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CONTEMPORARY REVIEW

Genomic, Proteomic, and Metabolic 
Comparisons of Small Animal Models 
of Heart Failure With Preserved Ejection 
Fraction: A Tale of Mice, Rats, and Cats
Alex N. Smith , MS; Raffaele Altara , PhD; Ghadir Amin , MSc; Nada J. Habeichi , MSc;  
Daniel G. Thomas , BS; Seungho Jun , MD; Abdullah Kaplan , MD; George W. Booz , PhD;  
Fouad A. Zouein , PhD

ABSTRACT: Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and 
physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are 
definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. 
Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and 
progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic 
developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi- hit rodents and 
feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define 
altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP- related, Ca2+ 
handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to 
present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting 
unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but 
will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the pro-
cesses involved can fail.
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proteomics ■ transcriptomics

…And you know something’s happening 
but you do not know what it is…Do you, 
Mr. Jones.

Ballad of a Thin Man, by Bob Dylan.

Cardiovascular disease remains one of the cardinal 
areas of health care research and plagues human-
kind worldwide (https://www.who.int/news- room/

fact- sheet s/detai l/cardi ovasc ular- disea ses- (cvds)). Of 
the various types of cardiovascular disease, heart fail-
ure accounts for roughly 26 million cases of disease 

burden. Heart failure can be broadly divided into 2 
categories: heart failure with reduced ejection fraction 
(HFrEF) that is governed by systolic dysfunction and 
ventricular dilation with ejection fractions <40%, and 
heart failure with preserved ejection fraction (HFpEF) 
that is governed by diastolic dysfunction and ven-
tricular hypertrophy with normal ejection fractions of 
>55%.1,2 HFrEF is typically the result of direct insult to 
the myocardial tissue by factors such as myocardial 
infarction and volume overload. In contrast, HFpEF is 
initiated by a variety of metabolic altering factors such 
as hypertension, diabetes, obesity, and aging. With the 
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population on average becoming progressively older, 
as well as the increased prevalence of common co-
morbidities, such as obesity and diabetes, it is no sur-
prise that HFpEF is a chief concern in the medical and 
research communities.3

Over the course of medical advancement, HFrEF 
has been successfully managed by numerous neuro-
hormonal interventions, such as β- adrenergic receptor 
blockers, angiotensin- converting enzyme inhibitors, an-
giotensin II type 1 receptor blockers, and mineralocor-
ticoid receptor agonists.4 However, there are currently 
no cause- based treatments to reduce morbidity and 
mortality of HFpEF, although a sodium- glucose cotrans-
porter 2 (SGLT2) inhibitor was recently demonstrated to 
be effective regardless of the presence or absence of 
diabetes.5 In addition, certain patients (females or those 
in the lower strata for “preserved” ejection fraction, ie, 
<≈60%) may benefit from treatment with the angiotensin 
receptor– neprilysin inhibitor sacubitril– valsartan, partic-
ularly for heart failure hospitalization.6

Even though the overall phenotypical changes in-
volving HFpEF are generally well characterized, the un-
derlying genomic, proteomic, and molecular alterations 
that ultimately lead to HFpEF are rather undetermined. 
HFpEF has become an object of various preclinical, 
experimental rodent models in attempts to under-
stand its complex cause. These experimental models 
use various approaches, including models that are 
“multi- hit”, diet- induced, physiological age- induced, or 
involve altered gene expression. Recently, an experi-
mental feline model has been described to understand 
the molecular pathogenesis of HFpEF better. Besides 
determining the underlying physiological mechanisms 
and pathological progression of HFpEF, these models 
could provide insight into whether HFpEF is one collec-
tive pathology or whether there are distinct biological 
“phenogroups” as recently suggested.7

Our review aims to analyze the currently accepted 
HFpEF rodent and feline models and compare their 
similarities and differences (Figure 1). All 5 of the mod-
els discussed are reported to exhibit left ventricular 
(LV) concentric hypertrophy, diastolic dysfunction with 
preserved systolic function, pulmonary congestion, 
and (with the possible exception of the aldosterone- 
infused uninephrectomy [AIU] mouse and feline aor-
tic constriction model) exercise intolerance. With the 

possible exception of the AIU mouse model, diastolic 
dysfunction has been assessed by both echocardiog-
raphy and invasive hemodynamic pressure– volume 
measurements.8– 12 Diastolic dysfunction has been 
attributed to increased fibrosis and/or increased stiff-
ness of the sarcomere structural protein titin, impaired 
calcium handling, or mitochondrial dysfunction. The 
molecular basis for these alterations is not firmly es-
tablished. Still, it is postulated to include reduced NO/
cGMP/PKG signaling (which is antifibrotic and antihy-
pertrophic) because of increased oxidative stress (in 
part from inducible NOS [iNOS], aka NOS2) and/or 
endoplasmic reticulum (ER) stress. A comprehensive 
overview of the various models could provide insight 
into the next era of pharmacological techniques in the 
battle against HFpEF and determine if understanding 
this syndrome could provide insight into countering or-
dinary “wear and tear” on the heart.

