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Purpose: Moving to ultra-high fields (≥7 T), the inhomogeneity of both RF (B1) and

static (B0) magnetic fields increases, which further motivates us to design a realistic

head-shaped phantom, especially for spectroscopic imaging. Such phantoms provide

images similar to the human brain and serve as a reliable tool for developing and

examining methods in MRI. This study aims to develop and characterize a realistic

head-shaped phantom filled with brain-mimicking metabolites for MRS and magnetic

resonance spectroscopic imaging in a 7 T MRI scanner.

Methods: A 3D head-shaped container with three sections—mimicking brain, muscle

and precranial lipid—was constructed. The phantom was designed to provide robust-

ness to heating, mechanical damage and leakage, with easy refilling. The head’s shape

and the agarose mixture were optimized to provide B0 and B1 distributions and T1/T2

relaxation values similar to those of human brain. Eight brain-tissue-mimicking

metabolites were included for spectroscopy. The phantom was evaluated for local-

ized spectroscopy, fast spectroscopic imaging and fat suppression.

Results: The B0 and B1 maps showed distribution similar to that of human brain, with

increased B0 inhomogeneity near the nasal and ear areas and reduced B1 in the tem-

poral lobe and brain stem regions, as expected in vivo. The metabolites’ concentra-

tions were verified by single-voxel spectroscopy, showing an average deviation of

11%. Fast spectroscopic imaging and imaging with fat suppression were

demonstrated.

Conclusion: A 3D head-shaped phantom for human brain imaging and spectroscopic

imaging in 7 T MRI was demonstrated, making it a realistic phantom for methodology

development at 7 T.
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1 | INTRODUCTION

Phantoms designed to mimic specific in vivo features are essential in medical imaging, and are employed in many MRI applications.1 The main

purposes of phantoms in MRI include validation of specific scan methodologies and assistance in the preparation of scan protocols for human proce-

dures. The former usage includes phantoms designed to reliably estimate specific tissue properties,2–4 such as T1, T2, diffusion. The latter purpose is

motivated by the limited time of actual human MRI scanning, which requires methodical provisions of the scan protocols to be completed before-

hand. In daily scan preparations, simple phantoms, such as liquid-filled spherical or cylindrical containers, can suffice. However, the similarity between

the images scanned in a phantom and in vivo can be crucial, for example, when a static magnetic field (B0) distribution similar to that present in vivo

is required.5,6 For brain imaging, shaped phantoms are designed to mimic the B0 distribution marking the susceptibility effects near nasal and ear

areas.7,8 When moving to ultra-high fields (≥7 T), the inhomogeneity of both the RF magnetic field (B1) and B0 increases, motivating further the

design of a realistic head-shaped phantom,9 especially for spectroscopic imaging. Central aspects of mimicking in vivo features include increased B0

inhomogeneity (based on susceptibility effects, such as air cavities), B1 inhomogeneous distribution, local specific absorption rate (SAR) hot-spots

with potential local heating (due to the electrical tissue’s properties), T1/T2 properties and other MRI properties that are scan dependent.

Recent studies highlight the increased interest and high potential of three-dimensional (3D) printed shaped phantoms for practical usage in

MRI.10,11 Such designs can include several compartments and simulate in vivo structures. A 3D head-shaped phantom representing in vivo brain

B0 distribution was demonstrated in 7 T MRI.7 Recent studies have demonstrated 3D head-shaped phantoms for temperature measurements at

7 T MRI,12 simulating potential heating during in vivo scanning. In addition, a 3D head-shaped phantom was produced to examine geometry

accuracy and distortions at 3 T and 7 T scanners.13 Other studies have examined the use of agarose filling12,14 for temperature measurements as

well as for better simulation of the in vivoT2/T2* relaxation times. In this study, we aimed to combine the benefits of the above advancements.

Of special concern, when it comes to 7 T MRI, is the increased B1 inhomogeneity, due to higher RF and the tissue’s electrical properties.

