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ABSTRACT: Actinides are elements that are often feared because of their radioactive
nature and potentially devastating consequences to humans and the environment if not
managed properly. As such, their chemical interactions with the biosphere and
geochemical environment, i.e., their “biogeochemistry,” must be studied and understood
in detail. In this Review, a summary of the past discoveries and recent advances in the field
of actinide biogeochemistry is provided with a particular emphasis on actinides other than
thorium and uranium (i.e., actinium, neptunium, plutonium, americium, curium,
berkelium, and californium) as they originate from anthropogenic activities and can be
mobile in the environment. The nuclear properties of actinide isotopes found in the
environment and used in research are reviewed with historical context. Then, the coordination chemistry properties of actinide ions
are contrasted with those of common metal ions naturally present in the environment. The typical chelators that can impact the
biogeochemistry of actinides are then reviewed. Then, the role of metalloproteins in the biogeochemistry of actinides is put into
perspective since recent advances in the field may have ramifications in radiochemistry and for the long-term management of nuclear
waste. Metalloproteins are ubiquitous ligands in nature but, as discussed in this Review, they have largely been overlooked for
actinide chemistry, especially when compared to traditional environmental chelators. Without discounting the importance of
abundant and natural actinide ions (i.e., Th4+ and UO2

2+), the main focus of this review is on trivalent actinides because of their
prevalence in the fields of nuclear fuel cycles, radioactive waste management, heavy element research, and, more recently, nuclear
medicine. Additionally, trivalent actinides share chemical similarities with the rare earth elements, and recent breakthroughs in the
field of lanthanide-binding chelators may spill into the field of actinide biogeochemistry, as discussed hereafter.
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1. NUCLEAR PROPERTIES OF ACTINIDES AND
ENVIRONMENTAL CONSEQUENCES

In the periodic table, the actinide series (i.e., Ac to Lr) sits below
the lanthanide series, and analogies are often made between
these two families, despite them having distinct physical and
chemical properties in some cases. The primary difference
between actinides and lanthanides is the fact that no stable
actinide isotope exists, and therefore, all the actinide elements
are radioactive. Among the 15 actinides, only the first four (Ac,
Th, Pa, and U) are naturally present and widely distributed in
the environment. Thorium and uranium are the most abundant
ones because of the existence of the long-lived isotopes Th-232
(t1/2 = 14 billion years), U-238 (t1/2 = 4.5 billion years), and U-
235 (t1/2 = 704 million years) (Figure 1). Actinium and
protactinium do not have long-lived isotopes on the geological
time scale. As a result, they are present on Earth only because
some of their isotopes are intermediate products in the decay
chain of natural thorium and uranium. The isotope Ac-228 (t1/2
= 6.2 h) originates from the decay chain of Th-232, while Pa-234
(t1/2 = 6.7 h) comes fromU-238, and both Pa-231 (t1/2 = 32 760
years) and Ac-227 (t1/2 = 21.8 years) are decay products of the
U-235 decay chain. As such, actinium and protactinium are only

found near uranium and thorium sources, at trace levels (due to
secular equilibrium with their parent isotopes), and do not
accumulate in the environment over time.

Among the naturally occurring actinides, only actinium
exhibits a +III oxidation state in solution under environmentally
relevant conditions (Table 1). Consequently, actinium is the
only natural actinide that has the same valence as the trivalent
lanthanides and would be susceptible to undergo similar
biogeochemical processes. However, because of the short half-
lives of its isotopes (Figure 1), the total amount and
concentrations of actinium in the environment are extremely
low, and natural environmental systems (e.g., microorganisms)
are unlikely to rely solely on this element. The longest-lived
isotope of actinium, Ac-227, only has a 21.8 year half-life, and its
average concentration in the ocean is in the low attomolar range
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(i.e., 10−18 mol/L), which corresponds to an estimated total
inventory of actinium in the ocean of just ∼8.4 kg.1 This
contrasts with the equivalent lanthanide ion, La3+, which is
abundant in nature with an average content of ∼30 ppm in the
continental crust2 and an average concentration in the ocean in

the tens of picomoles per liter (i.e., 10−11 to 10−10 mol/L)3 �
about 8 orders of magnitude higher than actinium. As a result,
biological systems have had little opportunity to interact with
natural trivalent actinide ions in nature while, by contrast,
natural systems have had millions of years to evolve and interact

Figure 1. Half-lives of the five most stable isotopes that have been identified for each element of the actinide series (Ac to Lr). The mass number is
indicated above each bar. Note that the y-axis is in years, is displayed as a logarithmic scale, and it spans 18 orders of magnitude.

Table 1. Observed Oxidation States for the Actinide Elements in Coordination Compoundsa

element Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

oxidation state +2 +2 +2 +2 +2 +2 +2 +2
+3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3 +3

+4 +4 +4 +4 +4 +4 +4 +4 +4
+5 +5 +5 +5 +5

+6 +6 +6 +6
+7 +7

aThe oxidation states that are the most relevant under environmental conditions are shown in bold.4 See the recent studies from MacDonald et al.,5

Windorff et al.,6 Dutkiewicz et al.,7 and Poe et al.8 for the isolation of low-valence U2+, Np2+, Pu2+, and Cf2+ complexes. Am2+ compounds have also
been synthesized and characterized, mainly with small inorganic ligands.9−12 Note that elements beyond Cf are unlikely to be found in significant
quantities in nature because their radioactive half-lives are too short (≤1 year); see Figure 1.