CLINICAL ASPECTS
More than half of patients with heart failure have a normal 
ejection fraction. This heart failure subtype dispropor-
tionately affects women and the elderly and commonly 
is associated with other cardiovascular comorbidi-
ties, such as hypertension, obesity, and diabetes.13 In 
Europe, almost 5% of those aged ≥60 years, represent-
ing several million, were identified to have HFpEF.14 In the 
United States, the prevalence of HFpEF is estimated to 
be 2.4 to 3.4 million.15 The number of people with HFpEF 
will increase further as people live longer and obesity 
and diabetes become more common. HFpEF already 
accounts for more than half the heart failure hospitali-
ties.16 Unlike for HFrEF, cardiovascular and noncardio-
vascular mortality for HFpEF remained unchanged over 
the decades 2005 to 2014.15 A recent study indicated 
that 1- year survival for HFpEF after hospital reviles that of 
HFrEF.17 An older study showed that mortality and mor-
bidity for HFpEF is high with 5- year- survival of only 35% 
to 40% after hospitalization for HF.18 As of today, HFpEF 
remains a major unmet clinical need.16,19

Diagnosing HFpEF can be challenging to a physi-
cian, particularly at early stages that may be charac-
terized by only dyspnea in patients who are euvolemic. 
Two multiparametric diagnostic algorithms have been 
devised to address this issue, as well as to define the 
stage of HFpEF in terms of severity. The H2FPEF score 
uses 4 clinical variables (age, body mass index, use 
of ≥2 antihypertensive medicines, and atrial fibrillation) 
and 2 echocardiographic variables (ratio of the early di-
astolic mitral inflow velocity to early diastolic mitral an-
nular tissue velocity [E/e′] and pulmonary artery systolic 
pressure).20 The HFA- PEFF score is more complicated 
and evaluates natriuretic peptide levels and echocar-
diographic findings of cardiac function and structure.16 

Nonstandard Abbreviations and Acronyms

AIU aldosterone- infused uninephrectomy
Fstl1 follistatin like 1
SAHA suberoylanilide hydroxamic acid
UPR unfolded protein response



J Am Heart Assoc. 2022;11:e026071. DOI: 10.1161/JAHA.122.026071 3

Smith et al Preclinical Models of HFpEF

Both appear to have diagnostic and prognostic val-
ue,21– 31 although H2FPEF may be better at predicting 
exercise intolerance.32 Recently, the HFA- PEFF score 
was used to identify 4 distinct phenogroups in “early- 
HFpEF” patients of increasing severity: (1) no LV dia-
stolic dysfunction, (2) LV diastolic dysfunction with 
functional LV abnormalities; (3) LV diastolic dysfunction 
with functional and structural LV abnormalities, and (4) 
LV diastolic dysfunction with functional and structural 
LV abnormalities and elevated B- type natriuretic pep-
tide.33 The 4 groups were further distinguished by in-
creasing circulating levels with severity of biomarkers 
mainly involved in inflammation and extracellular matrix 
remodeling.

HUMAN GENE, PROTEOMIC, AND 
METABOLOMIC PROFILES
RNA- seq analysis of human endomyocardial biopsies 
showed that patients with HFpEF exhibit a gene ex-
pression profile distinct from normal controls and those 
with HFrEF.34 Pathway analysis highlighted processes 
that distinguished HFpEF from HFrEF. Notably, these 
differences did not involve processes typically associ-
ated with HFpEF, such as hypertrophy, fibrosis, inflam-
mation, and oxidant stress. Pathways more unique to 
HFpEF encompass ER stress, protein hemostasis, and 

angiogenesis. Compared with those with HFrEF, pa-
tients with HFpEF had enhanced expression of genes 
associated with oxidative phosphorylation, but lower 
expression of autophagy, fibrosis, hypertrophy- related, 
ER (processing and stress), angiogenesis, and cGMP- 
related genes. The increase in genes associated with 
oxidative phosphorylation was attributed to a normal 
aspect of obesity. Further analysis revealed that pa-
tients with HFpEF fell into 3 transcriptomic subgroups 
with distinct pathways and clinical correlates: (1) one 
of higher mortality closest to HFrEF, (2) a primarily fe-
male group with smaller hearts and proinflammatory 
signaling, and (3) a heterogeneous phenotype with 
worse heart failure symptoms, but lower NT- proBNP 
(N- terminal proB- type natriuretic peptide) and smaller 
hearts also.

Circulating metabolites and lipids may provide etio-
logical and diagnostic utility to HFpEF. Analysis of me-
tabolites from participants of the Framingham Heart 
Study and Women’s Health Initiative revealed an as-
sociation of HFpEF with sleep apnea because of the 
proteinogenic amino acid glycine and ribose, which 
can feed into the pentose phosphate pathway.35 After 
multivariable adjustment for age, sex, and body mass 
index, 11 metabolites were associated with incident 
HFpEF. The top associated metabolite was ornithine, 
likely from perturbed arginine and NO metabolism. The 

Figure 1. Comparisons among heart failure with preserved ejection fraction models for 
mechanisms linked to diastolic dysfunction.
Prominent among these are increased fibrosis and altered titin isoform expression and/or posttranslational 
modifications. Reduced NO/cGMP/PKG signaling, which has antifibrotic and antihypertrophic actions 
and also affects titin phosphorylation, may be linked to enhanced NOS2/iNOS expression. The latter may 
affect Ca2+ handling, which is linked as well to unfolded protein response/endoplasmic reticulum stress 
and mitochondrial dysfunction. ~ indicates not prominent/involved or conflicting reports. AC indicates 
aortic constriction; AIU, aldosterone- infused uninephrectomy; cGMP, cyclic guanosine monophosphate; 
ER, endoplasmic reticulum; iNOS, inducible nitric oxide synthase; IRE1α, inositol requiring transmembrane 
kinase endoribonuclease 1α; NO, nitric oxide; NOS2, nitric oxide synthase 2; PKG, protein kinase G; and 
UPR, unfolded protein response.
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competitive inhibitor of NOS and marker of abnormal 
NO- mediated vascular tone, NG- monomethyl- l- arginine 
was also significantly associated with incident HFpEF. 
The second most associated metabolite with incident 
HFpEF was cardiac energy substrate glycerol, followed 
by the cardiovascular disease mortality risk marker, di-
methylglycine. Both the proteinogenic asparagine and 
pro- hypertrophic metabolite 2- hydroxyglutarate partly 
mediated the association of LV wall thickness with 
HFpEF.

