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Abstract

Several modern genomic technologies, such as DNA-Methylation arrays, measure spatially

registered probes that number in the hundreds of thousands across multiple chromosomes.

The measured probes are by themselves less interesting scientifically; instead scientists

seek to discover biologically interpretable genomic regions comprised of contiguous groups

of probes which may act as biomarkers of disease or serve as a dimension-reducing pre-

processing step for downstream analyses. In this paper, we introduce an unsupervised fea-

ture learning technique which maps technological units (probes) to biological units (genomic

regions) that are common across all subjects. We use ideas from fusion penalties and con-

vex clustering to introduce a method for Spatial Convex Clustering, or SpaCC. Our method

is specifically tailored to detecting multi-subject regions of methylation, but we also test our

approach on the well-studied problem of detecting segments of copy number variation. We

formulate our method as a convex optimization problem, develop a massively parallelizable

algorithm to find its solution, and introduce automated approaches for handling missing val-

ues and determining tuning parameters. Through simulation studies based on real methyla-

tion and copy number variation data, we show that SpaCC exhibits significant performance

gains relative to existing methods. Finally, we illustrate SpaCC’s advantages as a pre-pro-

cessing technique that reduces large-scale genomics data into a smaller number of genomic

regions through several cancer epigenetics case studies on subtype discovery, network

estimation, and epigenetic-wide association.

Introduction

Modern genomic technologies take fine-grained measurements on human subjects that allow

for increasingly individualized treatment options for various diseases. Several of these technol-

ogies capture genomic information at spatially registered locations on the DNA sequence;

examples include point mutations, next generation sequencing, copy number variation, and

the focus of this paper, DNA Methylation arrays which measure epigenetic variation. Here, the

units returned by the technology, CpG sites, are not of primary interest to scientists. More
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important are regions of CpG sites whose cumulative impact affects gene function [1]. To this

end, we introduce an unsupervised feature learning technique which maps technological units

to biological units by coalescing probes into contiguous genomic regions that are common

across multiple subjects.

Epigenetic technologies measure genetic aspects that affect gene regulation beyond gene

expression and transcriptomics. One such example is DNA Methylation, which measures the

addition of a methyl group to CpG sites creating 5-methylcytosine. High methylation levels

(hypermethylation) have been shown to block gene transcription in cancer. Similarly, low

methylation levels (hypomethylation), typically at a global level, have also been observed by

cancer researchers [1]. Recent advances in whole genome bisulfite sequencing technology now

yield methylation intensity measurements at hundreds of thousands of CpG sites across the

genome [2]. The ratio of methylated intensity to total intensity, the so-called beta-value, is

returned as a measure of the DNA methylation level at each site. Such technologies interrogate

genomic regions (such as gene promoter regions) by taking measurements of multiple CpG

sites in close spatial proximity; beta-values in these regions are often strongly correlated, indi-

cating that they behave functionally as a unit [3]. These observations imply that probes which

are close in genomic distance and which display similar methylation levels are better treated as

functional units, or genomic regions. Previous work on region detection in the context of

methylation has focused on differentially methylated region (DMR) discovery. Approaches in

this area have utilized both smoothing techniques [4, 5] and the concept of linkage disequilib-

rium [6]. The task of DMR discovery is, however, an inherently supervised one. In this work,

we focus on the unsupervised discovery of genomic regions for methylation data. We develop

a method for grouping probes into genomic regions that leads to more interpretable scientific

measurements, improves the performance of downstream analyses, and can thus serve as a

dimensionality reducing pre-processing step for methylation data.

Another example of grouping spatial genomics data is the well-studied problem of copy

number segmentation. Copy number variation (CNV) is one measure of structural variability

in the genome that quantifies large scale insertions and deletions of genetic information across

the DNA sequence. By utilizing array-CGH technology, structural differences relative to a ref-

erence sample are quantified as the log ratio of intensities at various loci across the genome.