Figure 2.Half-life of actinide isotopes that are generally preferred in research laboratories for chemistry, biochemistry, or physics experiments. Color
code: isotopes with half-lives > 100 years are displayed in green, those with half-lives of 1 to 100 years are displayed in yellow, those with half-lives < 1
year are displayed in red. Note that the y-axis is displayed as a logarithmic scale and spans 18 orders of magnitude.
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with more abundant trivalent lanthanides or actinides whose
dominant oxidation states are not +III (i.e., uranium and
thorium; Table 1). The advent of the nuclear era in themiddle of
the 20th century has changed this situation dramatically and
forever.
Before the discovery of transuranium elements in the

1940s,13,14 only sporadic locations on Earth contained elements
heavier than uranium. For instance, this is the case of Oklo
(Gabon) where, due to a unique set of geological circumstances,
a natural uranium deposit underwent self-sustained nuclear
reactions about 2 billion years ago and created isotopes of
transuranic elements.15,16 This and other sporadic natural
nuclear reactors did not produce significant quantities of new
actinides that would have an impact on radioisotope inventories
on Earth and associated biological processes. In contrast, the
proportion of actinide elements present on Earth dramatically
increased after the discovery of the first synthetic transuranic
isotopes, namely Np-239 by McMillan and Abelson in 194013

(neptunium: element 93) and then Pu-238 and Pu-239 in 1941
by Seaborg, McMillan, Kennedy, and Wahl17 (plutonium:
element 9417−19). As research on transuranic elements rapidly
progressed within the frame of the Manhattan project and after
World War II, more elements were discovered, up to americium
(element 95) and curium (element 96), at which point Glenn T.
Seaborg introduced the concept of the actinide series to the
world.14 Most actinides after plutonium exhibit a stable +III
oxidation state under environmentally and biologically relevant
conditions (Table 1), and their chemistry starts to resemble, at
first sight, that of the trivalent lanthanides.
It should be noted that not all the actinides can be used for

“bulk” chemistry or biogeochemistry experiments because the
half-life of the isotopes becomes shorter andmore challenging to
work with as the atomic number gets higher. Figure 2 shows the
actinide isotopes that are typically used for chemical or
biogeochemical research purposes and their respective half-
lives. In practice, the comparison between trivalent lanthanide
and actinide coordination chemistries has been largely limited to
the study of americium and curium and more recently extended
to berkelium and californium.20−23 Under very reducing and
specific conditions, plutonium(III) can also be stabilized in
solution, and its interactions with the protein calmodulin have
been probed,24 but in general, studies on trivalent plutonium
remain rare because of its instability and low relevance to
currently known biogeochemical mechanisms. In recent years,
there has also been a growing interest in developing novel cancer
treatments25−30 based on the synthetic and very short-lived
isotope actinium-225 (225Ac3+, half-life of 9.9 days). The
potential use of this alpha emitter in cancer medicine (along
with short-lived lanthanide beta emitters, such as 177Lu3+) has
provided strong motivation to the radiochemistry community to
further probe the interactions between biological systems and
trivalent f-elements.

2. COORDINATION CHEMISTRY PROPERTIES OF
ACTINIDES COMPARED TO ENVIRONMENTAL
METAL IONS

Oftentimes, trivalent lanthanide ions are used as nonradioactive
surrogates for the actinide ions. Indeed, besides exhibiting the
same oxidation state in solution, trivalent lanthanides and
actinides also have relatively similar size. However, the analogy is
not perfect and should be used with caution as the lanthanide
contraction is stronger than the actinide contraction, and for a
given column, the lanthanide is smaller than its actinide

counterpart (Figure 3). For example, the ionic radius of Eu3+

is slightly smaller than that of Am3+ (1.116 vs 1.157 Å31), which

translates to a volume ∼10% smaller (if ions approximated to
perfect spheres). Such a size difference could be significant for
certain biogeochemical processes, such as incorporation into
minerals or complexation to aqueous ligands. Despite this
imperfect size match between lanthanides and actinides, their
chemistries are still relatively similar, and biogeochemical
systems amenable to interact with trivalent lanthanide ions
generally also interact with trivalent actinides,32 albeit with some
noticeable differences (vide inf ra).

Being large trivalent ions, f-element ions appear as outliers
compared to known environmental metal ions (Fe3+, Ca2+, Zn2+,
Mn2+, Cu2+, etc.; Figure 4a). However, they can still hijack
environmentally relevant reactions in some cases. For example,
the trivalent actinides have a higher charge density than Ca2+,
but their ionic radius is in the same range (Figure 4b), so there is
a potential for An3+ to substitute for Ca2+ in solids or water-
soluble complexes. In contrast, in the case of ferric iron, the
trivalent actinide ions are much larger, have lower charge
density, and prefer higher coordination numbers (8 to 10 for
An3+ vs 6 for Fe3+), which results in unfavorable conditions for
substituting An3+ for Fe3+ in molecular compounds.35 As such,
trivalent actinides tend to form relatively weak complexes with
ligands that have naturally evolved to bind Fe3+ (also known as

Figure 3. Comparison of the ionic radii of the trivalent ions of the
lanthanide (triangles) and actinide (circles) series. Top: Ionic radius
values for a coordination number of 6, as described in reference 33 for
Pa to Cf and reference 34 for actinium. Bottom: Ionic radius values for a
coordination number of 9, as described in reference 31.
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siderophores) due to the mismatch between their coordination
chemistry properties. A characteristic example is the biological
protein transferrin (Tf), which is a natural iron transporter in the
blood system of mammals as it has very strong affinity for Fe3+

(log βTfFed2
= 40.1 at pH 7.436,37), but its affinity for trivalent

actinides drops by several orders of magnitude (log βTfCmd2
= 15.8

at pH 8.638). Nonetheless, actinides in the +III oxidation state
still interact with molecules involved in the iron biological
machinery, albeit with a lower affinity.
A better match between f-element and iron environmental

chemistries is found with tetravalent actinides (Figure 4). This is
particularly important for plutonium, which is rather unstable as
Pu3+ but instead forms strong complexes as Pu4+ under
environmentally friendly conditions. The charge density of the
Pu4+ is much higher than that of trivalent actinides or
lanthanides and it starts approaching that of Fe3+. Hence, iron
complexes are prone to accommodate and stabilize Pu4+. The
same conclusions apply to neptunium, which is unstable as Np3+,
and whose natural oxidation state is +V (NpO2

+ ion), but can be
reduced to Np4+ and form strong complexes with biorelevant
molecules.39 In the case of plutonium, an analogy can also be
made between Pu4+ and tetravalent cerium, Ce4+, as they have
very similar ionic radii.33 Berkelium is an intermediate case as it
can adopt both the trivalent and tetravalent oxidation states in

solution with redox properties that resemble that of the Ce4+/
Ce3+ couple.20,40,41 Bk4+ is the smallest tetravalent actinide that
can be probed in solution, and it has been shown to form highly
stable complexes with carbonate ions at near neutral pH, as well
as siderophore and iodate ligands.20,23,42,43 Berkelium could, in
theory, utilize both the calcium and ferric iron biogeochemical
pathways, but this element is extremely rare in nature (if any),
and studies of its biogeochemistry have been limited to
laboratory conditions.