A smaller exploratory study analyzed plasma me-
tabolites of patients with new onset HFpEF to those 
with new onset HFrEF.36 Overall, the metabolomic 
profile of those with HFpEF was consistent with im-
paired lipid metabolism, enhanced inflammation and 
oxidative stress, increased collagen synthesis, and 
downregulated NO signaling. Compared with HFrEF, 
HFpEF was associated with increased symmetric di-
methyl arginine, hydroxyproline, cysteine, alanine, and 
kynurenine, and decreased cGMP, cAMP, l- carnitine, 
lysophosphatidylcholine (18:2), serine, lactate, and 
arginine. In another study, accumulation of epicardial 
adipose tissue was associated with worse hemody-
namic and metabolic profile, as well as survival, in pa-
tients with HFpEF.37

Proteome analysis of autopsied LV myocardium of 
patient with HFpEF, at the early stage of LV diastolic 
dysfunction and without major comorbidities except 
for hypertension, revealed 57 differentially expressed 
proteins.38 Molecular network analysis indicated the 
importance of ER stress. Notably, the expression of 
proteins associated with the ER stress response was 
impaired. Obesity in HFpEF may represent a distinct 
phenotype. Compared with non- obese patients with 
HFpEF or obese patients without HFpEF, obese pa-
tients with HFpEF showed higher circulating levels of 
biomarkers consistent with volume expansion, myo-
cardial fibrosis, and systemic inflammation.39

While eloquent and insightful, these studies have 
limitations such as not discerning cause and effect, nor 
addressing the issues of compensation, role of post-
translational modifications of protein, or functional as-
sessments at the cellular or subcellular level. Although 
applying newer sequencing technology and updated 
proteomics might eventually be a robust means of im-
proving care for patients with HFpEF, these limitations 
support the need for preclinical models of HFpEF.

LARGE ANIMAL MODELS OF HFPEF
Notable differences in energetics, excitation, and con-
tractility exist between hearts of humans and small 
rodents, although there are remarkable similarities as 
well.40– 43 Moreover, small animals in research offer the 
possibility of ready genetic manipulations, efficacy, 
convenience, a narrower time frame, and lower costs. 

Nonetheless, a recent working group of the National 
Heart, Lung, and Blood Institute on HFpEF identified 
the need for “improved animal models, including large 
animal models, which incorporate the effects of aging 
and associated comorbid conditions.”44 Several large 
animal models of HFpEF have been introduced of late. 
These include the Göttingen minipig administered a 
Western diet and subjected to deoxycorticosterone 
acetate- salt pressure/volume stress,45 aortic banding, 
or progressive aortic constriction in dogs and pigs,46,47 
and the Yorkshire×landrace swine with induction of di-
abetes (streptozotocin), hypercholesterolemia (high- fat 
and high- sugar diet with increasing salt), and chronic 
kidney disease (microembolization of the global right 
kidney).48 As discussed here, small animal models 
are arguably perhaps better suited for an “omics” ap-
proach, involving genomics, proteomics, and metabo-
lomics, to profile the changes in the heart occurring 
with HFpEF in a temporal and comorbidity- dependent 
manner.

CONVENTIONAL PRECLINICAL 
MODELS
Valero- Munoz and colleagues identified 3 small ro-
dent models that fulfill critical determinants of HFpEF, 
namely left ventricular concentric hypertrophy, diastolic 
dysfunction with preserved systolic function, pulmo-
nary congestion, and exercise intolerance.49 Diastolic 
dysfunction has been assessed using Doppler echo-
cardiography and tissue Doppler imaging by changes 
in the ratio between early mitral inflow velocity and mi-
tral annular early diastolic velocity (E/e′), and the ratio 
between early (E) and late (atrial- A) ventricular filling 
velocity (E/A).50– 54 The models are the AIU mouse, the 
db/db mouse, and the ZSF1 rat. Alterations in signaling 
events, particularly with regard to inflammation, have 
been reported for the first 2 models.

AIU Mouse
Strong evidence has demonstrated that the combi-
nation of aldosterone infusion, 1% NaCl intake, and 
uninephrectomy in mice/rats for 4 weeks recapitulates 
many characteristics of HFpEF in humans. These ani-
mals develop elevated blood pressure, LV hypertro-
phy, cardiac fibrosis, echocardiographic evidence of 
diastolic dysfunction with preserved systolic function, 
characterized by increased E/A ratio, pulmonary con-
gestion, and enhanced proinflammatory response.55– 61 
There is also evidence for impaired Ca2+ handling in the 
heart55,59 and increased expression of the stiffer iso-
form of titin.61

LV hypertrophy is a common morphological al-
teration associated with HFpEF. A broad range of 
molecular pathways is thought to be involved in the 
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progression and development of LV hypertrophy and, 
consequently HFpEF. For instance, it has been re-
ported that LV tissues from AIU mice exhibit increased 
atrial natriuretic peptide and titin transcript variant n2ba 
and n2b mRNA expression levels, both of which are 
involved in exacerbated LV hypertrophy and aggra-
vated diastolic stiffness.51,61 Similarly, adult rat ventric-
ular cardiomyocytes treated with aldosterone showed 
a significant increase in atrial natriuretic peptide mRNA 
expression levels.62 Additionally, an increase in endo-
thelin- 1 and monocyte enhancer factor 2a, mediators 
of cardiomyocyte hypertrophy, were observed in an 
in vivo and in vitro model of AIU- induced HFpEF.61 As 
a compensatory mechanism, Tanaka and coworkers 
observed increased levels of Fstl1 (follistatin like 1), an 
extracellular glycoprotein, in plasma of patients with 
HFpEF, AUI mice, and adult rat ventricular cardiomyo-
cytes stimulated with aldosterone.62 It has been shown 
that elevated Fstl1 levels in the setting of cardiac injury 
is associated with decreased apoptosis and hyper-
trophy, which could be mediated by the activation of 
AMP- activated protein kinase pathways.63,64 Fst1l has 
also been described as an anti- inflammatory marker 
following myocardial and vascular injury64,65; however, 
this role was not addressed in the study by Tanaka and 
colleagues.62

