)
P(X)

where the sample has the expression formula of {X, C}.

2.4.6 Other Machine Learning Methods
Other traditional machine learning methods used for
performance comparison include J48, logistic, SMO, and SGD.
J48 is a decision tree algorithm provided in Weka, which is
implemented based on the C4.5 idea. Logistic is a probability-
based classification algorithm. Based on linear regression, Logistic
introduces sigmoid function to limit the output value to [0,1]
interval. SMO and SGD are optimization algorithms provided in
Weka. SMO (sequential minimal optimization) is based on
support vector machine (SVM), and SGD is based on linear
regression.

2.5 Performance Evaluation
To measure the performance of our proposed model, we chose
four commonly used measurements: SN, SP, ACC, and MCC
(Jiang et al., 2013; Wei et al., 2017a; Ding et al., 2019; Shen et al.,
2019; Huang et al., 2020). These measurements are calculated as
follows.

SN � TP

TP + FN

SP � TN

TN + FP

ACC � TP + TN

TP + TN + FP + FN

MCC � (TP × TN) − (FP × FN)�������������������������������������������(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√
where FP, FN, TN, and TP show the number of false-positive,
false-negative, true-negative, and true-positive, respectively.
These are widely used in bioinformatics studies, such as
protein fold recognition (Shao et al., 2021), DNA-binding
protein prediction (Wei et al., 2017b), protein–protein
interaction prediction (Wei et al., 2017c), and drug–target
interaction identification (Ding et al., 2020; Ding and
JijunGuo, 2020).

Furthermore, we also used the receiver operating characteristic
(ROC) curve (Hanley and McNeil, 1982; Fushing and Turnbull,
1996) to evaluate the performance of our proposed model. ROC
computes the true-positive rate and low false-positive rate by
setting various possible thresholds (Gribskov and Robinson,
1996). The area under the ROC curve (AUC) also shows the
performance of the proposed model, which is more accurate in
the aspect of evaluating the performance of the prediction model
constructed by an imbalanced dataset.
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3 RESULTS AND DISCUSSION

To verify the effectiveness of our proposed model, we will
measure the performance of our model from different
perspectives. The detailed process of these experiments is
presented as follows.

3.1 Performance of Different Features
In this study, we use a variety of feature extraction methods and
their combinations to encode peptide sequences. At first, we
measure the effectiveness of single features. The comparison
results of the fivefold cross-validation on the training dataset
are shown in Table 1.

Table 1 shows that DDE is much better than other features
according to the indicators of AUC, MCC, ACC, SP, and SN.
In detail, the AUC value reaches 0.784, which is 2%–11.6%
higher than other features. Based on the indicator of AUC,
the features of DDE, GDC-gap1, and AAC have the best
performance.

To achieve better performance, we further test the
performance of multiple features on the basis of DDE, GDC,
and AAC. In detail, the GDC feature adopts four different
parameters, that is, gap1, gap2, gap3, and gap4. The
corresponding feature is GDC-gap1, GDC-gap2, GDC-gap3,

and GDC-gap4. The performance comparison of the fivefold
cross-validation on the training dataset is shown in Table 2.

According to Table 2, the multiple features of
AAC + DDE + GDC-gap1 has the best performance. Its value
of SN, SP, ACC, MCC, and AUC are 0.585, 0.860, 0.750, 0.468,
and 0.794, respectively.

To verify the performance of these combined features, we
tested them on the independent test set. Table 3 shows the
experimental results on the independent dataset. The results
show that the combined features of AAC + DDE + GDC-gap1
have the best performance on the independent dataset.

3.2 Performance of Different Classifiers
In this study, we chose the random forest algorithm to construct
the classifier. To verify the effectiveness of the random forest
classifier, we compared its performance with other classifiers. We
chose several ensemble classifiers that are similar to the random
forest classifier, including AdaBoost, GBDT, LightGBM, and
XGBoost. In addition, we also chose some machine learning
classifiers, including J48, Logistic, SMO, SGD, and Naïve Bayes.

Based on the best feature combination, which is obtained from
previous experiments, we constructed different identification
models using different classifiers. The performance of these
classifiers on the training dataset is shown in Table 4.