Such differences have been linked to various cancers such as breast and lung [7]. Similar to

DNA methylation, copy number measurements at a particular loci are typically of lesser inter-

est than regions of gain or loss, which signal large-scale amplification or deletions [8]. As such,

the problem of Copy Number Segmentation has received much attention and numerous meth-

ods exist for this type of analysis in both the single subject [9–11] and multi-subject [12–14]

setting. Most popular among existing approaches are numerous segmentation algorithms, col-

lected in the popular R-packages CNTools and DNACopy [15, 16]. Due to both its well-stud-

ied nature and similarity to region detection in the case of methylation data, we consider the

task of copy number segmentation as a benchmark. We show that our method both performs

competitvely to the state of the art as well as eliminates the need for subjective choices con-

cerning the number and extent of detected segments.

For both methylation and CNV data, scientists seek entire regions of CNV amplifications

or deletions or regions of CpG sites that behave as functional units. For these regions to serve

as meaningful features for downstream multivariate statistical analyses, they must be consis-

tent across all subjects. To address this, we introduce an unsupervised learning method which

maps technological units to more meaningful biological units by clustering probes into geno-

mic regions. An example of the genomic regions resulting from our method, Spatial Convex

Clustering (SpaCC), can be seen in Fig 1. To detect such regions, we utilize the popular con-

cept of fusion penalties [17] by extending methods for convex clustering [18–23] Convex

Spatial Convex Clustering
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clustering has shown several advantages relative to traditional clustering methods, most nota-

bly its improved solution stability [19]. Additionally, by couching the clustering problem as a

regularized convex optimization problem, convex clustering has allowed for numerous princi-

pled extentions into related domains such as biclustering [24] and clustering in high dimen-

sions [25]. In a similar fashion, we introduce SpaCC which yields an extention of the convex

clustering problem appropriate for spatial genomics data. We specifically focus on developing

a fully automated and data-driven method that can be used to pre-process spatial genomics

data into genomic regions for downstream analyses (Section Spatial Convex Clustering).

While we illustrate our method on CNV data to benchmark our method against widely used

segmentation approaches (Section Simulation Studies: Copy Number Segmentation), the main

focus of this paper is on methylation data. For this, we show how our method can lead to

improved results for biomarker discovery in region-based epigenetic-wide association studies

(Section Region-Based Epigenetic-Wide Association Studies), and our resulting genomic

regions can yield improved features in downstream multivariate analysis such as clustering for

subtype discovery (Section Breast Cancer Methylation Subtype Discovery) and epigenetic net-

work estimation (Section Inferring Epigenetic Networks).

Spatial Convex Clustering

Our objective is to discover groups of probes which (i) have similar measurements, (ii) are spa-

tially contiguous, and (iii) are nearby on the chromosome. Taken together, (i)-(iii) deliver

groups of probes similar enough to be considered as single functional units, or genomic

regions. Importantly, we require that (i)-(iii) be satisfied simultaneously for all subjects, so that

the genomic regions discovered are intrinsically meaningful, and not artifacts of a particular

sample. One approach to multi-subject genomic region detection would be to consider cluster-

ing the genomic probes based on the subject observations, as opposed to the more commonly

used clustering of observations. To this end, we merge ideas that use fusion penalties for copy

number segmentation [11, 14, 26] and the more recently introduced convex clustering meth-

ods [18, 19] to develop an automated pipeline for feature learning with spatial genomics data.

In particular, we address data-specific weighting schemes, automated methods for detecting

the number and extent of clusters, as well as a principled approach for handling missing

values.

Fig 1. SpaCC detected regions for TCGA level 3 breast cancer DNA-methylation data n = 791, p = 23515 (left) and TCGA level

2 Ovarian Cancer copy number variation (array-CGH) data with n = 456, p = 7658 (right), both for chromosome 17. For each

data type we plot raw probe values overlayed with SpaCC clusters for three subjects. Subjects are ordered according to maximum

deviation from the average cluster centroid over all subjects. For methylation data we note the ordering detects a hypomethylated

region (blue), while for copy number data the ordering sorts patients according to genetic variability. In both cases, we note the

discovery of common genomic regions across all patients.