Several methods have introduced phantom designs with a B1 distribution similar to human for 7 T MRI, controlling the electrical conductivity and

permittivity. Previous studies showed that controlling the electrical conductivity can be achieved by adjusting the amount of NaCl, and shortening

the T1 by modifying the NiCl2 concentration.14 Reducing the relative electrical permittivity has been demonstrated using sucrose or

polyvinylpyrrolidone (PVP) mixed with water.15,16 Since these materials can also affect the 1H spectrum, we found the implementation based on

References 7 and 14—changing only the conductivity to match the brain tissue—more suitable for our study.
1H MRS and magnetic resonance spectroscopic imaging (MRSI) are increasingly used in clinical research to characterize brain metabolism,

particularly at ultra-high field (≥7 T), and benefit from increased signal to noise ratio and a gain in spectral resolution.17–21 This field includes functional -

research,22,23 clinical assessment of neurological disorders24,25 and pathology.26 However, the increased B0 and B1 inhomogeneity and higher SAR give

rise to technical challenges before robust clinical applications. The MRS and MRSI pulse sequences require a set of RF pulses, including water and lipid

suppression, as well as a set of refocusing pulses, which are prone to both B1 and B0 inhomogeneity. A 3D head-shaped phantom with brain-mimicking

metabolites can assist in establishing optimal parameters of the scans as well as optimal choice of the pulse sequence and its pulses.

We here report on the development and characterization of a realistic head-shaped phantom with brain-mimicking metabolites for spectros-

copy and spectroscopic imaging in 7 T MRI. The quality of spectroscopic imaging prominently depends on the local B0 inhomogeneity. For this

purpose, a 3D head-shaped container and agar-based suspension were planned and implemented. The design objectives include B0 and B1 distri-

bution similar to that of human brain, representing in vivo T1/T2 values, a brain-mimicking metabolite composition and lipid compartment. The

phantom was examined for localized spectroscopy, fast spectroscopic imaging and fat suppression in 7 T MRI.

2 | METHODS

2.1 | 3D printed head-shaped container assembly

The 3D CAD files for the head-shaped container in this work were based on the Martinos Center’s phantom design7,12,27—MGH Angel 001. Its

inner structure was specifically designed to improve the resemblance to human brain B0 inhomogeneity. The 3D printed parts (printed by Laser

Modeling, Ness Ziona, Israel) included two inner skull-shaped halves and two outer head-shaped halves. Once printed, the inner and then the

outer halves were glued together. Several changes, discussed below, were introduced to improve the use in practice, increasing robustness to

heating, mechanical damage and leakage, with improved design for easy refilling.

2.1.1 | Improved robustness

Nylon powder was chosen as the printing material over commonly used ABS plastic, since it provides higher mechanical strength and temperature

resistance (stable at 195 �C). In addition, it has low water absorption and, therefore, does not require any additional steps for waterproofing.
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Cyanoacrylate was used to glue the halves. The glue was tested for temperature resistance up to 100 �C. Note that there may be leakage if the

phantom content is reheated above 100 �C or for a long period of time.

2.1.2 | Refilling

Compared with the original design, which used sealed caps, our design includes three screw caps for easy refill (see Figure 1). One cap is posi-

tioned at the top of the inner space (the brain compartment) and two additional caps are positioned in the outer space (one on the top, the other

at the bottom). The two caps of the outer space are useful for controlled filling and draining.

2.1.3 | CAD files

The files with STL format for the designed head-shaped container can be found in GitHub28 (under the name “Shimi”). Note that, although Shimi

is successfully used for 7 T MRI imaging and spectroscopy, as demonstrated in Section 3, when used with a Nova coil it completely occupies the

available space. To add flexibility to the setup, we prepared an additional 3D head container, named “Gadi,” that was 2% smaller than the original

size and in which about 2 mm from the outer front and back parts was manually removed (see Supporting Information Figure S1). In Gadi, only

the brain compartment was filled, which can be useful to simulate and examine scanning “brain” only (see Supporting Information Figure S2).

F IGURE 1 Representative images of the 3D head-shaped phantom. A-D, Sagittal and axial GRE images of the phantom acquired without fat
suppression (A, C) and with fat suppression (B, D). The blue arrows show the opening for filling. The green arrows show the thin layer generated
around the lipid layer as well as the locally thicker layer of the “muscle,” which improve the phantom’s resemblance to a realistic brain, and the
orange arrows show the location of the “lipid” layer. E, Photographs of the 3D printed structure (inner and outer halves), two screw caps (left) and
bottom cap (right). F, 3D rendering of phantom images
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2.2 | Phantom mixture considerations and preparation

The phantom was designed to include three sub-sections—mimicking brain, muscle and lipid tissues. The inner compartment was filled

with a brain-mimicking mixture. The outer compartment was divided into two sections—the bottom one mimics muscle tissue, and the

top one the lipid precranial layer in proximity to the skull. In the current implementation, the muscle and brain sections were both filled

with the same mixture, since the focus of our study was on mimicking the brain tissue for MRSI applications. However, for optimization

of the muscle tissue, agarose and gadolinium concentration can be adjusted to fit the muscle properties as described, for example,

in Reference 12.