3. SMALL NATURAL CHELATORS FOR THE
CHELATION OF TRIVALENT ACTINIDES

The large number of potential chelatingmolecules present in the
environment, compounded by the naturally low concentration
of actinides and difficulties of working with radioactivematerials,
has largely hampered the precise identification of the natural
“actinophore” ligands involved in the complexation and
transport of actinides. Small water-soluble organic chelators
are ubiquitous in nature and may play a role in the transport of
actinides in the environment or in vivo. Experimental studies
have mainly focused on solution thermodynamics and
speciation of actinides in synthetic solutions. For trivalent
actinides, the vast majority of the solution-state speciation
involve Cm3+ because of its convenient fluorescence properties

Figure 4.Comparison of the ionic radius (a) and charge density (b) for select actinides, lanthanides, and biorelevant metals. For iron, the ionic radius
shown is that of the 6-coordinated ion in order to take into account its preferred coordination mode. For the other elements, the ionic radius of the 8-
coordinated ion was considered. The ionic radius values were taken from the review of Shannon,33 except for Am3+44 and Cm3+.45
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Table 2. Stability Constants Experimentally Determined for Complexes of Trivalent Actinium, Americium, and Curium with
Small Biorelevant Chelators (DFOB = Desferrioxamine B. PYOV = Pyoverdine. SHA = Salicylhydroxamate. BHA =
benzohydroxamate)

chelator reaction
formation
constant conditions ref

carbonate Am3+ + CO3
2− = [AmCO3]+ log β11 =

5.97
I = 0.1−0.3 M (NaClO4), T = 25 °C 55

Am3+ + 2 CO3
2− = [Am(CO3)2]− log β12 =

9.58
[Am2(CO3)3](s) = 2 Am3+ + 3 CO3

2− log Ksp =
−29.70

[Cm(CO3)2]− + CO3
2− = [Cm

(CO3)3]2−
log K3 =
2.01

I = 3 M (NaClO4), T = 25 °C 57

phosphate Ac3+ + H2PO4
− = [AcH2PO4]2+ log K = 1.85 I = 0, T = 30 °C 78

Am3+ + H2PO4
− = [AmH2PO4]2+ log K = 2.13 I = 0, T = 30 °C 79

Am3+ + HPO4
2− = [AmHPO4]+ log K = 4.14

Cm3+ + 2 H+ + PO4
3− = [CmH2PO4]2+ log β121 =

22.02
I = 0.1 M (NaClO4), T = 24 °C 80

Cm3+ + H+ + PO4
3− = [CmHPO4]+ log β111 =

18.56
Cm3+ + H3PO4 = [CmH2PO4]2+ + H+ log

K = −0.14
I = 1.1 M (NaClO4), T = 25 °C 81

oxalate Ac3+ + C2O4
2− = [AcC2O4]+ log β11 =

3.56
I = 1 M (NaClO4), T = 25 °C 82

Ac3+ + 2 C2O4
2− = [Ac(C2O4)2]− log β12 =

6.16
Am3+ + C2O4

2− = [AmC2O4]+ log β11 =
4.63

I = 1 M (NaClO4), T = 25 °C 82

Am3+ + 2 C2O4
2− = [Am(C2O4)2]− log β12 =

8.35
Am3+ + 3 C2O4

2− = [Am(C2O4)3]3− log β13 =
11.15

Am3+ + C2O4
2− = [AmC2O4]+ log β11 =

5.34
I = 0.1 M (NaClO4), T = 23−26 °C 62

Am3+ + 2 C2O4
2− = [Am(C2O4)2]− log β12 =

9.14
Am3+ + 3 C2O4

2− = [Am(C2O4)3]3− log β13 =
11.49

acetate Cm3+ + Acetate− = [CmAcetate]2+ log β11 =
3.18

I = 0, T = 20 °C 83

Cm3+ + 2 Acetate− = [Cm(Acetate)2]+ log β12 =
4.80

Cm3+ + 3 Acetate− = [Cm(Acetate)3] log β13 =
5.19

malonate Cm3+ + Malonate2− = [CmMalonate]+ log β11 =
5.26

I = 0, T = 20 °C 84

Cm3+ + 2 Malonate2− = [Cm
(Malonate)2]−

log β12 =
8.38

propionate Cm3+ + Propionate2− =
[CmPropionate]2+

log β11 =
3.24

I = 0, T = 25 °C 85

Cm3+ + 2 Propionate2− = [Cm
(Propionate)2]+

log β12 =
4.63

citrate Cm3+ + HCitrate3− = [CmHCitrate] log K1 = 7.4 I = 0.1 M (NaClO4), T = 23−25 °C 46
Cm3+ + 2 HCitrate3− = [Cm
(HCitrate)2]3−

log K2 =
11.3

Cm3+ + H2Citrate2− + HCitrate3−= [Cm
(H2Citrate)HCitrate]2−

log K = 11.0

desferrioxamine B
(DFOB)

Cm3+ + DFOB3− = [CmDFOB] log β101 =
16.80

I = 0.1 M (NaClO4), T = 25 °C 73

Cm3+ + DFOB3− + H+ = [CmHDFOB]+ log β111 =
25.73

Cm3+ + DFOB3− + 2 H+ =
[CmH2DFOB]2+

log β121 =
31.62

Am3+ + DFOB3− + H+ =
[AmHDFOB)]+

log β111 =
25.5

I = 1 M (KNO3), T = 25 °C 86

Am3+ + DFOB3− + 2 H+ =
[AmH2DFOB]2+

log β121 =
32.2

Am3+ + DFOB3− + 3 H+ =
[AmH3DFOB]3+

log β131 =
37.9

Am3+ + 2 DFOB3− + 4 H+ =
[AmH4(DFOB)2]4+

log β142 =
60.5
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(with detection limits below the submicromolar range46,47)
and/or Am3+ because it can be probed via UV−visible
spectrophotometry (in the millimolar to micromolar concen-
tration range48−50). The other trivalent actinides either lack
suitable spectroscopic properties for such studies (e.g., Ac3+ is
spectroscopically silent, akin to Th4+), are unstable in solution
(e.g., Np3+ and Pu3+), or are too short-lived and cost-prohibitive
(e.g., Bk3+ and Cf3+; Figure 2). Structural studies involving
actinide compounds usually leverage synchrotron-based X-ray
absorption techniques (e.g., XANES and EXAFS51−54) as
opposed to the more material-intensive techniques used for
nonradioactive elements, such as crystallography, NMR, etc.
The simplest environmentally relevant ligands that can be