Increased cardiomyocyte cross- sectional area is 
usually accompanied by an accumulation of fibro-
sis, resulting in exacerbated LV diastolic stiffness and 
dysfunction.66 In that regard, a study performed by 
LeBrasseur et al, indicated that AIU- induced HFpEF 
increased matrix metalloproteinase- 2/tissue inhibitor 
of metalloproteinases 2 ratio.58 Elevated matrix metal-
loproteinase- 2/tissue inhibitor of metalloproteinases 
2 ratio is tightly linked to enhanced fibrosis.58,67– 69 
Additionally, aldosterone administration substantially 
increased collagen I and III mRNA expression and pro-
tein levels, suggesting enhanced cardiac fibrosis, con-
sequently worsening diastolic stiffness.57 Furthermore, 
Valero- Munoz et al demonstrated elevated transform-
ing growth factor- beta mRNA expression levels, a well- 
known mediator of cardiac fibrosis and remodeling, in 
the left ventricle of AIU mice.61

Increased oxidative stress and inflammation are 
major contributors to LV hypertrophy and cardiac fibro-
sis.70,71 A study by Tanaka et al demonstrated increased 
myocardial 3- nitrotyrosine production, a marker of ox-
idative stress, in the left ventricle of AIU mice.55 Other 
investigators showed macrophage infiltration in the LV 
interstitial area, along with elevated LV tumor necrosis 
factor- alpha, interferon- γ, and IL- 6 (interleukin- 6) mRNA 
expression levels in AIU- induced HFpEF.51 Of note, IL- 6 
is not only involved in the enhanced proinflammatory 
response, but also exacerbated cardiomyocyte hy-
pertrophy.72 Interestingly, another preclinical study 
observed that interferon- γ decreases LV hypertrophy 

in aldosterone induced- HFpEF, challenging, therefore, 
the notion that proinflammatory cytokines are involved 
only in adverse effects in the setting of HFpEF.57 In ad-
dition, plasma soluble vascular cell adhesion molecule 
levels have been observed to be significantly increased 
in AIU mice.51 It has been reported that elevated solu-
ble vascular cell adhesion molecule level is associated 
with increased endogenous NO synthase (NOS) inhib-
itor, exerting consequently deleterious effects on the 
vasculature.73 Diastolic intracellular calcium handling 
plays a crucial role in LV relaxation.71,74 Aldosterone- 
induced HFpEF has been associated with decreased 
PKA (protein kinase A)- mediated phosphorylation of 
phospholamban at Ser16, and decreased Ca2+/CaMKII 
(calmodulin- dependent protein kinase II)- dependent 
phospholamban phosphorylation at Thr17, resulting in 
depressed sarcoplasmic/endoplasmic reticulum Ca2+ 
ATPase 2a (SERCA2a) activity (protein levels are also 
decreased), a major regulator of Ca2+ concentration 
during the cardiac cycle, worsening thereafter diastolic 
dysfunction.55

The AIU mouse model is not well characterized as 
far as sex differences from the perspective of cardiac 
changes and HFpEF. The model is focused mainly on 
hypertension and kidney disease. In addition, it in-
volves severe surgical manipulation that is not trivial.

db/db Mouse Model
The db/db mouse model is used to embody the phe-
notype of obesity, insulin resistance, and type 2 dia-
betes conferred by mutational inactivation of the leptin 
receptor. This well- characterized model exhibits an 
early systemic inflammatory signature, develops car-
diac hypertrophy and diastolic dysfunction with age, 
and capillary rarefaction in the heart.75 Both male and 
female db/db mice develop hypertrophic ventricu-
lar remodeling with diastolic dysfunction.52 Females 
exhibit a more significant increase in left ventricular 
mass, likely because of a rise in both systolic and di-
astolic blood pressure in contrast to males. Hearts ex-
hibit increased interstitial and perivascular fibrosis in 
both sexes, although there are variable reports on its 
magnitude.76– 78 Other cardiac features include altered 
titin isoform expression and/or modifications,76,79,80 
impaired NO/cGMP/PKG signaling78– 80 and Ca2+ han-
dling,76,78 increased ER stress,81 NOS2 expression,82 
and mitochondrial dysfunction.83– 85 Transcriptomic, 
metabolic, epigenetic, and posttranslational modifica-
tions in the db/db model are emerging as fundamen-
tals contributing to the development and progression 
of diabetes.

The cause of obesity and diabetes resides primarily 
in the metabolic and energetic perturbations that sig-
nificantly overlap with those observed in HFpEF, involv-
ing impaired fuel utilization and induced conditions of 
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substrate toxicity. Unlike HFrEF, the decrease in glu-
cose aerobic oxidation in HFpEF is accompanied by an 
increase in fatty acid (FA) oxidation.86 However, cardiac 
impairment seems to be associated with the disso-
nance between the supply of FAs and their oxidation, 
which reflects on the pattern of cardiac transcriptomic 
profile. Metabolic phenotyping analysis using untar-
geted ultra- high- performance liquid chromatography- 
mass spectrometry identified 493 differentially 
modulated metabolites in the heart of diabetic db/db 
mice with a prominent contribution for a wide range of 
lipid species, including upregulation in acyl- carnitine, 
ceramides, and sphingolipid, diacylglycerides, fatty 
acids, and triacylglycerides.87 The accumulation of 
lipids can contribute to oxidative stress, mitochondrial 
damage, and cardiomyocytes death, a phenomenon 
that is called lipotoxicity.88,89 In humans, multiple stud-
ies have demonstrated that patients with HFpEF have 
higher myocardial lipid content than nonheart failure 
and patients with HFrEF, which independently is cor-
related with diastolic dysfunction.90– 92 Of the differen-
tially upregulated genes in high- fat diet- fed and db/db 
mice, pathway enrichment analysis showed an inter-
esting signature for peroxisome proliferator- activated 
receptors (PPARs) signaling and downstream FA deg-
radation pathways.93 PPAR signaling has a major tran-
scriptional control on cardiac energy metabolism.94 It 
is likely that in the lipotoxic models, the profound lipid 
uptake exceeds the increased flux through β- oxidation. 
As FAs and their derivatives can serve as ligands for 
PPARs, this can stimulate PPAR signaling, blunting 
thereby metabolic flexibility. In support, according to a 
meta- analysis of randomized clinical trials, PPAR ago-
nists increased the risk of heart failure in patients with 
type 2 diabetes despite the hypoglycemic and hypo-
lipidemic effect.95