To mimic the exact B1 distribution, one needs to simulate both the electrical conductivity and permittivity of a human brain. However,

the materials commonly used to decrease the electrical permittivity are sucrose, PVP or alcohols. The first two can introduce a more com-

plicated shaped-phantom filling procedure, due to their increased adhesiveness. Filling with these mixtures has a high potential to generate

air bubbles. All three materials may also introduce undesired 1H peaks in the spectrum. Therefore, in this study we used NaCl (5.5 g/L), as

in Reference 14, to exhibit a B1 distribution comparable to human in 7 T MRI. The relative permittivity (εr) of 79 and conductivity (σ) of

0.6 S/m was measured using a dielectric kit (DAK-12, SPEAG, Zurich, Switzerland). We used 0.1 mM gadopentetate dimeglumine (GdDTPA)

to simulate a T1 similar to that of the human brain’s white matter. It is important to note that our examination of NiCl2 (as in Reference

14) for this purpose found it to significantly reduce the glutamate and N-acetyl aspartate (NAA) multiplet peaks of the spectrum (not

shown). Agarose (2.5%) was used to provide a T2 similar to that of human brain white matter. Eight brain-mimicking metabolites were

added to the phantom. The brain-mimicking metabolites for spectroscopic peaks, based on Reference 29, comprised the following solution:

10 mM L-glutamic acid (Glu), 10 mM creatine (Cr) and phospho-creatine (PCr) (together Cr + PCr), 8 mM myo-inositol (mI), 2 mM gamma-

aminobutyric acid (GABA), 2 mM choline chloride (Cho), 5 mM sodium lactate (Lac) and 12.5 mM NAA. Potassium dihydrogen orthophos-

phate was used as a buffer to achieve a pH of about 7 (typically titrated using about 2.13 g/L sodium hydroxide pellets). Sodium azide

(0.27 g/L) can be added to prevent bacterial growth (it was not added in the current implementation, but will be added in the future to

prolong the lifetime of the phantom and to prevent decomposition of metabolites into other by-products). Peanut oil was used in the outer

compartment to mimic lipid tissue.30

The preparation was based on the protocol for the fBIRN stability phantom14 protocol with some modifications. Briefly, we prepared two

concentrated stock solutions: one containing a 2× mixture of the above metabolites, and the second containing a 2× potassium dihydrogen ortho-

phosphate buffer titrated to pH 7.0 with NaOH pellets. Equal volumes of each solution were mixed, and the pH was corrected to 7.0. Next, the

appropriate amount of agarose was added, and the solution was subjected to a 20 min autoclaving cycle. Finally, the solution was placed on a

magnetic stirrer for 15-20 min to remove trapped air bubbles and then supplemented with the appropriate amount of GdDTPA (to 0.1 mM),

before pouring.

2.3 | Phantom filling procedure

The filling procedure was especially optimized to reduce bubble formation. The described above recipe was prepared. The head-shaped container

was preliminarily heated to 100 �C. The inner compartment was gradually filled (estimated volume of 1.4 L), followed by the gradual filling of the

bottom section of the outer compartment (estimated volume of 1.6 L). Next, the phantom was gently rolled to generate a thin layer on the internal

walls of the container to mimic the skin/muscle layer in the outer space adjacent to the lipid tissue (see green arrows in Figure 1). The phantom

was then gradually cooled in a preheated oven overnight. The preliminary heating of the phantom container and a gradual cooling help to elimi-

nate ruptures that otherwise occur due to a non-uniform cooling of the agarose mixture. Peanut oil (�0.45 L) was added to fill the upper

section of the outer compartment to mimic the lipid layer.

2.4 | Electromagnetic simulations

3D electromagnetic simulations of the B1 field distribution in the designed phantom were performed using FIT (finite integration technique)

software (CST Studio, Dassault Systemes, Darmstadt, Germany). The setup included an eight-rung ideal birdcage coil (inner diameter 30 cm)

loaded with a model of the phantom—based on an MRI scan with isotropic 1 mm voxels. The simulations examined the B1 distribution

for three different sets of electrical properties for the phantom: (a) εr = 51, σ = 0.6 S/m—equal to the previously established

brain target values12; (b) εr = 78, σ = 0.6 S/m—increasing only the conductivity7, while leaving the permittivity as in water (as was

implemented in this study); (c) εr = 78, σ = 0.1 S/m—electrical properties as in water, but with slightly increased conductivity (in water

εr = 78 and σ = 0 S/m).
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2.5 | MR acquisition

The experiments were performed on a 7 T MRI system (Terra, Siemens, Erlangen) using a commercial 1Tx/32Rx head coil (Nova Medical, Wil-

mington, MA).