TABLE 1 | Performance comparison of various single features.

Feature SN SP ACC MCC AUC

Amino acid composition (AAC) 0.529 0.845 0.719 0.398 0.760
Dipeptide deviation for the expected mean (DDE) 0.589 0.854 0.748 0.464 0.784
G-gap dipeptide composition (GDC)-gap1 0.456 0.862 0.700 0.353 0.764
GDC-gap2 0.466 0.852 0.697 0.348 0.751
GDC-gap3 0.454 0.869 0.703 0.361 0.741
GDC-gap4 0.449 0.853 0.692 0.335 0.733
CKSAAGP 0.477 0.861 0.707 0.371 0.732
CTriad 0.215 0.897 0.624 0.155 0.668
GAAC 0.533 0.750 0.663 0.288 0.679
GDPC 0.525 0.826 0.706 0.370 0.727
GTPC 0.470 0.855 0.701 0.357 0.742
TPC 0.304 0.910 0.668 0.277 0.739

TABLE 2 | Performance comparison of various combined features of fivefold
cross-validation on the training dataset.

Feature SN SP ACC MCC AUC

AAC+DDE 0.582 0.857 0.747 0.461 0.784
AAC+GDC-gap1 0.483 0.870 0.715 0.388 0.770
AAC+GDC-gap2 0.453 0.871 0.704 0.363 0.773
AAC+GDC-gap3 0.435 0.866 0.694 0.339 0.759
AAC+GDC-gap4 0.447 0.873 0.703 0.360 0.760
DDE+GDC-gap1 0.586 0.858 0.749 0.466 0.790
DDE+GDC-gap2 0.588 0.854 0.748 0.464 0.791
DDE+GDC-gap3 0.583 0.860 0.749 0.466 0.785
DDE+GDC-gap4 0.587 0.851 0.746 0.459 0.784
AAC+DDE+GDC-gap1 0.585 0.860 0.750 0.468 0.794
AAC+DDE+GDC-gap2 0.584 0.852 0.745 0.457 0.790
AAC+DDE+GDC-gap3 0.593 0.857 0.751 0.471 0.784
AAC+DDE+GDC-gap4 0.587 0.855 0.748 0.464 0.785

TABLE 3 | Performance comparison of various combined features on the
independent dataset.

Feature SN SP ACC MCC AUC

AAC+DDE 0.564 0.860 0.742 0.450 0.808
AAC+GDC-gap1 0.488 0.884 0.725 0.413 0.799
AAC+GDC-gap2 0.455 0.878 0.708 0.373 0.787
AAC+GDC-gap3 0.448 0.881 0.707 0.371 0.795
AAC+GDC-gap4 0.462 0.865 0.704 0.362 0.783
DDE+GDC-gap1 0.569 0.857 0.742 0.450 0.812
DDE+GDC-gap2 0.560 0.854 0.736 0.437 0.805
DDE+GDC-gap3 0.576 0.857 0.745 0.456 0.808
DDE+GDC-gap4 0.569 0.857 0.742 0.450 0.801
AAC+DDE+GDC-gap1 0.56 0.859 0.739 0.443 0.806
AAC+DDE+GDC-gap2 0.557 0.855 0.736 0.437 0.805
AAC+DDE+GDC-gap3 0.552 0.855 0.734 0.433 0.806
AAC+DDE+GDC-gap4 0.567 0.859 0.742 0.450 0.801
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The results in Table 4 show that the performance of the
random forest classifier is the best, and its AUC value is
10.8%–20.4% higher than other classifiers. To further compare
the generalization ability of these classifiers, we test those models
on the independent dataset. Table 5 shows the experimental
results. The results showed that the random forest classifier is also
better than other classifiers on the independent dataset.

3.3 The Analysis of Feature Selection
In the extracted features, some feature vectors may be noisy or
redundant. To further improve the identification performance,
we try to find optimal features by feature selection methods in
this section. In this paper, the two-step feature selection
strategy is used as the feature selection strategy to eliminate
noise. In detail, we first used the ANOVA method to rank
feature vectors, and then we used the IFS strategy to filter the
optimal feature set.