Evidence suggests that diabetic mitochondria are 
less able to generate ATP, are metabolically inflexible, 
and trigger oxidative stress in cardiac myocytes. At the 
posttranscriptional level, miRNAs can modulate mi-
tochondrial processes via genomic regulation. In db/
db mice, microarray analysis indicated a downregula-
tion in 14 cardiac mitochondrial RNAs. A decrease in 
the expression of mitochondrial Cytb (cytochrome b) 
is featured in the cardiac tissue of these mice.96 The 
downregulation of mitochondrial miR- 92a- 2- 5p and 
let- 7b- 5p was shown to inhibit the translation of Cytb 
and increase mitochondrial reactive oxygen species 
production. In addition, the expression of the insulin 
receptor substrate 1 in the cytosol was shown to be 
controlled by let- 7b- 5p. This finding has further de-
noted a mechanism that fortifies lipid deposition and 
cardiac dysfunction in the db/db model.96 The involve-
ment of epigenetics in diabetic db/db mice has also 
been underscored by Shepherd et al, who addressed 
the presence of impaired nuclear- mitochondrial 

communication via disruption in mitochondrial protein 
import.97 The downregulation in mtHsp70 (mitochon-
drial heat shock protein 70) was defined as a critical 
component in the process by affecting mitochondrial 
proteomic signature and function. Proteomic decre-
ments were involved in electron transport function and 
FA metabolism. The impaired expression of mtHSP70 
was previously demonstrated in both diabetic animals 
and humans.98,99 Transcriptional repression is thought 
to be epigenetically caused by increased histone 3 ly-
sine 27 trimethylation at the Hspa9 genetic loci of the 
promotor.97

Apart from the transcriptional modifications, mi-
tochondrial function in db/db mice was also shown 
to deteriorate as a result of posttranslational hyper-
acetylation. Cardiac mitochondria were shown to be 
affected by acetylation- mediated modification of cru-
cial metabolic enzymes for mitochondrial respiration, 
such as ND1, UQCRQ, and ATPAF.100 Concomitantly, 
mitochondrial bioenergetics was compromised, as ev-
idenced by decreased SIRT3 (Sirtuin3) activity, nicotin-
amide adenine dinucleotide oxidized/reduced (NAD+/
NADH) ratio, and ATP production. The NAD+/SIRT3 
pathway appeared to modulate these alterations in mi-
tochondrial metabolic capacity and, ultimately, cardiac 
function.100 Strong evidence defined the importance 
of this pathway in heart failure, which has started to 
emerge as a therapeutic target.101– 104

At the functional phenotype level, the db/db model 
is characterized by a profound cardiac dysfunction 
that is not seen in other animal models of insulin re-
sistance and obesity, such as obese Zucker rats or 
ob/ob mice.105– 107 This disparity might be attributed to 
the severe signs of diabetes that are associated with 
the db/db model. Circulating levels of tumor necrosis 
factor- alpha IL- 1 (interleukin- 1) are increased in db/db 
mice.108 The low- grade systemic inflammation can ini-
tiate detrimental microvascular effects. Superperoxide 
production has been observed in the db/db heart ves-
sels, which may cause endothelial dysfunction altering 
cGMP/PKC signaling. These altered pathways trans-
form a normal heart into a hypertrophied stiff muscle 
with impaired diastolic function.108 This paradigm has 
also been supported in HFpEF which seems more pro-
fuse than that in HFrEF.109 In line with this, systemic 
proinflammatory cytokines, such as C- reactive protein, 
IL- 1, and tumor necrosis factor- alpha, were more pro-
nounced and predictive in HFpEF than in HFrEF.110– 112

In db/db mice, impaired relaxation is attributed to 
cardiac fibrosis and contractile stiffness. Increased 
expression of the stiffer N2B- isoform of titin and de-
creased phosphorylation at threonine 17 of phosphol-
amban was consistent with the presence of excessive 
passive elastance in the db/db mice. Therefore, titin 
isoform switching and calcium mishandling because of 
SERCA2a inhibition have been postulated to drive the 
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diastolic dysfunction.76 Similarly, biopsy samples from 
patients with HFpEF showed a substantial rise in pas-
sive force and high N2B- isoform expression. In con-
trast, the passive ventricular force detected in patients 
with HFrEF was less potentiated and the flexible N2BA 
isoform was increased.113 These changes might be ad-
ditionally affected by several other mechanisms that 
are alternatively regulated between HFrEF and HFpEF, 
such as posttranslational modifications of titin and its 
proteolysis.114– 116 In addition, while ventricular stiffness 
leading to diastolic dysfunction serves as a hallmark of 
HFpEF, changes in ventricular stiffness in HFrEF vary 
depending on the underlying risk factors.117,118