studied are carbonate and bicarbonate ions. However, even for
these simple and ubiquitous chelators, the species formed in
solution under relevant conditions with trivalent actinides are
still relatively unknown. Early studies55,56 that developed
speciation models for the Am−CO3−H2O system proposed
the formation of [AmCO3]+, [Am(CO3)2]−, [AmOHCO3],
[Am(OH)(CO3)2]2−, [Am(OH)2(CO3)]−, [AmHCO3]2+, and
[Am(HCO3)2]+. However, more recent experiments using
Cm3+ luminescence57,58 concluded that [CmCO3]+, [Cm-
(CO3)2]−, [Cm(CO3)3]3−, [Cm(CO3)4]5−, and [Cm-
(CO3)4(H2O)]5− are present in solution. A recent theoretical
study59 also indicated that the 1:2 complex is more stable if the
coordination sphere of the metal is completed with two water
molecules, i.e., [Am(CO3)2(H2O)2]−. Beyond curium, the only
data available is a single electrochemical study of berkelium40

that showed the potential oxidation of Bk3+ to Bk4+ in
concentrated carbonate media (i.e., 2 to 5 M), but the
stoichiometry of the complexes could not be determined.
These conditions are not completely relevant to the environ-
mental chemistry of berkelium but hint at a speciation similar to
that of Ce4+/Ce3+ in carbonate media. A recent and thorough
computational study60 corroborated the oxidation of Bk3+ to
Bk4+ due to stabilization via carbonate complexation and
proposed the format ion of [Bk IV(CO3)4]5− and
[BkIV(CO3)3(OH)2]4−, i.e., a stoichiometry that mirrors the
trivalent curium−carbonate species. The trivalent actinide−
carbonate complexes exhibit relatively moderate stability
constants (Table 2) and are likely not strong enough to
compete with other natural chelators at ambient pressure and
circumneutral pH.

Other water-soluble small chelators have been experimentally
investigated for the complexation of trivalent actinides (i.e.,
Am3+ and Cm3+) at near-neutral pH. In solution, the proposed
complexes are often based on prior speciation models
determined for Eu3+ (using fluorescence spectroscopy), and
the associated stability constants and complexes stoichiometry
for Am3+ and Cm3+ are typically very consistent with those of
Eu3+. Several small ligands bearing carboxylate binding groups,
such as acetate, oxalate, and citrate, have been studied with
trivalent americium.61−63 Water-soluble molecules derived from
the decomposition of natural organic matter have also been
studied with trivalent actinides. The vast majority of the
literature focuses on aqueous ligands that belong to the humic
acid substance family.64−72 These molecules are ubiquitous in
nature and play a critical role in soil and plant ecosystems.
However, the range of formulas and structures of molecules
within the humic acid family is broad and often varies based on
their origin, and these compounds are often ill-defined. As there
have been several studies published on humic acid substances,
their affinity for trivalent actinides has been known since the
1980s, and it appears that it is relatively weak (e.g., Kim et al.
measured log β11 values of ∼6.2 for Am3+ at pH 6 for two
different humic acids70), even weaker that other natural small
molecules like citrates. Unless for specific conditions where a
high concentration of humic acid is present, it appears unlikely
that humic acids could outcompete some of the other natural
chelators that have been identified. As shown in Table 2, the
stability constants of the Am3+ and Cm3+ complexes with the
ubiquitous biorelevant chelators are relatively modest. Hence,
while abundant in nature, these particular ligands may not be
able to compete with more elaborate molecules that may be
present at a lower concentration but with stronger binding
affinities. It therefore becomes difficult to provide general
speciation models for actinides in the environment as their
typically low concentrations make them susceptible to be bound
by strong chelators that are site-specific and not necessarily
present at high concentrations.

In this regard, there has been a particular effort to study
molecules of the hydroxamate families, such as desferrioxamine
(e.g., DFO-B) and pyoverdine, as they are multidentate natural
chelators that form relatively strong complexes with the trivalent
actinide ions. Extensive studies performed by Moll and co-
workers73−75 using synthetic solutions showed that Cm3+ forms

Table 2. continued

chelator reaction
formation
constant conditions ref

pyoverdin (PYOV) Cm3+ + PYOV4− = [CmPYOV]− log β 101 =
19.30

I = 0.1 M (NaClO4), T = 25 °C 74

Cm3+ + HPYOV3− + H+ =
[CmHPYOV]

log β 111 =
27.40

Cm3+ + PYOV2− + 2 H+ =
[CmH2PYOV]+

log β 121 =
32.50

salicylhydroxamate
(SHA)

Cm3+ + SHA2+ + H+= [CmSHA]2+ log β 111 =
16.52

I = 0.1 M (NaClO4), T = 25 °C 75

Cm3+ + 2 SHA− + H+ = [CmH(SHA)2] log β 112 =
24.09

benzohydroxamate
(BHA)

Cm3+ + BHA2+ = [CmBHA]2+ log β 111 =
6.52

I = 0.1 M (NaClO4), T = 25 °C 75

Cm3+ + 2 BHA− = [CmH(BHA)2] log β 112 =
11.60

humic acid (HA) Am3+ + HAx− = [AmHA]x−3 log β 11 =
6.27

I = 0.1 M (NaClO4), pH 6. Note: Two different sources of humic acids
(Aldrich and Bradford − see original reference)