The comparison of performance before and after
dimensionality reduction is shown in Figure 2. All
indicators of the selected features have higher values than
the original ones. The results suggest that the optimal feature
set can improve the overall performance of our identification
model and our fewer selected features can still accurately
describe AIPs.

3.4 Comparison With Existing Methods
Independent dataset test plays an important role in testing the
generalization ability of the identification model. Therefore,
the independent dataset was used to measure our identification
model; the performance of our identification model was

TABLE 4 | Performance of various classifiers utilizing AAC-DDE-GDC-gap1 feature and fivefold cross-validation on the training dataset.

Classifier SN SP ACC MCC AUC

Random forest 0.585 0.860 0.750 0.468 0.794
AdaBoost 0.579 0.743 0.678 0.324 0.661
Gradient Boost Decision Tree (GBDT) 0.583 0.788 0.706 0.379 0.686
LightGBM 0.564 0.754 0.678 0.321 0.659
XGBoost 0.576 0.757 0.684 0.336 0.666
J48 0.552 0.737 0.663 0.292 0.647
Logistic 0.497 0.677 0.605 0.175 0.624
Sequential minimal optimization (SMO) 0.476 0.725 0.626 0.206 0.601
SGD 0.491 0.689 0.610 0.182 0.590
Naïve Bayes 0.483 0.684 0.603 0.168 0.604

TABLE 5 | Performance of various classifiers based on AAC-DDE-GDC-gap1
feature on the independent dataset.

Classifier SN SP ACC MCC AUC

Random forest 0.560 0.859 0.739 0.443 0.806
AdaBoost 0.607 0.809 0.728 0.426 0.708
GBDT 0.640 0.798 0.735 0.443 0.719
LightGBM 0.538 0.859 0.730 0.424 0.698
XGBoost 0.579 0.847 0.740 0.446 0.713
J48 0.524 0.738 0.652 0.266 0.621
Logistic 0.498 0.658 0.594 0.156 0.615
SMO 0.442 0.701 0.598 0.147 0.572
SGD 0.493 0.679 0.604 0.173 0.586
Naïve Bayes 0.486 0.676 0.600 0.162 0.602

FIGURE 2 | Comparison of identification performance before and after dimensionality reduction.
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compared with existing methods, which contains AntiInflam
(Ferrero-Miliani et al., 2007), AIPpred, and AIEpred. Table 6
shows the detailed results of the different methods for
identifying AIPs, where the results are ranked according
to AUC.

As shown in Table 6, the value of our proposed identification
model iAIPs in SN, SP, ACC, AUC, and MCC are 0.567, 0.874,
0.751, 0.822, and 0.471, respectively. Furthermore, the same
independent dataset-based experimental results showed that
the ACC of iAIPs was 0.007–0.186 higher than that of
AntiInflam and AIPpred, which is similar to AIEpred.
Moreover, according to AUC, our performance is better than
the other methods, which is 0.009–0.175 higher than the others.
The results indicate that our method has better performance than
other existing prediction models.

4 CONCLUSION

In this paper, an identifying AIP model based on peptide
sequence is proposed. We tried various features and their
combinations, utilized various commonly used ensemble
learning classification algorithms and the two-step feature
selection strategy. After trying a large number of experiments,
we finally constructed an effective AIP prediction model. By
conducting a large number of experiments on the training dataset
and independent dataset, we verified that our proposed

prediction model iAIPs could efficiently identify AIPs from
the newly synthesized and discovered peptide sequences,
which is better than the existing AIP prediction models.

In the future, the optimization of the feature representation
method is a research direction. Especially, the research on a new
feature representation method that can adaptively encode peptide
sequences is of great significance. Furthermore, other optimization
methods and computational intelligence models will be considered
for identifying anti-inflammatory peptides. Deep learning (Lv et al.,
2019; Zeng et al., 2020a; Zeng et al., 2020b; Zhang et al., 2020b; Du
et al., 2020; Pang and Liu, 2020), unsupervised learning (Zeng et al.,
2020c), and ensemble learning (Sultana et al., 2020; Zhong et al.,
2020; Li et al., 2021; Niu et al., 2021; Shao and Liu, 2021) will be
employed when the dataset is large enough.
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