The db/db mouse develops diastolic dysfunction 
in both sexes. The strong diabetic component may 
skew the model towards that of diabetic cardiomyop-
athy, which is defined as “the existence of abnormal 
myocardial structure and performance in the absence 
of other cardiac risk factors, such as coronary artery 
disease, hypertension, and significant valvular dis-
ease, in individuals with diabetes mellitus.”119 As noted 
elsewhere, there are significant differences between 
HFpEF and diabetic cardiomyopathy, and between the 
db/db mouse and the ZSF1 rat, particularly with regard 
to mitochondrial function and metabolism.120

ZSF1- Obese Rat
The obese ZSF1 rat (ZSF1- Ob) model is a cross be-
tween a Zucker diabetic fatty female with a mutation in 
the leptin receptor and a spontaneously hypertensive 
heart failure male rat.121 Male offspring exhibit aspects of 
metabolic syndrome, such as impaired glucose metab-
olism, obesity, and hypertension. This unique model of-
fers insight into a combination of comorbidities that have 
been on the rise in the United States. Hyperglycemia, 
hyperlipidemia, and hypertension associated with the 
ZSF1- Ob model ultimately play a crucial role in con-
tributing to endothelial dysfunction and atherosclerotic 
disease, which is widely accepted as a significant con-
tributing factor for HFpEF.122 The ZSF1- Ob rat model has 
been shown to have significant increases in left ventricu-
lar mass, left ventricular wall thickness, and left ventricu-
lar end- diastolic diameter as early as 20 weeks, along 
with diastolic dysfunction.53 Prominent cardiac features 
include altered titin isoform expression and/or post-
translational modification,8,123,124 impaired NO/cGMP/
PKG signaling124– 126 and Ca2+ handling,8,127,128 and mito-
chondrial dysfunction.127,128 Cardiac fibrosis would seem 
to be a less prominent feature of this model.124,129,130

Obese female ZSF- 1 exhibit somewhat greater dys-
lipidemia attributable to estrogen, but do not show 
hyperglycemia, which is unrelated to the presence of 
estrogen.130 Both sexes exhibit comparable diastolic 
dysfunction and cardiac remodeling, with the exception 
that obese females exhibit a body size- related increase 

in end diastolic volume. Notably, unlike male db/db 
mice, neither male nor female ZSF1- Ob rats show de-
creased intramyocardial capillary density.49,52,130

RNA- seq results of the ZSF1- Ob rat show changes 
in the expression LV genes associated with FA and 
branched chain amino acid metabolism, as well as car-
diac hypertrophy cardiomyopathy, and heart failure.131 
Summer et al recently used deep sequencing RNA data 
together with 11 preselected cardiac- specific processes 
and the STRING protein– protein interaction database to 
perform network analysis comparing ZSF1- Ob rats to 
their lean counterparts.132 Of the 11 processes, 5 core 
processes that showed strong interaction in shared and 
differentially expressed genes stood out, specifically en-
dothelial function, inflammation, apoptosis/autophagy, 
reactive oxygen species, and extracellular matrix. This 
finding supports the hypothesis that HFpEF is caused 
by low- grade systemic inflammation affecting the endo-
thelium, leading to coronary microvascular dysfunction 
that causes myocardial stiffness in part via the extracel-
lular matrix.109 Notably, 2 other processes, namely mi-
tochondrial respiration and substrate metabolism, had 
the highest percentage of differentially expressed genes 
between ZSF1- Ob and ZSF1- lean rats.132

However, the ZSF1- Ob rat does not show much 
cardiac fibrosis,129 while Ca2+ handling in cardiac 
myocytes was reported to be impaired and T- tubule 
structure normal.133 Cardiac myocytes of patients with 
HFpEF with diabetes showed similar features. In con-
trast, in patients with HFrEF or in HFrEF animal models, 
T- tubule remodeling occurs with a reduced density and 
infiltration of collagen. Compared with lean controls, 
diastolic Ca2+ homeostasis was found to be impaired 
in ZSF1- Ob rats, which was attributed to reduced 
SERCA2a and NCX (sodium- calcium exchanger) activ-
ities. In addition, sarcoplasmic reticulum Ca2+ content 
was reduced, while diastolic Ca2+ levels were elevated 
at high stimulation frequencies. Another study also 
reported impaired Ca2+ uptake by the sarcoplasmic 
reticulum in ZSF1- Ob rats.128 In this case, the data 
supported a decrease in SERCA2a/phospholamban 
ratio and reduced phospholamban phosphorylation. 
Increased basal Ca2+ levels in mitochondria correlated 
with cytosolic Ca2+ levels. The increased mitochondrial 
Ca2+ was postulated to be a compensatory mecha-
nism for deficient complex 1 activity and reduced ox-
idative phosphorylation, as it enhances the activity of 
certain dehydrogenases.134 Moreover, mitochondria of 
cardiac myocytes from ZSF1- Ob rats showed more 
significant swelling at a similar external Ca2+ concen-
tration because of greater Ca2+ uptake, which might in-
crease the risk for mitochondrial permeability transition 
pore opening with cell damage or death.

Arginine metabolism and NO turnover in the heart 
have also been evaluated in the ZSF1- Ob rat model.135 
NO levels decrease with natural aging and diseases of 
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chronic inflammation, such as is thought to occur in 
HFpEF.136 The study provided evidence that an influx of 
granulocytes and macrophages results in decreased 
NO production through an increase in arginase 1 and 
2 that diminishes the substrate l- arginine for NOS. In 
addition, lower l- arginine uncouples NOS resulting in 
the production of superoxide and peroxynitrite, further 
disrupting endothelial function by targeting both NOS 
signaling and initiating continued inflammatory re-
sponses, or by simply quenching bioavailable NO.137,138

Recently, elevating cardiac NAD+ levels by treat-
ing ZSF1 rats with its precursor, nicotinamide was re-
ported to improve diastolic function through increased 
deacetylation of titin and SERCA2a.8 In both males and 
females, nicotinamide attenuated cardiac hypertrophy, 
hypertension, body weight, and lung congestion, and 
restored energy sources in the heart, which was as-
sociated with improved FA oxidation and oxidative 
phosphorylation. This study documents that restoring 
metabolic programming improves energy homeostasis 
in HFpEF.

