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Abstract
Purpose of Review Based on the available data, it can be assumed that microbiota is an integral part of the human body.
The most heavily colonized area of the human body is the gut, with bacterial accumulation ranging from 101–103 cells/g
in the upper intestine to 1011–1012 cells/g in the colon. However, colonization of the gut is not the same throughout, as it
was shown that there are differences between the composition of the microbiota in the intestine lumen and in the
proximity of the mucus layer.
Recent Findings Gut microbiota gradient can be differentially regulated by factors such as obesity and chronic stress. In
particular, a high fat diet influences the gut microbial composition. It was also found that chronic stress may cause the develop-
ment of obesity and thus change the organization of the intestinal barrier. Recent research has shown the significant effect of
intestinal microflora on cardiovascular function. Enhanced absorption of bacterial fragments, such as lipopolysaccharide (LPS),
promotes the onset of “metabolic endotoxemia,” which could activate toll-like receptors, which mediates an inflammatory
response and in severe cases could cause cardiovascular diseases. It is presumed that the intestinal microbiota, and especially
its metabolites (LPS and trimethylamine N-oxide (TMAO)), may play an important role in the pathogenesis of arterial hyper-
tension, atherosclerosis, and heart failure.
Summary This review focuses on how gut microbiota can change the morphological and functional activity of the cardiovascular
system in the course of obesity and in conditions of chronic stress.
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Introduction

Gut Microbiota

The available research has proven that gut microbiota is
an integral part of the human body [1, 2]. Gut microbiota
is a heterogeneous microbial community that contributes
substantially to an open ecosystem, despite being deeply
embedded within the human body. It comprises a varied
and abundant microbial population consisting of bacteria,

archaea, and eukaryotes that live in mutual dependence
with the host [3]. A term used interchangeably for micro-
biota is microbiome, which strictly refers to the entire
habitat, including the described microorganisms, their ge-
nomes, and the surrounding environmental conditions [4].

The most heavily colonized area of the human body is
the gut, with bacterial accumulation ranging from 101–103

cells/g in the upper intestine to 1011–1012 cells /g in the
colon [3, 5]. Due to the extremely large number of bacte-
rial cells in the body, the host and the microorganisms
inhabiting it are often referred to as a “superorganism”
[2••]. It has been shown that the bacterial phyla of:
Firmicutes (genus such as Lactobacillus, Clostridium,
Enterococcus) and Bacteroidetes (genus such as
Bacteroides) constitute the majority of gut microbiota,
t h o u g h o t h e r p h y l a s u c h a s Ac t i n o b a c t e r i a
(Bifidobacteria), Proteobacteria (Escherichia coli),
Fusobacteria, Verrucomicrobia, and Archaea are also
present (Table 1) [6–10].
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The composition of the microbiome in the gastrointestinal
(GI) tract depends on the environmental conditions prevailing
in its section and is stratified both on the transverse and lon-
gitudinal axis. The bacterial cell density and composition are
altered by nutritional, chemical, and immunological gradients
along the gut [2••]. In the small intestine, there are generally
high levels of acids, oxygen, and antimicrobials and a short
passage time. Therefore, bacterial growth is limited to rapidly
growing, facultative anaerobes with the ability to adhere to
epithelia/mucus. Conversely, a dense and diverse bacterial
community with a predominance of anaerobes, utilizing com-
plex carbohydrates which are undigested in the small intes-
tine, is supported by colonic conditions [2••]. There are dif-
ferences between the composition of the microbiota in the
intestine lumen and in the proximity of the mucus layer. For
example, gram-negative Proteobacteria and Akkermansia

muciniphila (phylum Verrucomicrobia), which use mucus as
a carbon and nitrogen source, adhere and reside within the
mucus layer [11].

Positive Effects of Microbiota

Microbiota with the correct composition and distribution in
the intestines offers many positive effects to the host. First,
gut microbiota synthesizes enzymes, which enables them to
ferment dietary fiber to produce metabolites such as short-
chain fatty acids (SCFAs) [12••]. In this way, three dominant
SCFAs are formed in the intestines, i.e., acetate (C2), propio-
nate (C3), and butyrate (C4) in the proportion 3:1:1 [2••].
Acetate is mainly produced by Streptococcus spp.,
Prevotella spp., Bifidobacterium spp., Clostridium spp., and
Akkermansia muciniphila, while propionate is synthesized by

Table 1 The main representatives of the human gut microbiota, including its metabolites and location