2.5.1 | Final phantom configuration imaging

Scans to examine the phantom’s final configuration were performed with a gradient-echo (GRE) sequence, with and without fat suppression.

The scan parameters were TR/TE 367/2.8 ms, FOV 256 × 256 × 240 mm3, in-plane resolution 1 × 1 mm2, slice thickness 2 mm,

BW 890 Hz/Px.

2.5.2 | B0, B1 and reference amplitude comparison

The B0, B1 and reference amplitude were examined in comparison to the human imaging with a set of Siemens product imaging protocols (GRE-

field-mapping, b1-tfl and transmitter amplitude adjustment, respectively). The reference amplitude is an output of the transmitter amplitude

adjustment used later on to calibrate the RF pulse voltage. The B0 mapping scan parameters were TR/TE1/TE2 255/3.06/4.08 ms, FOV 256 ×

216 × 100 mm3, in-plane resolution 2 × 2 mm2, slice thickness 2.5 mm, BW 990 Hz/Px. The B1 mapping scan parameters were TR/TE 7060/30

ms, FOV 256 × 256 × 96 mm3, in-plane resolution 2 × 2 mm2, slice thickness 4 mm. B0 and B1 maps were also collected in human volunteers,

who provided written informed consent, following procedures approved by the Internal Review Board of the Wolfson Medical Center (Holon,

Israel). Representative maps from the human imaging were selected.

2.5.3 | T1 and T2 relaxation measurements

T1 and T2 relaxation values were measured with Siemens product turbo gradient spin-echo (TGSE) and multi-contrast spin-echo (SE-MC)

sequences and evaluated with single-component exponential fitting. The T1 scan parameters were TR/TE 6000/40 ms, FOV 220 × 220 mm2, in-

plane resolution 2.75 × 2.75 mm2, slice thickness 5 mm, turbo-factor 7, axial orientation. T1 mapping included 15 inversion time (TI) points in the

range of 100-1400 ms. Oil properties were estimated in a separate scan with a peanut oil sample in a 50 mL tube, including 15 TI points in the

range of 50-1400 ms. The T2 mapping scan parameters were TR 4000 ms, FOV 220 × 220 mm2, in-plane resolution 0.5 × 1.0 mm2, slice thickness

5 mm, axial orientation, 32 echo time (TE) points covering aTE range of 14-450 ms. The estimation of theT1/T2 relaxation times of the metabolites

was based on single-voxel spectroscopy (PRESS) with a 20 × 20 × 20 mm3 voxel at the center of the “brain.” TheT2 relaxation times of the metab-

olites were estimated by varying TE (keeping TR constant). The T1 relaxation times were estimated from a series of steady-state scans, each with a

different TR (keeping TE constant). The scan parameters for T2 estimation were TR 4000 ms, spectral width (SW) 4 kHz, 32 averages, repeated for

20 TE values in the range 40-1700 ms. The scan parameters for T1 estimation were TE 30 ms, SW 4 kHz, 64 averages, repeated with 13 TR values

in the range 450-4000 ms.

2.5.4 | Single-voxel spectroscopy and spectroscopic imaging

Single-voxel spectroscopy (PRESS) at the center of the “brain” was performed with an SVS-SE Siemens product sequence. The scan parameters

wereTR/TE 4000/30 ms, voxel dimensions 20 × 20 × 20 mm3, SW 4 kHz, 32 averages. Spectra were acquired with and without water suppression

for reference. The spectrum was apodized with an exponential filter (e−t/APO, APO = 100 ms)31 and fitted in LCModel44 (v6.3)32 using basis sets

provided by LCModel. LCModel fitting parameters that were specifically tuned for optimal results included adjusting of the lower and upper limits

of the ppm range for the analysis, to 1.0 ppm and 4.1 ppm respectively. For comparison, a single-voxel spectroscopy scan was also acquired in the

white matter region of a human brain, applying the same scan parameters.