https://doi.org/10.1371/journal.pone.0203007.g001
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Optimization problem and algorithm

Let X 2 Rn�p be our data matrix with n subjects and p variables (probes). Our SpaCC problem

is defined as

minimize
U2Rn�p

1

2
kX � U k2

F þg
Xp� 1

i¼1

wikU�i � U�iþ1 k2
ð1Þ

In the objective above we seek an estimate, U 2 Rn�p, which both faithful to the original data

(smooth loss term given by the Frobenius norm) and which encourages fusions among similar,

adjacent probes (non-smooth l2 penalty term). The amount of fusion of among probes is deter-

mined by the size of regularization parameter γ� 0 and the weights wi� 0. At one extreme,

with γ = 0, SpaCC simply returns the original data matrix, X, and no fusions or genomic regions

are detected. As regularization increases (larger γ), columns difference kU•i − U•i+1k are forced

to 0, implying that U•i = U•i+1. In the case of SpaCC, when such equality occurs we say that

probe i and i + 1 have been clustered together and belong to the same genomic region. While the

amount of regularization plays a key role in determining the clustering solution, weight choices

are also important. As discussed subsequently, the latter are taken as spatial weights proportional

to the inverse distance between adjacent probes that are specific to each genomic technology;

these in turn, lead to more interpretable results and computationally efficient algorithms.

The SpaCC problem can be seen as a particular instance of the convex clustering problem,

with several key differences allowing for its use with spatially-registered genomics data. First,

convex clustering typically clusters observations (here rows of X), whereas SpaCC clusters

measurements so as to detect genomic regions. In this sense SpaCC can be viewed a perform-

ing convex clustering on XT. Additionally, convex clustering allows fusions to occur among

any pair of observations via the more general penalty term P(U) = γ∑i<j wijkU•i − U•jkWe note

that such generality is not appropriate in the case of spatial data. As an example, employing the

traditional convex clustering penalty in the case of SpaCC could result in non-contiguous

genomic regions which make little sense in practice. By enforcing fusions only among adjacent

probes, SpaCC’s augmented penalty properply accounts for the known spatial structure. In

this sense, our method builds on the success of several existing fusion-based approaches that

have been proposed specifically for CNV data [14, 26]. Finally, note that we apply our SpaCC

problem separately to data for each chromosome.

To fit our SpaCC model, we adopt an approach introduced by [19] for convex clustering

problems. We reformulate (1) by introducing an auxiliary variable V, where V•,i = U•i − U•i+1,

and rewrite the penalty in terms of V. We then use the Alternating Minimization Algorithm

(AMA) [27] optimization algorithm to fit our SpaCC problem. Formulating the augmented

Lagrangian, we obtain updates for both primal variables (U•i, V•i) and dual variables (Λ•i), as

shown in Algorithm 1.

Algorithm 1: SpaCC AMA Algorithm
Data: X, w, γ
Result: U, V
while err > tol do

Ukþ1

�;i ¼

X�1 þ Λk
�1

i ¼ 1

X�i þ Λk
�i � Λ�i� 1 i 2 f2; . . . ; p � 1g

X�p � Λk
�p� 1

i ¼ p

8
>><

>>:

Vkþ1

�;i ¼ 1 �
gwi=n

kUkþ1
�i � U

kþ1
�iþ1
� 1

nΛ
kþ1
�i k2

� �

þ

U kþ1

�i � Ukþ1

�iþ1
� 1

n
Λkþ1

�i

� �

Λkþ1

�;i ¼ Λk
�i þ nðVkþ1

�i � Ukþ1

�i þ Ukþ1

�iþ1
Þ

end
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Spatial weights

An important input to our SpaCC problem, and convex clustering generally, is the weight vec-

tor, w. Two common weight choices have been made throughout the convex clustering litera-

ture [18, 19, 25]: uniform weights, with wij = 1, and distance-based weights. Uniform weights

offer a potential methodological benefit in that they do not assume prior knowledge regarding

potential fusions. In particular, no fusions are given apriori preference over others, as all are