Domain Phylum Genus Metabolites Location

Bacteria Bacteroidetes
(gram-negative bacteria)

Bacteroides Propionate, succinate, LPS Few in the stomach, 1 of the dominant
in the small intestine and the colonPrevotella Acetate, propionate, LPS

Rikenella Propionate, LPS

Firmicutes (mostly
gram-positive bacteria)

Clostridium Acetate, butyrate, vitamin B12,
TMAO

Numerous in stomach, dominant
in small intestine and colon

Ruminococcus Acetate, butyrate, lactate, ethanol

Faecalibacterium Acetate, butyrate, lactate, formate

Peptostreptococcus Acetate, TMAO

Eubacterium Acetate, butyrate, propionate, lactate,
formate

Veillonella Acetate, propionate

Roseburia Acetate, butyrate, lactate, formate

Bacillus Riboflavine (vitamin B2), vitamin B12

Coprococcus Acetate, butyrate lactate

Lactobacillus Vitamin B12, thiamine, pyridoxine

Staphylococcus Lactate

Streptococcus Acetate, vitamin B12, thiamine,
pyridoxine

Actinobacteria
(gram-positive bacteria)

Bifidobacterium Acetate, folate Mainly in stomach, sparse in colon
Collinsella Acetate, formate

Actynomyces Acetate

Proteobacteria
(gram-negative bacteria)

Desulfovibrio Acetate, butyrate Dominant in stomach, sparse in
small intestine and colonEscherichia Acetate, riboflavine (vitamin B2), LPS

Enterobacter LPS

Klebsiella LPS

Proteus Vitamin B12

Fusobacteria (gram-negative
bacteria)

Fusobacterium Palmitoyl-sphingomyelin,
p-hydroxy-benzaldehyde

Small numbers in the entire digestive tract,
including colon

Verrucomicrobia Akkermansia Acetate, propionate Mainly present in colon

Archaea Euryarcheota Methanobacter Methane Duodenum, jejunum, ileum, colon

LPS, lipopolysaccharide; TMAO, trimethylamine N-oxide
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Bacteroides spp., Salmonella spp., Dialister spp., Veillonella
spp., Roseburia inulinivorans, Coprococcus catus, and
Blautia obeum , and butyrate is produced by the
Lachnospiraceae, Ruminococcaceae, and Acidamino
coccaceae families (Table 1) [13–16]. These compounds can
either be defecated or taken up by the gut epithelium and they
impact numerous cellular processes, i.e., (1) intensify the pro-
duction of interleukin-18 (IL-18), which is involved in main-
taining and restoring epithelial integrity and intestinal barrier
permeability, (2) prevent autoinflammation and carcinogene-
sis, (3) influence appetite regulation and energy intake, (4)
influence hepatic lipid and glucose homeostasis, and (5) influ-
ence the differentiation of T-regulatory cells, which modulate
the gut and peripheral immune responses, and maintain toler-
ance to self-antigens [2, 12, 16] (Fig. 1).

As already mentioned, gut microbiota influences epithelial
homeostasis through regulation of mucus production and re-
modeling of mucin glycosylation, for example, Lactobacilli
rhamnosus GG stimulate gut cell renewal and wound healing
and Akkermansia muciniphila and Lactobacillus plantarum
have been implicated in promoting epithelial integrity [2••].
In addition, microbiota impacts the contingency of other mi-
croorganisms to settle in the gut by competing for attachment
sites or nutrient sources and by producing antimicrobial sub-
stances [2••]. These functions interfere with the ability of path-
ogens to colonize, potentially giving commensal phyla a com-
petitive predominance in the GI tract [2, 17].

Furthermore, microbiome is essential to the de novo syn-
thesis of vitamin K, riboflavin, biotin, nicotinic acid,
pantothenic acid, pyridoxine, thiamine, and folate and takes
part in the metabolism of bile acids (Table 1; Fig. 1) [2••].