The Dahl salt- sensitive (Dahl SS) rat fed a high- salt 
diet has provided insights into altered gene expression 
patterns accompanying the development of diastolic 
dysfunction.139 Differently from the ZSF1- Ob rat, the 
Dahl SS rat model is mainly driven by high blood pres-
sure, kidney failure, and diastolic dysfunction, thus the 
metabolic syndrome is almost secondary. However, 
the Dahl SS on a high- salt diet may progress towards 
systolic dysfunction and HFrEF, and over time exhibits 
clinically non- relevant increases in blood pressure.49 
Thus, the Dahl SS is perhaps better characterized as a 
model of early HFpEF progression.

The ZSF1- Ob rat is a meek animal that is easy to 
handle, although price and restrictions on maintaining 
a breeding colony are drawbacks. In addition, hyper-
tension is moderate in this model. Induction of the type 
2 diabetic phenotype also requires a special diet.

MULTI- HIT MOUSE MODELS
As previously stated, HFpEF is often recognized as 
a multifactorial syndrome of various etiologies, de-
veloping and progressing from various factors within 
the human lifetime. A question then could be asked 
is what specific comorbidity combination causes the 
most detrimental progression of HFpEF in terms of 
time of development and severity. This was the think-
ing behind the development of multi- hit mouse mod-
els, which are reported to exhibit cardiac fibrosis,140 ER 
stress,10,141,142 NOS2 expression,10,141 and mitochon-
drial dysfunction.11

Schiattarella et al developed a 2- hit mouse model 
that combines a high- fat diet with eNOS inhibition 
(L- NG- nitro arginine methyl ester)- induced hyper-
tension.10 Metabolic and hypertensive stress are 

dominant in this model. These animals exhibit multiple 
features of HFpEF, including increased LV filling pres-
sure, increased lung weight indicative of pulmonary 
congestion, cardiomyocyte hypertrophy, cardiac fi-
brosis, reduced myocardial capillary density, impaired 
endothelial function in the coronary arteries with re-
duced coronary flow reserve, and diminished exercise 
performance. Consistent with the previously men-
tioned data on humans, evidence was provided that 
ER stress contributes to the genesis of HFpEF in this 
model. The impetus for investigating this possibility 
was a report linking transthyretin amyloidosis to many 
cases of HFpEF in patients.143 Specifically, in contrast 
to a model of HFrEF or to treatments with high- fat 
diet or L- NG- nitro arginine methyl ester singularly, the 
authors observed a reduction in multiple markers of 
the unfolded protein response (UPR) in hearts of their 
2- hit mouse model. UPR acts to dissipate ER stress. 
Most notable, there was a reduction in the splice form 
of Xbp1 (Xpb1s), which encodes the active transcrip-
tion factor and key component of one branch of the 
ER stress response. This was attributed to impaired 
inositol- requiring transmembrane kinase endoribonu-
clease- 1α splicing activity as evidenced by its dimin-
ished phosphorylation. Similar findings were found 
with the hearts of ZSF1- Ob rats and endomyocar-
dial biopsies of patients with HFpEF. Impaired IRE1α 
(inositol requiring transmembrane kinase endoribo-
nuclease 1α) splicing activity was attributed to its S- 
nitrosylation because of the upregulation of iNOS. By 
knocking out the gene for iNOS, the inositol- requiring 
transmembrane kinase endoribonuclease- 1α –  XBP1 
(X- box binding protein 1) axis was restored in the 2- hit 
mouse model, and diastolic dysfunction and exercise 
performance were improved. Interestingly, acute phar-
macological inhibition of iNOS also improved diastolic 
dysfunction and exercise performance, but without 
restoring the inositol- requiring transmembrane kinase 
endoribonuclease- 1α –  XBP1 axis. This observation 
would suggest additional benefits of iNOS inhibition 
as well as different targets of iNOS.

The UPR also has a vital role in lipid homeosta-
sis, autophagy, glycosylation, apoptosis, and redox 
homeostasis.144 More needs to be known about how 
these aspects of the UPR are impaired in HFpEF. The 
UPR helps maintain intracellular redox homeostasis 
by regulating the expression of amino acid metabolic 
enzymes involved in glutathione synthesis and antioxi-
dant enzymes. The ER is the most oxidized subcellular 
compartment and levels in the heart of glutathione per-
oxidase 4, which protects cells against lipid peroxida-
tion, were recently reported to be reduced in the 2- hit 
mouse model.141

Sex differences need to be better defined in the 
multi- hit murine model. There is evidence that female 
mice are protected somewhat from HFpEF, unlike in 
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women.145 The role that estrogen might play in that 
protection is unclear.