Spectroscopic imaging was performed with a custom written spin-echo (SE) EPSI sequence. The water/oil EPSI imaging was performed with

the following scan parameters: TR/TE 1550/18 ms, FOV 260 × 260 mm2, in-plane resolution 6.5 × 4.0 mm2, slice thickness 10 mm, 11 axial slices,

echo spacing (esp) 0.4 ms, SW 1250 Hz, total scan duration 1 min 40 seconds. Metabolite EPSI imaging was performed with an in-house 180 ms

optimized VAPOR-like model consisting of six frequency-selective pulses.33 Two scans were performed with two sets of SW and spatial resolu-

tion. The Set 1 scan parameters were TR/TE 2000/18 ms, FOV 300 × 300 mm2, in-plane resolution 4.3 × 4.3 mm2 (70 × 70 pixels), slice thickness

20 mm, single slice, esp 0.52 ms, SW 960 Hz, total scan duration 2 min 20 s. The Set 2 scan parameters were TR/TE 2000/18 ms, FOV 260 ×
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260 mm2, in-plane resolution 8.7 × 4.0 mm2 (30 × 64 pixels), slice thickness 20 mm, single slice, esp 0.33 ms, SW 1500 Hz, total scan duration

2 min 8 s.

When reconstructing the spectroscopic image, we used odd echoes only to avoid ghosting in the spectrum. A 2D Hamming filter was

used to reduce the point spread function (PSF) side bands. The contribution of the receive channels to the acquired signal was evaluated

using a water reference scan, with the final signal estimated based on Reference 34. The final spectrum results show a real component

spectrum after zero- and first-order phase corrections for 5 × 5 voxels. Images for specific peaks were generated using straightforward

integration around the peak.

To compare the intensity distribution measured in the EPSI images, three additional acquisitions were performed with the following

sequences: GRE (which includes only an excitation pulse), SE (which includes an excitation pulse and a refocusing pulse as in EPSI) and MP2RAGE

(which combines two GRE readouts acquired with two inversion times, TI1 and TI2, into a final image such that the B1 distribution is canceled out).

The common scan parameters of the scans were FOV 260 × 260 mm2, in-plane resolution 1 × 1 mm2, slice thickness 5 mm. Specific scan parame-

ters were GRE scan—TR/TE 137/3 ms, flip angle 25�; SE scan—TR/TE 1000/7.8 ms; MP2RAGE—TR/TE 3000/3 ms, flip angle 4�, TI1/TI2

1000/2000 ms.

3 | RESULTS

Phantom images of the final configuration are demonstrated in Figure 1. The images show no significant bubble content, and a structure similar to

that of the human brain. The images with and without applied fat suppression emphasize the precranial “lipid” layer and the surrounding thin layer

generated to mimic skin/muscle in the outer space adjacent to the lipid layer.

Figure 2 shows simulations of the B1 field distribution in a human brain for three sets of electrical properties. In Figure 2A the electrical prop-

erties best match those of an actual brain and give the expected central brightening. In Figure 2B, with only the conductivity being similar to that

in vivo, the width of the central brightening is smaller and the signal drop is larger. In the last case, Figure 2C, the electrical properties are close to

those of water and a severe signal drop is observed. Finally, for each case, a histogram of the B1 values for all voxels in the brain is shown in

Figure 2D. Each histogram can be summarized by the coefficient of variation (CV—standard deviation (SD) divided by the average inside the

“brain” compartment) for that case—A, CV = 36.5% (εr = 51, σ = 0.6 S/m), B, CV = 41% (εr = 78, σ = 0.6 S/m); C, CV = 58% (εr = 78, σ = 0.1 S/m).

Note that although lower intensities are reached in case B compared with case A—mimicking only brain conductivity compared with mimicking

both conductivity and permittivity—the CVs of the two differ by only 4.5%. Considering that the main objective of this study is to mimic the brain

metabolite behavior in spectroscopic imaging, case B can be used to achieve B1 distribution similar to that of the real brain and to mimic a brain-

like 1H spectrum.

The comparison of human and phantom B0 maps after optimal shimming of the brain volume is summarized in Figure 3, and the

detailed B0 maps are included in Supporting Information Figure S3. Figure S3 also shows another set of human brain B0 maps to indicate a

potential range of distributions due to the different brain sizes and local deviations. Maximal absolute projections of the B0 deviations

(maxz(jΔB0(x,y,z)j) in two directions were calculated (the axial plane shows projections in the slice direction and the sagittal plane shows pro-

jections in the left/right direction). Images of the maximal deviation projection emphasize the main inhomogeneous areas in the

comparison—clearly demonstrating high values near nasal, eye and ear regions, similar to human brain results. Note that an undesired asym-

metry was observed in the phantom B0 map, with high values on the left-hand side of the axial image, which is most likely a result of

some imperfections in the 3D printing of the nose-mimicking structure.7 The range of the maximal deviations in the human and in the

phantom reached 250 Hz (similar to Reference 35) and 200 Hz, respectively. Histograms of the B0 maps in the brain volume were plotted

and the frequency linewidth at half maximum (FWHM) was estimated, resulting in a linewidth of 17 Hz in a human volunteer sample and