Negative Effects of Microbiota

Interactions between microbiome and a host may be altered as
a result of a disrupted microbial composition, known as
dysbiosis [2, 17]. In unfavorable conditions, physiological
processes may be negatively affected by the excessive supply
of some microbial metabolites or their increased penetration
into the bloodstream [18, 19]. The first compound of this type
is the gram-negative bacterial wall component lipopolysac-
charide (LPS), known as endotoxin, which is involved in the
initiation and progression of inflammation (Table 1; Fig. 1)
[18, 20]. The innate immune system uses toll-like receptors
(TLRs) to recognize LPS combined with specific proteins
binding with TLRs (CD14/TLR4 complex). TLRs are a fam-
ily of pattern-recognition receptors playing an essential role in
innate immunity by consolidating, among other things, proin-
flammatory signals from microbiome–host interactions.
Enhanced absorption of LPS promotes the onset of “metabolic
endotoxemia,” which activates TLRs, which in turn stimulate
the synthesis of various proinflammatory cytokines (interleu-
kin 1 beta, IL-1β, and tumor necrosis factor α (TNF-α)) and
cytokine-mediated cell death [18, 20]. This results in an

Fig. 1 Main bacterial metabolites and their influence on the cardiovascular system. TLR, toll-like receptors
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inflammatory response and in severe cases may induce meta-
bolic disorders such as insulin resistance and cardiovascular
diseases (CVD) [18, 20, 21]. In addition, a relationship be-
tween LPS and the endocannabinoid (eCB) system is sug-
gested. LPS stimulates eCB system tone and eCB activation
stimulates adipogenesis. Therefore, LPS is considered as a
significant trigger in the onset of obesity and related diseases
such as type 2 diabetes [18, 20].

Moreover, intestinal microorganisms generate the organic
compound trimethylamine N-oxide (TMAO) (Table 1; Fig. 1)
[22•]. If nourishment absorption outstrips the transport capac-
ity of the small intestine, then the nourishment reaches the
colon and is metabolized by microbiota which produces
trimethylamine (TMA). TMA is then further processed to
TMAO by the hepatic flavin monooxygenases. The TMAO
blood concentration may be modified by certain factors, in-
cludingmicrobiome composition and diet [23]. Increased con-
centration of TMAO appears in the blood after ingestion of
food rich in L-carnitine and choline, for example, fish, red
meat, and eggs [22•]. TMAO-heightened plasma levels are
involved in an increased risk of diabetes, atherosclerosis, heart
fibrosis, wall thinning, and reduced ejection fraction [22, 24,
25].

It has been shown that intestinal dysbiosis can be caused,
among other things, by obesity and chronic stress [26, 27].

Gut Microbiota and Obesity

Numerous studies have proven that the imbalance in gut mi-
crobiota may pose a threat for host metabolism and energy
homeostasis [18••, 28–30]. This may trigger the development
of conditions such as obesity, insulin resistance and diabetes
[29, 31]. Similarly, obesity predisposes to the development of
dysbiosis (Table 2) [32].

Obesity as a Disease

Obesity is a chronic disease considered by the World Health
Organization (WHO) to be a global pandemic. There are about
2 billion adult people overweight, and of these, over 600 mil-
lion are obese [54, 55]. Predominatingly, the body adiposity is
assessed by body mass index (BMI), which is calculated as
body weight (kg) divided by high squared (m2) [54, 55].
Acording to the WHO and the National Institute of Health
(NIH), in adult White, Hispanic, and Black individuals, obe-
sity is diagnosed by a BMI of 30 kg/m2 or greater and over-
weight is defined by a BMI between 25 and 29.9 kg/m2

[54–56]. However, BMI diagnostic value is different for
men and women with similar body fatness [54, 55].
Additionally, above cut-off value of BMI is not correct for
children and adolescent (age- and sex-dependent cut-off) as
well as for certain ethnicities, e.g., Asian and South Asian

population [54–56]. It was demonstrated that Asians have
different associations between BMI, percentage of body fat,
and risk of type 2 diabetes and cardiovascular disease than the
Europeans [57]. Therefore, BMI cut-off point for Asian and
South Asian population has been lowered: overweight is di-
agnosed by BMI between 23 and 24 kg/m2, while obesity is
definied by BMI greater than 25 kg/m2 [56, 57].

In general, the reason for obesity can be stated as an imbal-
ance between energy intake and its expenditure. However, the
matter is much more complicated because environmental fac-
tors, alongside genetic factors affect the onset of obesity,
which in itself is conducive to further dysregulation of energy
management [18••, 58]. In the course of obesity, excessive
adipose tissue proliferation occurs and related systemic disor-
ders are also observed, including vascular, hormonal (insulin
resistance, glucose intolerance), and systemic low-grade in-
flammation, leading to the development of type 2 diabetes
and cardiovascular diseases such as atherosclerosis and hyper-
tension [12••, 18••, 21, 59, 60]. It has been proven that gut
microbiota can be a link between the above disorders and
genetic predisposition, immunity, and environment [18••, 58].