RECENT INSIGHTS FROM A FELINE 
MODEL
A domestic cat model based on slow, progressive 
banding of the ascending aorta that recapitulates 
many features of HFpEF in humans was recently de-
scribed.12 Two notable cardiac features are fibrosis 
and mitochondrial dysfunction.12,146,147 One advantage 
of this model (and perhaps limitation) is that it allows 
for identifying heart- focused processes in HFpEF de-
velopment independent of comorbidities, such as age, 
obesity, and diabetes.147 Four months post- banding, 
the hearts exhibit concentric LV hypertrophy, left atrial 
enlargement and dysfunction, and LV diastolic dys-
function with a preserved systolic function that pro-
gresses to elevated LV end- diastolic pressures and 
pulmonary hypertension. LV diastolic dysfunction was 
associated with increased LV fibrosis, cardiomyocyte 
hypertrophy, and high plasma levels of NT- proBNP. In 
addition, morphological and functional changes are 
observed in the lungs consistent with impaired respira-
tion. An interventional study starting at 2 months using 
a pan- histone deacetylase inhibitor, suberoylanilide 
hydroxamic acid (SAHA), aka vorinostat, was found to 
rescue the HFpEF phenotype.146 SAHA improved dias-
tolic function, decreased LV filling pressures, improved 
myofibril relaxation, and decreased cardiomyocyte size 
with some improvement in fibrosis. In isolated adult 
feline cardiomyocytes, SAHA treatment was seen to 
increase oxygen consumption rate during maximal 
respiration. At the same time, key mitochondrial en-
zymes from left ventricles of SAHA- treated cats exhib-
ited altered acetylation patterns, suggesting that SAHA 
affected mitochondrial metabolism by posttranslational 
modifications. Notably, 7 sites in 5 proteins involved 
in mitochondrial FA oxidation were less acetylated in 
SAHA- treated hearts.

Gibb and colleagues used a systems biology ap-
proach involving metabolomics and transcriptomics to 
assess the progression of HFpEF in the feline model 
from 1 to 4 months of aortic banding.147 At 1 month, 
hearts exhibit hypertrophy and fibrosis with no evi-
dence yet of diastolic dysfunction. While a number 
of genes were altered at 1 month, only a few directly 
related to metabolism were differentially expressed, 
including genes associated with the mitochondrial 
electron transport chain. Notably, cardiac mitochon-
drial function was impaired, which with the metabolic 
changes indicated impaired oxidative phosphory-
lation. Surprisingly, at 4 months, while metabolomic 
and transcriptomic analysis of banded hearts demon-
strated a shift from reliance on oxidative to glycolytic 

metabolism, mitochondrial function was normalized. 
Intermediate metabolic pathway regulation was not 
altered at the transcriptional level; however, factors 
associated with enzymatic regulation such as protein 
kinase activity and phosphoprotein interactions were 
increased. Two conclusions can be drawn from these 
findings and those involving the histone deacetylase 
inhibitor. First, unlike with HFrEF, the metabolic repro-
graming that occurs in HFpEF may reflect more the 
consequences of posttranslational modifications of 
proteins. Secondly, the metabolic reprogramming may 
be susceptible to therapeutic manipulations. Moreover, 
the study by Gibb et al provided evidence that cardiac- 
derived signaling in HFpEF contributes to peripheral 
tissue (skeletal muscle) maladaptation.147

The feline model has certain shortcomings. As far 
as we know, only findings using male cats have been 
reported.146 In addition, this model explores the contri-
bution of a single comorbidity, hypertension (increased 
afterload). Moreover, it is unclear whether or not the 
model does eventually exhibit a reduction in systolic 
dysfunction. Finally, this model does not lend itself 
readily to genetic manipulations.

CONCLUSIONS AND FUTURE 
DIRECTIONS
Timing is vital for determining the basis for HFpEF 
and therapeutic strategy, as compensation likely has 
an impact. A complication of the findings of the vari-
ous models discussed in this review is the point at 
which the analyses were performed, as early events 
will likely be different from later ones. In addition, while 
an “omic” approach that incorporates genomics, pro-
teomic, and metabolomics is valuable, combining that 
with functional analyses is important. A developing 
theme among the HFpEF model is ER stress related 
to an impaired UPR (Figure 2). Alterations in mitochon-
drial function and metabolism have been highlighted 
as well. Underscoring these developments is coro-
nary microvascular endothelial inflammation and dys-
function. Understanding the processes driving these 
changes remains challenging at both the cell– cell and 
subcellular levels.
Of necessity, animal models of HFpEF have taken an 
outward- to- inward approach in defining the basis for 
its cause. In other words, these studies have adopted 
the strategy of mimicking several comorbidities to as-
sess the consequences on gene, protein, and metabo-
lites. As long as the comorbidities replicate the cardinal 
features of HFpEF, including diastolic dysfunction, this 
approach is the most logical and expeditious. Posing 
a more difficult task are the attempts to understand 
how events at the cellular and subcellular level predis-
pose an individual to the HFpEF phenotype, including 
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cell– cell (mis- )communication, cellular adaptations, 
posttranslational modifications, inflammation, non- 
coding RNAs, and mitochondrial dynamics. Of note, 
a recent study suggested that derangements in ven-
tricular remodeling and fibrosis play a more critical role 
as a driver of microvascular dysfunction in women (al-
though sex differences are still inadequately addressed 
in preclinical studies).148 In this regard, the small ani-
mal models are critical for gaining such insights. For 
instance, in the 2- hit mouse model, early intervention 
with a novel drug (imeglimin) that (purportedly) targets 
complex I and improves mitochondrial function pre-
vented increased iNOS expression, impaired UPR, and 
diastolic dysfunction. This finding would suggest that 
mitochondria are early sentinels in the heart that help 
determine its response to stress.141 The feline model 
also supports an early role for mitochondria in HFpEF 
development with adaptation occuring.147 Unclear, is 
what determines a normal versus abnormal response 
of the mitochondria and ER. A relevant question is 
whether it is simply a matter of magnitude regarding 
the imposing stimuli. In that context, a better under-
standing of how mitochondria and ER communicate 
with one another, and their environment is needed.

In summary, several small animal models and a fe-
line model that more closely recapitulate the HFpEF 
phenotype have come to the forefront recently. Time 
will tell if these models prove their value in revealing 

the patho- cause of HFpEF in humans and defining new 
therapeutic approaches. Regardless, these models 
will undoubtedly provide new insights into the mecha-
nisms by which the heart deals with comorbidities and 
how the processes involved can go awry in time or 
with aging.
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