13 Hz in the phantom.

A comparison of human and phantom B1 maps is shown in Figure 4, summarized in central sagittal and axial scans (Supporting informa-

tion Figure S4 includes higher coverage of the B1 maps). The human CV was 37% and 28% for sagittal and axial scans, respectively, and

the phantom CV was 23% and 18%, respectively. The whole brain CV was 33% for human and 31% for phantom. The slightly higher CV

in the human scan (and not lower as expected from the simulations) can be explained by the lower SNR in the higher B0 inhomogeneous

areas. Figure 4C shows the 1D profiles in the center of each plane, normalized to the maximum of the central peak. As expected from the

simulation, the width of the central brightening area in the phantom is smaller than in human, due to the higher permittivity in the phan-

tom. In addition, the reference amplitudes, used for RF pulse calibrations (based on a 1 ms 180� hard pulse) of the human volunteer and

the phantom were estimated as 240 V and 216 V, respectively. This predicts about 20% lower SAR percentage when planning scans in the

phantom compared with in vivo scanning.

T1 and T2 relaxation times of the “brain” compartment were estimated in the central area (144 pixels) of the central slice as 1160 ± 35 ms and

57 ± 2 ms, respectively; those of the “lipid” compartment were estimated as 426 ± 1 ms and 145 ± 1 ms, respectively. T1/T2 relaxation times of

the metabolites are summarized inTable 2.
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Figure 5 shows the single-voxel spectrum in the phantom and in a human brain. The LCModel fitting and measured concentrations were esti-

mated for the main peaks and are summarized in Table 1, with an estimated average deviation from the actual values of 11%. The average SD of

the LCModel fitting (excluding GABA, since usually it requires a dedicated pulse sequence) was 4.8% for phantom and 3.6% for human. Figures 6

and 7 show spectroscopic imaging performed with EPSI sequences. Figure 6 shows water/oil images and representative water/oil spectra. Due to

the high water signal and B0 inhomogeneity, some residual water signal exists in the oil images. Figure 7 compares two acquired EPSI scans. Set

1 targeted high spatial resolution, which required reduction of the SW. The limited SW (�1000 Hz) results in significant baseline in both spectrum

edges due to the water peak (Figure 7C). Set 2 acquired lower spatial resolution with large enough SW for 7 T 1H spectra. The figure shows the

water magnitude images and the NAA and Cr images as well as representative spectra in voxels moving from the center of the phantom to the

edge. The average CV of the metabolite images in Figure 7 is 28% ± 6%, the CV in the SE image is 27% and that in MP2RAGE is 6%. The intensity

variations are localized in the B1 inhomogeneous areas, as shown in Figure 4. This variation can be reduced if adiabatic pulses are used.

F IGURE 2 A-C, Electromagnetic simulations—central sagittal and
axial planes of the B1 field for εr = 51, σ = 0.6 S/m (A), εr = 78, σ = 0.6
S/m (B) and εr = 78, σ = 0.1 S/m (C). Each map is scaled from 0 to
maximum. D, Histogram of the B1 distribution in the brain for each case.
TheY-axis shows the fraction of the total number of voxels
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4 | DISCUSSION

3D printed phantoms can serve as a reliable tool for the development of new MR technologies and as a practical and easy solution to improve the

quality of human scanning by examining the scan protocols before the actual scanning. Such phantoms are of high interest for 7 T imaging and

are even more essential for spectroscopic imaging, where B1 inhomogeneity affects the quality of water and lipid suppression pulses, and B0 inho-

mogeneity influences both water and lipid contamination and scan protocols, such as resolution and SW, requiring proper optimization. In this

study, we have designed a 3D printed phantom based on Reference 17 with improved robustness to heating, mechanical damage and leakage.

The design incorporated the addition of screw caps to improve refilling. It further included optimization of the “brain” composition, and of the

preparation and the filling procedures to improve the content homogeneity and to reduce air bubble formation. The described procedure signifi-

cantly reduces the tendency for large bubbles to get trapped in the bottom part of the skull and near the opening. The long heating and gradual

cooling was found to be essential to avoid the formation of a rupture near the opening, drawn to the center of the “brain” (not shown).