Correlation Between Microbiota and Obesity

Numerous experimental studies have demonstrated the influ-
ence of obesity induced in rodents by a high-fat diet (HFD) on
gut microbiota, most of all by reducing the content of
Bif idobacter ium spp. , Tenericutes spp. , phylum
Bacteriodetes and Bacteroides spp., Lactobacillus spp.,
Roseburia spp., Eubacterium rectale and Blautia coccoides,
and increasing the abundance of Firmicutes, Actinobacteria,
and Proteobacteria (Table 2) [18••, 26, 43, 61]. In addition, it
was found that a change in the composition of gut microbiota
in mice can support a HFD in the development of metabolic
disorders such as obesity and insulin resistance [62]. Studies
conducted in male Swiss albino mice and in male C57BL/6
mice on HFD show that a special role in this process is played
b y i n c r e a s e d l e v e l s o f De l t a p r o t e o ba c t e r i a ,
Gammaproteobacteria, and pathobionts (Staphylococcus
s p p . , Odo r i b a c t e r s p p . , Ne i s s e r i a s p p . , a n d
Propionibacterium spp.) [43, 61].

Similarly, it was noted in clinical studies that obesity, es-
pecially in patients with metabolic disorders, reduced the dif-
ferentiation of intestine microorganisms [63]. Interestingly, a
higher bacterial diversity was observed in obese patients with-
out metabolic abnormalities than in healthy lean individuals
[63]. Nevertheless, it was shown that weight reduction in
obese people was well correlated with the increase in the pro-
portion of Bacteroidetes over time and a fiber-enriched diet or
low-fat diet can decrease the level of Firmicutes [64].
Moreover, pediatric, adolescent and adult studies were shown
that the modyfication of the gut microflora composition by
probiotics affects weight change [65, 66]. Studies conducted
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by Alisi et al. [67] on obese children with non-alcoholic fatty
liver disease (NAFLD) showed that the administration of
VSL#3, which is a mixture of eight probiotic strains
(Streptococcus thermophilus, Bifidobacteria (B. breve, B.
infant is , B. longum) , Lactobacil lus acidophi lus,
Lactobacillus plantarum, Lactobacillus paracasei, and
Lactobacillus delbrueckii subsp. bulgaricus), had a positive
effect on BMI, fatty liver, insulin resistance, and plasma glu-
cagon-like peptide-1 (GLP-1) concentrations. Similarly, ad-
ministration of Bifidobacterium pseudocatenulatum CECT
7765 to obese children with insulin resistance contributed to
a significant decrease in body weight [68]. However, other
researchers have not confirmed the beneficial effects of
probiotics on body weight in children, and it has been reported
that the administration of VSL#3 to children resulted in a
significant reduction in total adiposity and trunk adiposity,
without significant effects on liver steatosis and liver fibrosis,
gut microbial counts, or gut hormones [69]. Numerous studies
on obese adults show that probiotic strains: Lactobacillus
acidophilus LA-14, Lactobacillus casei LC-11, Lactococcus
lac t i s LL-23 , Bi f i dobac ter ium bi f idum BB-06 ,
Bifidobacterium lactis BL-4, alone or in combination, and
Pediococcus pentosaceus contribute to a significant reduction
in body weight, BMI, waist circumference, and fat mass
[70–74]. However, there are also reports that contradict the
above data [18••, 75]. It appears that the differences in the
cited studies may result, inter alia, from the lifestyle of pa-
tients, their eating habits, and also differences between the
genders. It has been reported that the administration of
Lactobacillus rhamnosus CGMCC1.3724 together with a
low calorie diet resulted in significant weight loss in obese
women when compared with obese men [76]. In addition,
human studies have revealed that a part of the microbiome
populations is hereditary, interalia, the Christensenellaceae
cluster, which is negatively correlated with obesity, or the
phyla Blautia spp., which has been observed to be correlated
with higher visceral fat, and Methanobrevibacter smithii,
which has been observed to be correlated with higher BMI
[58].

Gut Microbiota and Stress

The reciprocal influence between the psychological function
and various physiological functions of the digestive tract is
widely discussed and has begun to be referred to as the mi-
crobiota–gut–brain axis [27•].