given equal weight. Uniform weights, however, suffer from two major disadvantages. The first

disadvantage is computational. Distance-based weights allow for the incorporation of sparsity

among the weights, greatly reducing computation time [19]; such a possibility is necessarily

excluded in the case of uniform weights. Second, while a case for uniform weights may be

made in the absence of domain-knowledge, when domain knowledge is present its incorpo-

ration via proper weight choices can deliver improved clustering solutions. In the case of spa-

tial genomics data, such prior knowledge is especially evident. In particular, SpaCC utilizes

both the spatial orientation of the probes, along with prior biological knowledge concerning

measurement similarity decay to inform its weight choices. While uniform and distance-based

weights are typical throughout the convex clustering literature, alternatives have been consid-

ered. In [25], for example, the authors consider an adaptive lasso [28] inspired weighting

scheme, used to induce sparsity among the feature set. In the case of SpaCC, however, sparsity

within the set of spatially contiguous probes is structurally undesirable, and we therefore utilize

the distance-based approach.

For SpaCC, the choice of weights is inversely proportional to the genomic distance between

adjacent probes, wi = exp{−σdi}, where di = dist(probei, probei+1) is the distance in basepairs

between probes. Our choices regarding the spatial decay parameter, σ, have been made to

reflect the empirical differences between copy number variation and methylation data. In the

the case of copy number variation data, probe measurements are often similar across sizable

portions of the chromosome [29]. Hence, spatially expansive genomic regions (associated with

the slower decay rate of σ = 0.00001) reflect the underlying biology. In the case of methylation

measurements, probe similarity dissipates much more rapidly, with methylated regions form-

ing in small localized CpG islands near promoter regions of genes [3]. For this data type,

enforcing unnaturally slow decay rates can overshadow probe dissimilarity, resulting in geno-

mic regions which share little in common. Hence for methylation data, we allow for faster

decay (σ = 0.0002). More generally, the choice of σ will be based on both the empirical proper-

ties of the data as well as knowledge of the underlying phenomenon; in present case, examples

of these weight choices are shown in S1 Appendix We demonstrate the efficacy of our choices

for σ through both simulations, Section Simulation Studies, and real data examples, Section

Applications of SpaCC to Cancer Genomics Data. Overall, tailoring spatial weights to specific

technologies yields more interpretable genomic regions, with larger clusters in CNV data and

smaller localized methylated regions, Fig 1.

Additionally, our choice of weights can dramatically decrease the computational burden

of our SpaCC algorithm. Specifically, we apply hard-thresholding to the weights to set tiny

weights to zero. Exact sparsity in the weight values prevents distant adjacent probes from

coalescing into a common genomic region. Further if T weights are set to zero, the penalty

term of (1) is perfectly separable into T + 1 terms, yielding T + 1 subproblems. These sub-

problems may in turn be solved in parallel. For example using our methylation weight

choice, the Chromosome 17 TCGA Level 3 Breast Cancer Methylation SpaCC problem, Fig

1, separates into 910 subproblems that can be solved completely in parallel. This yields dra-

matic computational gains when compared to the original problem which consists of

p = 23515 probes.

Spatial Convex Clustering
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Missing values and parameter selection

We seek to develop a fully automated method for detecting multi-subject genomic regions in

CNV and methylation data; often automated methods are more reliable and reproducible, as

practitioners have no knobs to tune that can yield different results across studies and labs. To

this end, we introduce two automated, optimization-based approaches to handling practical

problems with spatial genomics data: missing data and regularization parameter selection.

First, missing values tend to be a major problem for large-scale high-throughput genomics

data. For example, the TCGA Breast Cancer Level 3 Methylation Chromosome 17 data shown

in Fig 1, contains 14270 total missing values. Similarly for TCGA Ovarian Cancer Level 2

Copy Number Variation, Chromosome 17 contains 2349 missing values. Typically, missing

genomics data is handled via a two-step process where one first imputes the missing values

using many popular off-the-shelf imputation routines [30] and then continues with analyses of

the fully imputed data. This approach, however, is less reproducible as results of downstream

analyses can change depending on the imputation procedure employed. Instead, we propose

to fit our SpaCC model in the presence of missing data, effectively eliminating the need to pre-

form a separate imputation step.