70

log β 11 =
6.36
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water-soluble complexes with desferrioxamine and pyoverdine
with very high stability constants, i.e., log β11 ≈ 17−19, which is
many orders of magnitude higher than in the case of carboxylate
ligands (Table 2). However, because of the high pKa of the
hydroxamate function (e.g., the three hydroxamate groups of
DFO-B have pKa values of 8.4, 9.0, and 9.776), such ligands only
form their most stable complexes with the actinides at pH above
8−9, which offsets their potential near-neutral pH. The
predominance window of actinide−hydroxamate complexes is,
therefore, relatively narrow and limited by the acidity of the
hydroxamate groups on one side of the pH scale and by the
formation of actinide hydroxides on the other side. Hence,
despite their strong potential for trivalent actinide binding, it
remains unclear whether or not such ligands play an important
role in the environmental chemistry of actinides, especially
under neutral or slightly acidic conditions.
The role of small chelators on the speciation of trivalent

actinides in the environment still remains an open question.77

Many decades after the discovery of heavy actinides, there is still
no consensus on the existence of natural “actinophore” ligands
that could drive the speciation of trivalent actinides even in the
presence of many other potential ligands, akin to siderophores
for ferric iron. Multidentate hydroxamates, such as desferriox-
amine and pyoverdine, are natural starting points to study
natural chelators for actinides. However, despite their affinity for
Am3+ and Cm3+, these molecules are, by design, meant to bind
small ions like Fe3+ and not actinides. It is therefore possible that
other natural molecules with much higher affinity for trivalent
actinides exist or have existed in nature. Given the low
abundance of trivalent actinides in the environment, the
identification of actinophore molecules will likely be derived
from the study of biogeochemical processes that involve more
abundant trivalent lanthanide ions.

4. EXISTENCE AND RELEVANCE OF
ACTINIDE−PROTEIN COMPLEXES

Metalloproteins have been a particular subject of attention for
lanthanide and actinide binding. In line with the general trend
observed in actinide sciences, the vast majority of the studies
dedicated to actinide−protein interactions concern tetravalent
actinides (Th4+, Np4+, Pu4+) and uranium (UO2

2+).39,53,87,88

Studies of metalloproteins able to complex trivalent lanthanides,
and by extension trivalent actinides, have been mainly focused
on mammalian proteins present in the bloodstream, organs, or
skeleton87 because of the importance of understanding these
reactions in the human body. These studies are generally framed
in the context of potential internal contamination with nuclear
materials with the rationale being that the transport of metal ions
in vivo implies their solubilization and circulation in the
bloodstream via strong water-soluble ligands, including metal-
loproteins. In should be noted that the likelyhood of accidental
contamination scenarios is very low, even in the event of a major
nuclear power plant accident (which mainly involve insoluble
actinide compounds, such as UO2 and PuO2). Mammalian
proteins are also unlikely to play a significant role in the
management of nuclear waste.
The main proteins studied for actinide binding include the

mammalian proteins transferrin,89,90,39,91,92,38,93−96,35,53,39 ferri-
tin,53,88 fetuin,97−99 albumin,100 calmodulin,24,101 sideroca-
lin,23,102 and ostepontin.103,104 A handful of very recent
studies105−107 have also investigated α-amylase, one of the
most important digestive proteins that is also present in human
saliva and catalyzes the hydrolysis of polysaccharides. The most

studied class of metalloproteins for actinide binding is
transferrins (Tf). Transferrin is a glycoprotein of about 80
kDa and it is one of main iron transporters in vivo in its trivalent
oxidation state. Given the similar charge/radius ratio between
ferric iron and plutonium (vide supra), iron transporter proteins
have been the main target for actinide−protein studies. Human
transferrin consists of 679 amino acids108 folded into two lobes
(C and N), each able to carry one Fe3+ ion. In human serum, its
total concentration is ∼35 μM, and about 40% of it is in its apo
form (i.e., not bound to metal ions109,110); hence, it is
susceptible to binding other metals entering the bloodstream,
including trivalent actinides, even if they have lower affinity than
the native ferric iron.36

Early investigations111,112 showed association of plutonium
with glycoproteins under laboratory conditions, which promp-
ted several studies into the role of transferrin for the in vivo
behavior of tetravalent actinides.39,90−92,96 It was established
that the majority of soluble plutonium in the blood plasma is
associated with transferrin (Figure 5) with the assumption that

the +IV oxidation state of plutonium is predominant under these
conditions. This is consistent with the high liver uptake for
tetravalent actinides observed in small rodents following internal
contamination.113 As a reminder, transferrin is the mammalian
proteins that transport Fe3+ in the bloodstream. It is composed
of 679 amino acids and folds into two homologous lobes called
the N-lobe and C-lobe, which are connected with a short bridge.
Each lobe has one binding pocket naturally containing up to one
Fe3+ ion each. The two lobes are not identical, with only 40%
sequence match, and can react differently.108 In vitro solution
thermodynamic experiments have showed that the affinity of
apo-transferrin for Pu4+ can be a few orders of magnitude higher
than that of Fe3+ under certain conditions (Table 3).
Importantly, the metal binding mode of transferrin is not direct
but instead requires a synergistic ion that coordinates the metal
ion in the protein’s binding pocket. In vitro studies have used
bicarbonate, nitrilotriacetate, or citrate39,95,38 as coligands to
bind actinides to transferrin. Going one step further in the
actinide uptake mechanism, the recognition of actinide-loaded
transferrin with its receptors has been also studied in vitro.91,92

Critical results obtained by Jensen et al.91 showed that among
the three species that can be formed with plutonium (Pu2Tf,
PuCFeNTf, FeCPuNTf), only the one with Pu4+ in the C-lobe and

Figure 5. Summary of the general partition of actinide ions between the
proteins and other components of blood plasma. Percentages were
taken from the review by Taylor.114
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Fe3+ in the N-lobe (i.e., PuCFeNTf) adopts a conformation
similar to the natural Fe2Tf, highlighting how the biomechanism
can be highly selective, at multiple levels, beyond the short-range
coordination sphere of the metal ion. The distinct behavior
among the three Tf−Fe−Pu species was also confirmed in
cells.91