Stress and Its Implications

The definition of stress indicates that it is an organism’s total
response to environmental demands or pressures [27•, 77]. In
general, stress can be unpredictable and uncontrollable, mild

or severe, chronic, or acute [78]. In terms of health conse-
quences, chronic stress, understood as constant stimulation
and tension of the whole organism, plays a decisive role
[27•]. Stress occurs in response to factors that are defined as
stressors. Initially, the organism can adapt to stressors, but if
intense stress persists for a long time, the risk of developing
dysfunctions increases [78]. Stress symptoms affect the psy-
che as well as the functioning of the whole organism. The
physiological stress response involves stimulation of the hor-
monal system and the autonomic nervous system. In particu-
lar, chronic stress results in persistent stimulation of the above
systems and consequently results in elevated levels of cortisol
[77]. This may lead to serious health problems including burn-
out and secondary conditions, e.g., depression, anxiety, car-
diovascular diseases, gastrointestinal diseases, neurological
diseases, musculoskeletal diseases, or diabetes [77].

Correlation Between Microbiota and Stress

The interaction between stress and the immune system is re-
lated to the hypothalamic–pituitary–adrenal axis (HPA axis)
and appears to be mediated by gut microbiota [27•]. During
stress, the central nervous system response can influence gut
immunity, the intestinal neuromotor function, the secretory
function, and the microbiota composition. In turn, the altered
microbiome may contribute to the perpetuation of inflamma-
tion and further disruption of the gut–brain communication
(Table 2) [27•]. The GI tract is known to be sensitive to stress
because gut microbiota can respond to the release of stress
related neurochemical mediators by dysbiosis and the provi-
sion of neurochemicals. The presence of stress-related neuro-
endocrine catecholamines secreted by microbiota in mice has
been demonstrated [79, 80]. In the mouse model of social
disorders, stress-induced changes in microbiota were accom-
panied by changes in the level of cytokines and chemokines
[32]. Similarly, other researchers in a study on male C57BL/6
mice undergoing chronic social failure (long-term exposure to
the presence of larger and aggressive male CD-1 mice)
showed that, in addition to behavioral disorders, a reduction
in the number and diversity of the intestinal microbiome took
place [33]. In the olfactory bulbectomy-induced mouse model
of chronic depression, increased expression of central cortico-
tropin-releasing factor (CRF) was associated with changes in
gut microbiota [81]. Furthermore, chronic sleep deprivation
(psychological stress) in male mice has been shown to in-
crease levels of Clostridiaceae and Lachnospiraceae in the
gastrointestinal tract [45]. Studies carried out on the mouse
model have shown that chronic mild stress (CMS) affects
the composition of the intestinal microflora differently de-
pending on sex [82]. In female mice on a normal chow diet,
exposure to chronic stress caused changes in the intestinal
microflora becoming similar to the microbiome composition
in HFD mice, while in male mice those changes were not
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observed [82]. Moreover, a recent experimental study has re-
vealed that manipulation of the microbiome may modify the
stress response [83]. In the course of the study, male C57BL/
6J mice stressed with the chronic unpredictable mild stress
protocol (CUMS) were administered a probiotic containing
viable Bifidobacterium breve for 5 weeks. The results re-
vealed that probiotic treatment substantially alleviated anxi-
ety, depression, HPA axis hyperfunction and inflammation,
and stress-induced dysbiosis and enhanced the SCFA levels
[83]. In addition, studies indicate that stress can negatively
affect the intestinal barrier homeostasis, and above all enables
excessive translocation of intestinal bacteria and antigens into
subepithelial tissues and contributes to inflammatory bowel
disease (IBD) pathogenesis and development [84, 85]. As a
consequence, dysbiosis aggravation and increasing concentra-
tion of plasma bacterial compounds (i.e., LPS and TMAO)
can be expected [18••, 22•].

Clinical trials confirmed the results obtained in experimen-
tal studies. Reviews conducted on patients with irritable bowel
syndrome (IBS), which very often develops as a result of
chronic stress, showed a reduction in the Bacteroides spp.,
Parabacteroides spp., Prevotella spp., and Veillonella spp.
population and an increased Lactobacillus spp., Bacillus
spp., Bifidobacterium spp., Clostridiales, and Eubacterium
rectale population when compared with healthy volunteers
[36, 52, 76, 86].

Influence of Gut Microbiota on Hypertension

Hypertension is defined as an office-measured systolic blood
pressure (SBP) of ≥ 140 mmHg and/or a diastolic blood pres-
sure (DBP) of ≥ 90 mmHg. In 2015, the number of people
with hypertension worldwide was 1.13 billion. It is estimated
that by 2025, the number of people with hypertension will
increase to 1.5 billion [87].