As before, let X 2 Rn�p be our data matrix. Let M ¼Mn �Mp � f1; . . . ; ng � f1; . . . ; pg
denote the indices of missing elements. We adopt an approach similar to that in [24] to fit our

SpaCC procedure in the presence of missing values. Specifically, we fit our SpaCC loss function

only over the the non-missing elements of X, given by the indices MC
:

minimize
U2Rn�p

1

2

X

j2MC
p

X

i2MC
n

ðX ij � U ijÞ
2
þ g
Xp� 1

i¼1

wikU�i � U�iþ1 k2: ð2Þ

First, notice that this optimization problem is still convex, and hence our approach will

yield the global solution. We propose to optimize (2) using the majorization minimization

(MM) algorithm [31]. Defining the surrogate function to be

gðU j U kÞ ¼
1

2

X

j2MC
p

X

i2MC
n

ðXij � U ijÞ
2
þ
X

j2Mp

X

i2Mn

ðU ij � Uk
ijÞ

2

2

4

3

5

þg
Xp� 1

i¼1

wikU�i � U�iþ1 k2;

ð3Þ

notice that g() majorizes the objective f(U); namely (i) g(U j Uk)� f(U) for all U and

(ii) g(Uk j Uk) = f(Uk). Iteratively minimizing the surrogate objective creates a non-increasing

sequence of objective values f(Uk). Defining T ¼ XMC þ Uk
M, we augment (3) leading to fol-

lowing algorithm to fit our SpaCC problem in the presence of missing data:

Algorithm 2: SpaCC Algorithm for Missing Data
Data: X, w, γ, M
Result: U, V
while err > tol do
Set T ¼ XMC þ U k

M

Uk+1  Alg. 1 at T
end

Notice that in contrast to traditional imputation routines, Algorithm 2 does not explicitly

replace missing elements in X prior to analysis. Rather, missing indices are filled in iteratively

via the SpaCC cluster means for the genomic regions, U.

Spatial Convex Clustering
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Now that we have an automated way of fitting SpaCC with missing values, we leverage this

to propose a k-fold cross-validation scheme to select the single tuning parameter, γ. Note that

γ controls both the number of genomic regions and the extent of these regions. To select γ, we

employ the approach of [32] where we remove random elements of X in each fold and take the

optimal γ as the parameter whose SpaCC imputed solution fit in the presence of missing values

most closely aligns with the removed data. Specifically, for k ¼ 1; . . . ;K, where K the number

of folds, we define the indices to be left out at the kth fold to be Ck ¼ Ckn � Ckp �MC
n �MC

p ,

where
SK
k¼1

Ck ¼MC
, Ck \ Ck0 ¼ ; and j Ck j� 1

K jM
C
j, so that fCkg

K

k¼1
is an approximately

equal sized partition of the non-missing elements of X. For each fold k, we introduce addi-

tional missing elements via Ck and solve the missing data problem, Algorithm 2. Specifically,

let I k ¼ In � I p ¼ ðC
k
n [Mk

nÞ � ðC
k
p [Mk

pÞ. Given γ, we solve SpaCC with missing values

given by I k:

minimize
U2Rn�p

1

2

X

j2ðIkpÞ
C

X

i2ðIknÞ
C

ðXij � U ijÞ
2
þ g
Xp� 1

i¼1

wikU�i � U�iþ1 k2 ð4Þ

We can solve this problem via Algorithm 2, replacing M with I k; we denote the

solution as ðU�
g
Þ
k
. Then, we evaluate the performance of γ on the kth fold by comparing

the solution ðU�
g
Þ
k

to the left out (non-missing) elements of X via mean squared error:

MSEðg; kÞ ¼
P

i2Ckn

P
j2Ckp
½ðU�

g
Þ
k
ij � Xij�

2
Our complete cross validation algorithm is given as

follows:

Algorithm 3: SpaCC Algorithm for Cross Validation

Data: X, w, γ, fI kg
K
k¼1

Result: U, V
for k ¼ 1; . . . K do
for γ = γ1,. . ., γT do
Algorithm 2 at λ with missing indices given by I k

Compute MSE over Ck

end
end

Given the tuning parameter, γ�, selected by minimizing the cross-validation error, we

noticed that SpaCC identifies genomic regions which are spatially smaller than desired. Stated

another way, cross-validation tends to underestimate the sparsity level in the differences, V.