However, while there is ample evidence that transferrin can
play an important role in the in vivo transport of tetravalent
actinides, the picture is far less clear for the trivalent ones. Early
studies noticed that Am3+ and Pu4+ were not associated to the
same species in the blood.115,116 As shown in Figure 5,
transferrin only accounts for ∼30% of the speciation of
americium and curium in the blood, and in fact, the main

Table 3. Overview of Experimentally Determined Thermodynamic Constants Describing the Affinity of Metalloproteins for
Select Trivalent Actinides (Ac3+, Am3+, Cm3+, andCf3+), as well as for Tetravalent Actinides (Th4+ and Pu4+) andUranyl (UO2

2+)a

protein reaction
thermodynamic

constant conditions ref

transferrin (Tf) Pu4+ + Tf = PuCTf log K11 = 24.8 pH 6.0, synergistic ion = NTA. I = 0.1 M NaCl, MES buffer 96
Pu4+ + Tf = PuCTf log K11 = 26.44 pH 7.0, synergistic ion = NTA. I = 0.1 M 99
Fe3+ + Tf = Fe2Tf log K11 = 21.4 pH 7.4, Ambient pCO2. 37
Fe3+ + FeTf = Fe2Tf log K21 = 20.3
2 Fe3+ + Tf = Fe2Tf log β21 = 41.7
Cm3+ + Tf = CmCTf log K11 = 8.8 (C-

lobe)
pH 8.6, 50 mM Tris, 150 mM NaCl, 5 mM NaHCO3 38

Cm3+ + CmCTf = Cm2Tf log K21 = 7.0 (N-
lobe)

2 Cm3+ + Tf = Cm2Tf log β21 = 15.8
2 Ac3+ + Tf = Ac2Tf log β21 = 10.9 Estimate based on literature data and a linear free-energy

relationship.
119

fetuin (Fet) Pu4+ + Fet = PuFet log K11 = 26.2 pH 7.0. I = 0.1 M 99
UO2

2+ + Fet = UO2Fet logK11 = 7.5 (Kd = 30
nM)

pH 7.4, 140 mM NaCl, pCO2 97

human serum
albumin (HSA)

Th4+ + HSA = ThHSA log K11 = 4.12 pH ∼7.4, 5 mM HEPES, 150 mM NaCl 100
UO2

2+ + HSA = UO2HSA log K11 = 4.27 pH ∼7.4, 5 mM HEPES, 150 mM NaCl 100
lanmodulin (LanM) wild-type lanmodulin: 3 Ac3+ + LanM =

Ac3LanM
log β31 = 36.2 pH 7.0, 90 mM NaCl, 10 mM HEPES 119

wild-type lanmodulin: 3 Am3+ + LanM =
Am3LanM

log β31 = 35.6 pH 5.0, 75 mM NaCl, 25 mM acetate 50

3 Cm3+ + LanM = Cm3LanM log β31 = 35.8 pH 5.0, 75 mM NaCl, 25 mM acetate 50
lanmodulin variants: log β31 = 34.4 pH 5.0, 75 mM NaCl, 25 mM acetate 120
3 Am3+ + 3D9N = Am33D9N
3 Am3+ + 3D9A = Am33D9A log β31 = 33.1
3 Am3+ + 3D9M = Am33D9M log β31 = 32.3
3 Am3+ + 3D9SeMet = Am33D9SeMet log β31 = 32.4
3 Am3+ + 3D9H = Am33D9H log β31 = 32.6

alpha amylase
(Amy)

Cm3+ + Amy = CmAmy log K11 = 4.76 pH 5.5, I = 0.1 M 105
Cm3+ + 3 Amy = Cm(Amy)3 log β13 = 12.14
UO2

2+ + Amy = UO2Amy log K11 = 5.67 I = 0.1 M (NaCl) 107
UO2

2+ + 2 Amy = UO2(Amy)2 log β12 = 10.39
UO2

2+ + Amy + HO− = UO2(HO)Amy log K11−1 = 0.64
UO2

2+ + Amy +2 HO− = UO2(HO)2Amy log β11−2 = −6.28
osteopontin (OPN) x UO2

2+ + OPN = (UO2)xOPN (Kd = 26 nM)* *Number of binding sites undetermined. 103
siderocalin (Scn) [PuIVEnterobactin]2− + Scn =

[PuIVEnterobactin]/Scn
log K11 = 10.0 (Kd =
0.09 nM)

pH 7.4, TBS buffer, 10 μg/mL ubiquitin, 5% DMSO. Actinide
precomplexed to enterobactin.

102

[FeIIIEnterobactin]2− + Scn =
[FeIiiEnterobactin]/Scn

log K11 = 9.4 (Kd =
0.41 nM)

pH 7.4, TRIS buffer, 32 μg/mL ubiquitin. 121

[AmEnterobactin]3− + Scn =
[AmEnterobactin]/Scn

log K11 = 9.6 (Kd =
0.24 nM)

pH 7.4, TBS buffer, 10 μg/mL ubiquitin, 5% DMSO. Actinide
precomplexed to enterobactin.

102

[CmEnterobactin]3− + Scn =
[CmEnterobactin]/Scn

log K11 = 9.7 (Kd =
0.20 nM)

pH 7.4, TBS buffer, 10 μg/mL ubiquitin, 5% DMSO. Actinide
precomplexed to enterobactin.

102

[Am343-LI(1,2-HOPO)]− + Scn = [Am343-
LI(1,2-HOPO)]/Scn

logK11 = 7.5 (Kd = 29
nM)

pH 7.4, TBS buffer, 10 μg/mL ubiquitin, 5% DMSO. Actinide
precomplexed to ligand.

102

[Cm343-LI(1,2-HOPO)]− + Scn = [Cm343-
LI(1,2-HOPO)]/Scn

logK11 = 7.5 (Kd = 32
nM)

pH 7.4, TBS buffer, 10 μg/mL ubiquitin, 5% DMSO. Actinide
precomplexed to ligand.

102

[Cf343-LI(1,2-HOPO)]− + Scn = [Cf343-
LI(1,2-HOPO)]/Scn

logK11 = 7.3 (Kd = 50
nM)

pH 7.4, TBS buffer, 10 μg/mL ubiquitin, 5% DMSO. Actinide
precomplexed to ligand.