The evidence for the important role of intestinal microflora
in the pathogenesis of hypertension is provided by experimen-
tal studies conducted especially on rats with spontaneous ar-
terial hypertension (SHR) and on their natural control—WKY
rats. It was found that SHR rats had a fivefold higher ratio of
Firmicutes to Bacterioidetes at the phylum level, while the
Actinobacteria and Bifidobacterium populations at the genus
level decreased compared with WKY rats [46•]. In addition, a
linear discriminant analysis effect size (LEfSe) study showed
that lactate-producing bacteria such as Streptococcus spp. and
Turicibacter spp. were predominant in SHR rats, whereas in
WKY rats, butyrate-producing bacteria were predominant, in-
cluding Coprococcus spp. and Pseudobutyrivibrio spp. [46•].
The influence of intestinal microflora on arterial hypertension
has also been confirmed by recent studies by Toral et al. [38••]
in which fecal microflora taken from donors (WKY rats and/
or SHR rats) was transplanted into the recipients (WKY rats

and/or SHR rats). These studies showed that intestinal bacteria
can modify the gut–brain communication and, as a result,
change blood pressure. These researchers observed signifi-
cantly higher values of initial systolic and diastolic blood pres-
sure in WKY rats that were given fecal microflora taken from
SHR rats (W–S) [38••]. Similarly, in the deoxycorticosterone
acetate (DOCA)–salt mouse model, fiber supplementation in-
creased the number of acetate-producing bacteria and de-
creased dysbiosis as measured by the ratio of Firmicutes to
Bacteroidetes, which positively correlated with a decrease in
SBP and DBP (Table 2) [88].

Influence of Gut Microbiota on Hypertension in the
Course of Obesity

An experimental study on pigs with metabolic syndrome
(MetS) has shown gut dysbiosis, accompanied by the devel-
opment of hypertension, obesity, hyperlipidemia, and insulin
resistance [89•]. Moreover, gut dysbiosis in pigs with MetS
was similar to the composition of gut microflora observed in
human patients withMetS. Namely, pigs withMetS contained
increased abundances of proinflammatory bacteria and sec-
ondary bile acid-producing bacteria, as well as a decreased
population of enteroprotective bacteria and SCFAs-producing
bacteria [89•].

Similarly, clinical studies conducted on the Colombian adult
community have revealed that higher SCFAs levels in feces
were positively correlated with fewer intestinal bacteria, higher
intestinal permeability, hypertension, generalized inflamma-
tion, obesity, and dyslipidemia [12••]. In addition, studies car-
ried out on overweight and obese pregnant women in the 16th
week of pregnancy demonstrated that SBP and DBP were pos-
itively correlated with BMI and negatively correlated with an
abundance of specific butyrate-producing phyla in gut micro-
biota including Odoribacteraceae and Clostridiaceae [39].

Influence of Gut Microbiota on Hypertension in the
Course of Stress

Evidence of the effect of stress on disturbances in the compo-
sition of microbiota and its different effects on the cardiovas-
cular system is provided by studies of chronic prenatal stress
(PNS) in 4-month-old male Sprague Dawley rats whose
mothers were subjected to chronic immobilization stress dur-
ing late pregnancy (from embryonic day 14 to day 20) [47]. It
has been demonstrated that induced PNS decreased the num-
bers of bacteria in the Lactobacillus genus, accompanied by
elevated abundance of three genera in different families of the
Clostridiales order: Oscillibacter, Anaerotruncus, and
Peptococcus genera [47]. Disorders of intestinal microflora
were correlated with a higher response to stress on the HPA
axis, as well as altered respiratory control, impairment of cog-
nitive function, and elevation of blood pressure [47]. Special
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attention has also recently been given to a new mechanism of
hypertension in which the cooperation of the intestines, brain,
and bones plays a key role [90]. Rodent studies indicate in-
creased intestinal sympathetic activity driven by stress as an
implicit cause of dysbiosis, enteritis, and increased gut barrier
permeability, which in turn leads to an imbalance in gut
SCFAs and plasma LPS concentrations [38••, 90]. The above
substances play an important role in increasing sympathetic
innervation of the lymphoid organs including bone marrow,
and may stimulate the proliferation and release of proinflam-
matory cells, particularly myeloid progenitors. This leads to
the development of generalized inflammation, which is be-
lieved to be a risk factor for hypertension [90, 91]. Studies
by Toral et al. [38••] showed that fecal microflora taken from
SHR rats and transplanted into WKY rats causes intestinal
dysbiosis and cause inducing systemic inflammation, accom-
panied by microglia activation and oxidative stress, leading to
neuroinflammation in the paraventricular nucleus (PVN)
[38••]. Neuroinflammation was identified as a significant
component of neurogenic hypertension genesis [46•].
Therefore, microbiota as an inflammatory status regulator
has been suggested as being able to influence the brain’s car-
diovascular control areas (such as the PVN) involved in reg-
ulating blood pressure [38••, 46•].