Such behavior is well known for the lasso and other sparse problems and is hence why many

advocate using the one-standard-error cross-validation rule [33]. An alternative approach is to

post-process the results after cross-validation by thresholding [34]. We adopt such a scheme

and propose to threshold the elements of Vγ� at a level proportional to the estimated noise, ŝ2;

specifically we threshold at the level, jðV g� Þijj <

ffiffiffiffiffiffiffiffi
logðpÞ
n

q

ŝ, similar to that proposed by [34]. Alter-

native thresholding procedures, for example block-wise thresholding, may also be employed.

We note, however, that the element-wise method proposed here, is relatively more conserva-

tive in the sense of returning thresholded estimates similar to Vγ�. In Fig 2, we give examples of

cross-validation error curves over a sequence of γ values for the TCGA Ovarian Copy Number

and Methylation chromosome 17 example from Fig 1; both the minimum cross-validation

error as well as our proposed thresholding level are shown. Overall, this approach delivers an

automated, principled optimization-based method for handling missing data and selecting the

number and extent of genomic regions. While the effectiveness of this method will be further

studied in subsequent sections, we note at the outset that the automatic selection of the

Spatial Convex Clustering
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number of genomic regions offers a significant advantage over typical segmentation methods

[12, 35]

Simulation studies

We study the performance of SpaCC empirically and compare our approach to existing meth-

ods through simulations based on real array-CGH and DNA-methylation data. Before present-

ing our simulation results, it will be helpful to introduce some notation. Our probes are

indexed by j 2 {1, 2, . . ., p}. Associated with each probe is a genomic location lj 2 R, j = 1, . . .,

p, and we denote the distance between genomic locations by dij. The probes are partitioned

into clusters, cg, indexed by g = 1, . . ., G. For each probe j we denote the cluster to which it

belongs via r(j) = {g j j 2 cg}. Our method and competitors will estimate a clustering fĉgg
Ĝ
g¼1

,

with ĉg � f1; . . . ; pg and ĉg \ ĉg0 ¼ ;. We will then evaluate the performance of all methods

by comparing the estimated clustering fĉgg
Ĝ
g¼1

to the true clustering fcgg
G
g¼1

using common

clustering metrics such as the Rand, Adjusted Rand, and Jaccard Indexes [36]. Note that these

clustering metrics are general and do not specifically account for the fact that we require clus-

ters to be spatially contiguous. Hence, we also employ a lesser-known entropy-based clustering

metric, the Variation of Information (VI) metric [37], that is better suited to measuring the

information loss between two sets of clusters that may be nested, as we would often expect

with spatially contiguous clusters; see S2 Appendix for details.

Simulation studies: Copy number segmentation

We first evaluate the performance of SpaCC for the well-studied problem of copy number seg-

mentation for array-CGH data. While not our primary focus, the problem shares many attri-

butes in common with the problem of genomic region detection for methylation data. These

common features along with many popular software packages [15, 16], employing segmenta-

tion methods such as Circular Binary Segmentation (CBS), make the problem an ideal bench-

mark to test the performance of our method.