23

synthetic peptides
(LBT)

Am3+ + LBT = AmLBT log K11 = 7.35 (Kd =
45 nM)

pH 7, 10 mM HEPES/100 mM NaCl buffer, 122

aCorresponding constants for ferric iron (Fe3+) are also given for comparison. Although not proteins, synthetic lanthanide peptides (LBTs) are also
shown for the sake of comparison. The Kd values reported in this table correspond to protein binding constants, not solubility products (also
abbreviated Kd in the literature).
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fraction of trivalent actinide species is still unknown. Nonethe-
less, multiple studies92,38,93−95,35 with transferrin and Cm3+ have
been conducted because of the convenient fluorescence
properties of this ion. In accordance with the early
observations,115,116 solution thermodynamic data showed
weak affinity of transferrin for Cm3+ relative to its native ferric
ion (Table 3). Competitive binding of Cm3+ to bicarbonate has
also been shown94,95 to decrease the overall fraction of
transferrin bound to Cm3+ at pH ≥ 7.4 suggesting that
transferrin may not be a very strong chelator for trivalent
actinides in vivo.
Perhaps one aspect of transferrin’s biochemistry that remains

understudied is its potential role, or lack thereof, regarding
actinium binding. This is especially important in regard to
numerous anticancer drugs that are being developed and that
rely on the in vivo chelation of 225Ac3+.26,27,29,30,117,118 In a recent
study,119 our team estimated, based on literature data for other
metals combined with solution thermodynamic considerations
for Ac3+, that the formation constant (log β21) of the Ac2Tf
complex is 10.9. This corresponds to ∼5 orders of magnitude
lower than that in the case of curium (Table 3). This low stability
constant suggests that, similarly to Am3+ and Cm3+, transferrin is
certainly only a minor contributor, if any, to the speciation of
Ac3+ in vivo. Despite the strong commercial potential for the use
of actinium in medicine, the biogeochemical speciation of this
particular actinide (the largest +III cation of the periodic table;
Figure 3) is still largely unknown, even less so than Am3+ and
Cm3+.
Other human protein studies involving trivalent actinides,

such as albumin, fetuin, and alpha amylase, showed that all have
fairly low binding constants (Table 3), in the same range as the
citrate or humic acid complexes (Table 2). Recently, the

bacterial protein siderocalin, which naturally binds Fe3+, has also
been explored as a potential actinide transporter.123,102 This
protein does not coordinate the metal ion directly but requires
precomplexation of the metal to specific chelators, typically a
siderophore ligand bearing catechol functions, such as enter-
obactin. This makes the uptake mechanism highly conditional,
and the overall stability of the actinide−siderophore−side-
rocalin complexes mainly depends on the small siderophore
ligand rather than the actinide, itself. For example, the stability of
the Am3+ and Cm3+ complexes with the 3,4,3-LI(1,2-HOPO)-
siderocalin adduct is 3 orders of magnitude lower than with the
corresponding enterobactin−siderocalin adduct (Table 3).
Moreover, the observed stability constants of the actinide−
enterobactin−siderocalin complexes are in the same range as
that of the Fe3+−enterobactin−siderocalin complex (log K11 ≈
9.5; Table 3). Therefore, it remains unclear how important
siderocalin is for actinide complexation in vivo. Based on the
current published literature, no study has been performed to
directly compare actinide binding to transferrin and siderocalin.

5. CASE OF THE METALLOPROTEIN LANMODULIN
AND ITS POTENTIAL IMPACT ON ACTINIDE
CHEMISTRY

Despite the academic and historical interest for metalloproteins
that are able to interact with actinides (Table 3), they remain
unlikely to participate in the chemistry of metal ions in the
environment as these are derived from in vivo systems rather
than biogeochemical ones. In this context, the discovery of
natural proteins that are stable ex vivo and able to bind f-
elements under geochemical conditions appears particularly
crucial. Such macrochelators would also represent a higher level
of complexity relative to the traditional small chelators studied

Figure 6. Comparison of the general affinity of the proteins studied for actinide(III) complexation. Note that in the biochemistry field, the
thermodynamic affinity is usually reported in terms of the dissociation constant,Kd. On theKd scale, the lower the value, the stronger the complex. Also
note that the x-axis is a logarithmic scale and spans 10 orders of magnitude. In this figure, the different protein systems are organized from the strongest
(LanM) to the weakest (α-amylase) from top to bottom. Although the synthetic peptides “lanthanide binding tags” (LBTs) are not proteins, they have
been included in this figure for comparison.122 See Table 3 for details about chemical conditions under which the Kd values have been determined.
LanM = lanmodulin. Scn = siderocalin. Tf = transferrin. LBT = lanthanide binding tag.
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with actinides (Table 2) and may present a better picture of the
biogeochemical diversity of natural systems.
The first such protein was discovered in 2018 byCotruvo Jr. et

al.124 in the context of lanthanide biochemistry studies. The
natural variant of the protein was named “lanmodulin” (short for
“lanthanide modulated protein” and abbreviated “LanM”). Our
team then led the effort to extend the study of wild-type LanM
and its variants to radioisotopes.50,119,120,125 LanM is, by far, the
strongest actinide-binding protein characterized to date (Table
3), including all of the mammalian proteins previously studied at
length for f-elements. Figure 6 gives a summary of the
dissociation constants (Averaged Kd per binding site) that
have been determined for protein complexes of actinides (Note:
on the biochemistry Kd scale, the smaller the value, the stronger
the complex. ThisKd must not bemistaken with the geochemical
Kd scale used for sorption reactions). Although they are not
proteins, the synthetic peptides of “lanthanide binding tag”
(LBT) have been included in Figure 6 for comparison as
peptides may also exist in nature. Özc ̧ubukc ̧u et al.122

determined the Kd values of 10 variants of the original LBT126

with Am3+. Only three variants of LBT are represented in Figure
6 as they encompass the entire stability range observed for the
different Am-LBT complexes.122 In detail, LanM has three
relatively similar binding sites with Kd in the picomolar range
(i.e., log β31 of 34−36 at pH 7). For comparison, LanM’s affinity
for the trivalent f-elements is about 2−4 orders of magnitude
higher than that of the siderophore/siderocalin complexes, 4−6
orders of magnitude higher than that of transferrin, and ∼8
orders of magnitude higher than α-amylase (Figure 6). LanM
even has very high affinity for the usually hard-to-complex
actinium with a Kd at pH 7 of 865 fM (i.e., Kd = 8.65 × 10−13 M
or log βAc3LanM of 36.2),119 representing arguably one of the
strongest actinium complexes characterized to date.