Influence of Gut Microbiota on Atherosclerosis

Atherosclerosis is a chronic inflammatory disease in which
there is an excessive accumulation of lipids and inflammatory
cells in the inner layer (tunica intima) of the arteries [92, 93].
Based on the literature, it may be assumed that intestinal mi-
crobiota plays an important role in the pathogenesis of athero-
sclerosis by modulating inflammation and the production of
microbial metabolites (Table 2) [94]. Numerous experimental
studies have shown that, in particular, TMAO plays an impor-
tant role in the development of atherosclerosis, possibly due to
the reduction of HDL and phospholipid levels in plasma as
well as increasing the accumulation of cholesterol by macro-
phages and the formation of foam cells (Table 2) [22•, 24, 48,
95].

Clinical trials in patients with atherosclerosis showed a
lower number of the genus of Roseburia and Eubacterium
and a higher number of the genus of Collinsella compared
with healthy controls [51]. It has also been found that some
bacteria, e.g., Akkermansia muciniphila, can improve the in-
testinal barrier function and exert a protective effect against
atherosclerosis [96].

Influence of Gut Microbiota on Atherosclerosis in the
Course of Obesity

Intestinal microbiota is currently regarded as being able to
influence host metabolism and contribute to the development

of obesity with accompanying metabolic endotoxemia and
associated diseases such as atherosclerosis [18••, 97•]. In the
course of obesity, metabolic disorders develop, including hy-
percholesterolemia, which is a common form of hyperlipid-
emia [98]. It has been demonstrated that in hyperlipidemic
conditions, macrophages accumulate in the blood vessel walls
and there they facilitate lipid uptake from the blood stream,
leading to the formation of foam cells, which are a component
of atheromatous plaques [97•]. These macrophages have been
shown to have a proinflammatory profile induced by TLRs,
which bind microbial molecules such as LPS [18••, 97•].
Research by Chen et al. [99] performed on ApoE KO mice,
an animal model of atherosclerosis, showed that intestinal
microbiota under hyperlipidemic conditions resulted in the
recruitment and ectopic activation of B2 cells (subtype of B
cells) in the perivascular adipose tissue. This was followed by
an increase in circulating immunoglobulin G (IgG), which
directly changed the morphology of the blood vessels, facili-
tating the formation of atherosclerotic plaque and accelerating
the development of atherosclerosis [99].

Influence of Gut Microbiota on Atherosclerosis in the
Course of Stress

It has been proven that homeostasis disturbances in the bidi-
rectional gut–brain axis, in conditions of chronic stress or
dysbiosis, increase the risk of neuropsychiatric diseases (i.e.,
anxiety and depression), neurovascular diseases (i.e., cerebral
atherosclerosis and ischemic stroke) and cardiometabolic dis-
eases (i.e., atherosclerosis, obesity, diabetes) [40, 100].
However, only a few studies describe the impact of specific
phyla disproportions in the course of gut dysbiosis caused by
chronic stress on the development of atherosclerosis. Maes et
al. [101] showed that the prevalences and median values for
serum IgM and IgA against LPS of Enterobacteria (Hafnia
alvei, Pseudomonas aeruginosa, Morganella morganii,
Pseudomonas putida, Citrobacter koseri, Klebsiella
pneumonia) were significanty greater in patients with major
depression disorder (MDD) than in healthy volunteers. It ap-
pears that LPS translocation occurring as a result of intestinal
mucosal dysfunction (leaky gut) observed during dysbiosis
caused by chronic stress, plays a significant role in the inflam-
matory pathophysiology of depression and atherosclerosis
[18••, 101].