3D electromagnetic simulations were performed to examine the compromise between better matching of the brain electrical properties

(achieving a higher degree of similarity in B1) and the objective of mimicking well the 1H spectra of brain metabolites. The simulation with εr =

78, σ = 0.6 S/m (the values implemented in the phantom) showed a B1 CV which is only 4.5% higher than with in vivo electrical properties, corrob-

orating our implementation. The B0 and B1 distributions measured in the phantom “brain” were in good agreement with human brain distribution,

which is an important feature for the practical usage of the phantom. The maximal deviations of the B0 maps appeared near the nasal, eye and ear

areas, as expected due to the increased susceptibility caused by the air/tissue interface (see the arrows in Figure 2). The imperfections in the 3D

printing of the mimicked nose structure could have caused the local asymmetry in the B0 map observed in the phantom. To further mimic the local

intra-voxel T2* distribution, one needs to simulate a heterogeneous head phantom, which is beyond the scope of this study. The B1 distribution

shows central brightening and an intensity drop in the temporal lobe and brain stem areas, which is similarly well represented in the phantom (see

the arrows in Figure 4). However, both the B0 estimated linewidth and the B1 CV in the phantom were 20-25% lower compared with the human

volunteer data. A similar range in the distribution can also be observed when scanning different human volunteers. The lower deviations of the

phantom’s B0 distribution can be explained by inaccurately simulated air cavities compared with the human structure. The B1 deviation from the

human brain is a result of the choice not to reduce the electrical permittivity in the phantom. A compromise between some deviation from the

human B1 profile and easy phantom preparation needs to be considered. Specifically, the commonly used ingredients to reduce permittivity (PVP

or sucrose) could also affect the 1H spectrum, which was not desirable in this study. Another difference is the lack of shoulders in the phantom.

The shoulders contribute to the electrical load and also have some effect on the B1 distribution. However, adding shoulders to this phantom

F IGURE 3 B0 distribution comparison. A, B, Six axial representative slices of the human (A) and phantom (B) brain B0 distribution. C, D,
Maximal absolute projection in the axial and sagittal planes for human (C) and phantom (D) brain. E, Histogram plot comparison (FWHM = 17 Hz
and 13 Hz for human and phantom, respectively). Arrows point to the main inhomogeneous areas

8 of 13 JONA ET AL.



makes its handling cumbersome and the weight is significantly increased. The reference amplitude showed a 10% lower amplitude in the phan-

tom, providing a good estimate for the SAR percentage expected in human scanning.

The measured “brain” T1 and T2 are in good agreement with that measured in human brain white matter (T1 ranging from 1126 to 1300

ms,36,37 T2 ≈ 55 ms38). The oil signal was well controlled by the spectral fat suppression pulses. However, theT1 and T2 relaxation times are higher

than the common in vivo lipid values. Further research is required to better choose the oil used to mimic the “lipid” layer, if inversion recovery

pulses are of interest. Further development can include the implementation of a solid lipid layer, which can better represent in vivo lipid. The

“muscle” compartment was not optimized in this study. TheT1/T2 values of the metabolites are in the range of reported values for 7 T.39–41

The acquisition of single-voxel spectroscopy and MRSI was demonstrated. The average deviation of the measured concentrations of the

metabolites from the actual values was 11%, with an average SD in the LCModel fit of 5% (excluding GABA). One reason for the current devia-

tions is the narrower linewidth of the peaks in the phantom compared with in vivo. This was partially improved by applying an apodization func-

tion to the acquired signal. Another reason is the B1 inhomogeneity inside the spectroscopy voxel, which affects the refocusing pulses in the

F IGURE 4 B1 distribution comparison. A, B, Central sagittal and
axial planes of the human (A) and phantom (B) brain B1 distribution. The
maps are normalized to maximum in each case. Arrows point to areas of
low B1. C, 1D profiles over the central lines (shown as white dashed
lines for sagittal and axial planes)

TABLE 2 Estimated T1 and T2 relaxation times of the metabolites in the phantom

T 1 [ms] mean ± SD T 2 [ms] mean ± SD

NAA 1171 ± 64 342 ± 11

Cr+PCr 1212 ± 84 202 ± 5

Cho 943 ± 73 278 ± 6

Glu 1001 ± 152 349 ± 17

mI 846 ± 87 192 ± 14

Lac 1921 ± 417 268 ± 9
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F IGURE 5 Single-voxel spectroscopy in a white matter voxel in human (A) and at the center of the phantom (B). Measured spectrum,
LCModel fit and residual plots are shown

TABLE 1 Estimated concentration in phantom and human brain (white matter)

Actual concentration
in phantom [mM]