More importantly, LanM can sustain acidic conditions and
remains bound to the trivalent actinides from pH = ∼2.5 to at
least 10,119,120,125,127 which makes it a strong contender for
complexing actinides in the environment over a broad acidity
range. The other proteins studied with actinides are unable to
bind under acidic conditions. The complexes of LanM with
Am3+ or Cm3+ also remain stable even in the presence of
thousands of equivalent of the siderophore DFOB,50 which was
considered up to now as one of the strongest natural chelators
for actinides and lanthanides.

Our team also showed that LanM can efficiently bind Ac3+
even when its concentration is in the low femtomolar range
(tested down to 0.3 × 10−15 M) and remains bound to Ac3+ even
in the presence of 10+12 equivalents of competing environmental
cations (Ca2+, Mg2+, Zn2+, Mn2+, Cu2+) or large excess of organic
ligands (carbonates, sulfates, phosphates, etc.). Such a unique
affinity for actinium also allows for the efficient separation of
actinium (Ac3+) and radium (Ra2+) over a broad pH range,
including under environmental conditions.119 The peerless
resilience of LanM at low pH, combined with its f-element
selectivity, has also led to its use as a scavenger for next-
generation hydrometallurgical processes in rare earth extraction
and separation.128,129 Similar to the Ac3+/Ra2+ separation, our
team also showed that LanM can be used to efficiently separate
americium (Am3+) from neptunyl (NpO2

+) via a simple
macromolecular screen (e.g., size-exclusion columns) as the
protein binds only to the trivalent f-elements. This kind of
protein-based separation of trivalent actinides/lanthanide from
other metals could challenge our understanding of the mobility
of radioisotopes in the environment since natural proteins are
currently not taken into account in speciation models.130,131

As shown in Figure 7a, under laboratory conditions, it was also
observed that the LanM complexes with trivalent actinides are
stable in the presence of a large excess of carbonate/bicarbonate

Figure 7. Example of the potential impact of lanmodulin (LanM) on the speciation and sorption of trivalent actinides. (a) Fraction of the curium−
lanmodulin complex (248Cm3LanM) formed as a function of the ratio carbonate/LanM at different pH values. The speciation of curium was
determined via fluorescence spectroscopy as previously in ref 125. [LanM] = 1.0 μM. [Cm] = 2.0 μM. [CO3]total = ambient concentration up to 300
mM.The x-axis is shownwith a logarithmic scale and gives the ratio between the total concentration ofHCO3

−/CO3
2− and the concentration of LanM.

Dotted lines are for eye guidance only. (b) Soluble fraction of americium (243Am3+) and neptunyl (239NpO2
+) in the presence of calcite (CaCO3) and

with or without LanM. Note the strong increase in the soluble fraction of Am3+ (from 3 to 79−93%) upon addition of LanM. pH = 8.5. See ref 125 for
experimental details.
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ions and at high pH, hinting that such complexes could persist in
the environment. Furthermore, it was demonstrated that LanM
can compete with environmentally relevant minerals (i.e.,
quartz, calcite, kaolinite, montmorillonite clay) and significantly
reduces the sorption of americium.125 Under the tested
conditions with calcite, LanM, and 243Am3+ (Figure 7b), the
soluble fraction of americium jumps from ∼3% to ∼80% in the
presence of just 200 nM LanM and keeps increasing at higher
LanM concentration. However, the presence of LanM had no
impact on the sorption of neptunyl (NpO2

+), which highlights
the specificities of this protein for trivalent f-elements. While,
these recent results50,119,120,125 represent a first chapter in the
discovery of metalloproteins that are relevant to the
biogeochemistry of actinides, thus far, all the evidence points
to the formation of very stable and resilient actinide−LanM
complexes that could exist under environmental conditions.
Further research is needed in this area, but it is clear that if such
proteins (or related compounds) are present in the vicinity of
nuclear waste, their impact on the speciation of actinides cannot
be ignored. As the inventory of nuclear waste keeps growing, if
new locations are being considered for above-ground or
subsurface storage, beyond the traditional risk assessment
studies performed for such sites, it could be interesting to
screen for the presence of LanM-like biomolecules.

6. CONCLUSION AND OUTLOOK
Actinide chemistry has been a fascinating topic since its
inception and has forever changed the world, especially after
the discovery of transuranic elements. However, now ∼80 years
following the introduction of the actinide series concept by
Glenn T. Seaborg,14 the biogeochemistry of actinides is still far
from being completely understood. Scientists embarking on this
field of research face several barriers, including the dearth of
basic data (when compared to natural elements), the limited
availability of certain radioisotopes, the logistical hurdles for
experiments involving radioactive samples, and the financial
burden associated with research isotopes. Compounding these
effects, actinides exhibit distinct physicochemical properties,
and even if we consider them as a series, almost every one of
them represents a unique case in the periodic table with a
distinct combination of redox, nuclear, spectroscopic, and
chelation properties. For the trivalent ones, while lanthanides
are often regarded as nonradioactive surrogates, the analogy is
far from perfect, and more research using actinide isotopes
directly instead of surrogates is needed. In this regard, the recent
push, both by academics and private companies, to develop
actinium chemistry for cancer medicine (i.e., 225Ac-targeted
alpha therapies132,133) is a positive step forward that will bring
more attention to the biogeochemistry of actinides. Lessons
learned from this field will likely be informative about the
chemistry of trivalent actinides found in the environment and
vice versa. One of the biggest questions in the field of actinide
biogeochemistry concerns their speciation in nature and
whether or not specific “actinophore” chelators exist. Given
the typically low concentration of actinides in the environment,
the wide variety of sites where they can be found (solid matrices,
oceans, dry areas, oxidized or anoxic conditions, etc.), and the
near limitless range of natural compounds that exist (small
aqueous chelators, proteins, minerals, etc.), this question will
likely remain open for some time.
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