Influence of Gut Microbiota on Heart Failure

According to the 2016 ESC guidelines for the diagnosis and
treatment of acute and chronic heart failure, heart failure (HF)
is a set of typical symptoms (e.g., dyspnea, edema of the lower
limbs, decreased exercise tolerance), which may be accompa-
nied by abnormalities in physical examinations (e.g.,
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dilatation of the jugular veins, crackle above the lungs, periph-
eral edema), caused by abnormalities in the structure and/or
function of the heart resulting in decreased cardiac output and/
or increased intracardiac pressure at rest or during exercise
[102]. It is estimated that HF affects 1%–2% of the adult
population in developed countries [102].

Numerous clinical studies have shown a significant influ-
ence of intestinal microflora on the development of HF (Table
2) [42, 49, 103, 104]. Heart failure patients presented intestinal
dysbiosis in the form of a relative reduction in taxa from the
Lachnospiraceae and Ruminococcaceae families, known for
their capacity for butyrate production [42, 49, 50]. Diminished
proportions of butyrate-producing gut microbiota have been
associated with intestinal and extra-intestinal disorders, such
as IBD, and also obesity, diabetes mellitus, and CVD [42].
Moreover, clinical studies have shown an increase in the con-
centration of TMAO levels in the blood of patients with HF
[104–107].

Influence of Gut Microbiota on Heart Failure in the
Course of Obesity

A few studies indicate a relationship between gut dysbiosis
and obesity in the pathogenesis of HF. Battson et al. [108•] has
shown that cecal microbiota transplantation (CMT) from
obese leptin-deficient (Ob) mice with ischemia/reperfusion
myocardial infarction to C57BL/6J control (Con) mice with
ischemia/reperfusion myocardial infarction caused an in-
creased myocardial infarct size and an increased left ventric-
ular mass as well as arterial stiffness, which were associated
with greater gut permeability and reduced concentrations of
cecal SCFAs, whereas in the other direction cecal microbiota
transplantation (CMT) fromConmice to Obmice resulted in a
reduced myocardial infarct size and a reduced left ventricular
mass as well as higher levels of cecal SCFAs [108•].

Moreover, clinical studies also appear to confirm the pos-
itive correlation between obesity-related dysbiosis and HF.
Patients with coronary artery disease (CAD) and type 2 dia-
betes presented with significant lower abundance of phylum
Bacteroidetes , and higher phyla Firmicutes and
Proteobacteria. Futhermore, these patients had significantly
less benef ic ia l or commensa l bacte r ia ( such as
Faecalibacterium prausnitzii and Bacteroides fragilis) and
more opportunistic pathogens (such as Enterobacteriaceae,
Streptococcus, and Desulfovibrio) (Table 2) [41]. The above
dysbiosis can lead to increased TMAO plasma concentrations
which in turn could affect the development of HF [22•, 25,
44]. This is probably due to the influence of TMAO on the
reduction of beta-oxidation of fatty acids in cardiomyocytes,
that leads to an excessive accumulation of fatty acids in the

myocardium, which has a lipotoxic effect and leads to cardio-
myocyte apoptosis [109].

Influence of Gut Microbiota on Heart Failure in the
Course of Stress

Stress leads to increased permeability of the gut allowing mi-
croorganisms and their antigens to cross the epithelial barrier
and induce a mucosal immune response. Chronic stress en-
ables the persistence of such conditions which in turn alters
the composition of the microbiome and leads to enhanced
activation of the HPA axis [110]. Impaired HPA axis tone
precipitates the development of heart failure associated with
myocardial infarction, left-ventricular dysfunction, and dys-
rhythmia [111].

Clinical evidence has shown that chronic stress in the form
of neuropsychiatric disorders contributes to the development
and progression of heart failure. Prevalent illnesses in patients
with heart failure are depression and anxiety disorders (i.e.,
generalized anxiety disorder (GAD), post-traumatic stress dis-
order (PTSD), and panic disorder) which increase the risk of
death or cardiac events [112].

Conclusions

Gut microbiota is an integral part of the human body and
affects the function of the human body. Factors such as obe-
sity and chronic stress lead to dysbiosis, contributing to the
development of diseases including cardiovascular, hyperten-
sion (in particular), atherosclerosis, and heart failure.
Therefore, it appears to be very important to maintain the
integrity of the human microbiome. Recently, attention has
also been given to the therapeutic aspect of gut microbiota.
However, knowledge about the interaction of gut microbiota
and the human body, especially in conditions of obesity and
stress, is still relatively small. Consequently, further research
is needed to understand how to maintain homeostasis between
the human body environment and the microbiome that in-
habits it.
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