Estimated average concentration
in phantom [mM] SD [%]

Estimated average concentration
in human [mM] SD [%]

NAA 12.5 11.96 2 13.7 2

Cr+PCr 10 9.7 3 8.9 2

Cho 2 2.30 4 2.04 2

Glu 10 10.62 9 12.3 5

mI 7.5 8.36 6 5.7 3

Lac 5 3.58 6 *>100 SD due to lipid

GABA 2 1.74 25 2.4 21

F IGURE 6 Water/fat MRSI using EPSI. A, B, Five axial slices of the water (A) and fat (B) images. C, Spectra summed for the voxels in the blue
square (water) in A and in the orange rectangles (oil) in B. Scan parameters: TR/TE 1550/18 ms, FOV 260 × 260 mm2, in-plane resolution 6.5 ×
4.0 mm2, slice thickness 10 mm, 11 axial slices, esp 0.4 ms, SW 1250 Hz, total scan duration 1.40 min
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PRESS sequence. MRS studies at 7 T suggest the use of a semi-LASER sequence42 that utilizes adiabatic pulses, which are relatively insensitive to

B1 inhomogeneity.

The fast spectroscopic imaging in 7 T can achieve high-resolution (�4 mm in-plane) spectral-spatial information with a high-quality spectrum.

One such powerful pulse sequence is EPSI. However, EPSI is also known for its relatively limited SW, especially if only odd lines are used for anal-

ysis. To increase the SW (defined by 1∕(2�esp)), one needs to reduce the number of points acquired in the readout direction, which will limit the

spatial resolution. The ability to exploit such a phantom to examine EPSI parameters could be extremely valuable. In this study, we demonstrate

two scans with different SWs and spatial resolutions. Set 1, with a lower SW and higher resolution, shows higher baseline deviations due to the

water peak. This is improved with a higher SW; however, in this case the spatial resolution is compromised. Depending on the application of inter-

est, one can optimize the spatial and spectral resolutions. The relatively high CV (>20%) in the EPSI images is a result of the B1 inhomogeneity.

For verification, we measured the CV in a GRE and a spin echo (SE) MRI acquisition. In a uniform phantom, the image intensity of GRE is expected

to be proportional to the B1 distribution, which will be expressed in the image CV. Adding a refocusing pulse (as in the SE and EPSI scans) will fur-

ther increase the CV. The CV in the SE image was similar to that of the EPSI scans. In order to eliminate the contribution of B1 inhomogeneity to

the image distribution, we also estimated the CV in MP2RAGE43 acquisition, which relies on two acquisitions with two inversion times that cancel

out the B1 inhomogeneity in the final image. The CV in this image was 6%.

In summary, recent studies have shown improved methods to deal with the technical challenges of 7 T, for both MRS44 and MRSI45. The chal-

lenges of 7 T include SAR limitations, eg when increasing the number of pulses to support outer volume suppression and\or adiabatic pulses.46 B1

inhomogeneity is a further challenge, which may lead to non-optimal water and lipid suppression47. And of course B0 inhomogeneity, especially

close to the eyes, nose and ear regions,48 dramatically affects the spectrum quality. The 3D phantom explored in this work should be extremely

useful to investigate the robustness of an examined pulse sequence. Such a phantom can be further exploited to examine features of high interest

for spectroscopic imaging in 7 T, including dynamic per-slice B0 shimming methods48,49 and B1 PTx implementations. It is important to note that

F IGURE 7 1H brain-mimicking metabolite MRSI using EPSI. Left to right—water magnitude, NAA and Cr images and spectrum for the regions
shown on the magnitude image for Sets 1 (A, C) and 2 (B, D). The Set 1 scan parameters were TR/TE 2000/18 ms, FOV 300 × 300 mm2, in-plane
resolution 4.3 × 4.3 mm2, slice thickness 20 mm, esp 0.52 ms, SW 960 Hz, total scan duration 2 min 20 s. The Set 2 scan parameters were TR/TE
2000/18 ms, FOV 260 × 260 mm2, in-plane resolution 8.7 × 4.0 mm2, slice thickness 20 mm, esp 0.33 ms, SW 1500 Hz, total scan duration 2 min
8 s. E-G, Images acquired with GRE, SE and MP2RAGE. The red overlay shows the region that was used to calculate the CV in all cases
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this 3D-shaped phantom can also be valuable for 3 T. A dedicated study to show its benefits will be performed in the future. Figure S5 in the

Supporting Information shows an example of MRI images and a spectrum acquired with this phantom at 3 T.
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