Our simulations are based on TCGA Ovarian Cancer Level II array-CGH data for chromo-

some 17 [38], where we adopt the probe locations and use data for observed subjects to form

the mean simulated CNV signal as well as the locations of copy number segments with amplifi-

cations or deletions. Specifically, we simulate series for j = 1. . .p probes and i = 1. . .n subjects

from the following model: Xij = μj + si,r(j)mi,r(j) + �ij. Here, μj is the base mean of the series

which is taken from a subject in the TCGA data that was detected as having no amplifications

Fig 2. Cross validation plots for both methylation (left) and copy number (right). Sparsity-level is plotted along the x-axis and

Average Error on the y-axis. The red line shows the sparsity-level of minimum Average Error, and the blue line shows sparsity level

obtained after thresholding.

https://doi.org/10.1371/journal.pone.0203007.g002
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or deletions according to DNACopy [15]; si,r(j) is an indicator of an amplification or deletion

for subject i in region r(j) where the regions r(j) are taken from the observed segments as

detected by DNACopy for subjects from the TCGA data;mi,r(j) gives the mean shift for the

amplification or deletion in region r(j); and �ij * N(0, σ) is iid additive noise. As not all sub-

jects will have copy number changes for each region, we simulate si,r(j) * Bernoulli(q). Also,

as each subject could have an amplification or deletion of differing magnitude, we simulate

mi,r(j) * ±U(a, b).

We study four simulation scenarios of varying difficulty. First, we study the effect of the

magnitude of the copy number changes relative to the noise level by taking a = 0.2, b = 0.4,

σ = .1 for large changes, and a = 0.05, b = 0.3, σ = .1 for small magnitude shifts that are more

difficult to detect. Next, we use two different subsets of DNAcopy regions detected for a real

TCGA patient, with easier or more difficult to detect shapes to seed the segment boundaries;

that is, easier to detect segments tend to be spatially longer and harder to detect segments are

shorter and more fragmented. Note that the easy and hard set of segments are shown in S5

Appendix. Also related to shape, we vary the probability of a shift, q = 0.7, 0.5, with a larger

probability corresponding greater consensus across subjects, and hence easier shift detection.

The results in Table 1 indicate that SpaCC outperforms according to all metrics in all

regimes in this simulation. As illustrated subsequently for real data, DNACopy segments each

subject separately. As such, DNACopy performs well on per-subject basis, but performs poorly

at the detecting segments common across all patients. To address this shortcoming, the

CNTools package and its implementation of the Circular Binary Segmentation (CBS) algo-

rithm offers an alternative whereby common segments are returned for all subjects. Yet,

CNTools’ still fails to reach a reasonable consensus regarding common subject segments.

Given the discrepancy between subject’s amplification/deletion regions, CNTools tends to

deliver shorter segments, wherein agreement can be reached across several subjects. These

short segments often partition the true, larger segments, but are both difficult to interpret and

necessarily score poorly on the various metrics. In contrast, SpaCC’s regularized solution

yields an improved consensus between the individual series and their common segments,

detecting larger segments more closely aligned with the underlying truth.

Simulation studies: Methylation region detection

Next we evaluate SpaCC’s performance for the task of methylation region discovery. We again

model our study based on real data, utilizing TCGA Breast Cancer Level 3 Methylation data for

chromosome 17 [39]. Initial clusters, {cg}, are detected using SpaCC, which then act as the

ground truth for what follows. We simulate methylation beta values via the cdf transform Xij =
F(zij), for subjects i = 1, . . ., n, probes j = 1, . . ., p, and where F denotes the cdf of the standard

normal distribution. Such a transformation ensures our simulated values to lie in (0, 1). Spatial

correlation is introduced via the distribution of the zij’s. Our simulated methylation regions are

Table 1. CNV segmentation performance of SpaCC, DNACopy, and CNTools over simulation regimes with easy or hard segment shapes (S) and easy or hard magni-

tude shifts (M).

Rand Jaccard Variation of Information

SpaCC DNACopy CNTools SpaCC DNACopy CNTools SpaCC DNACopy CNTools

Easy(S)-Easy(M) .98 (.03) .87 (.02) .94 (.02) .94 (.09) .76 (.03) .77 (.12) .06 (.11) .38 (.05) .43 (.18)

Easy(S)-Hard(M) .99 (.02) .88 (.02) .93 (.02) .97 (.06) .76 (.03) .71 (.11) .02 (.07) .39 (.05) .63 (.19)

Hard(S)-Easy(M) .99 (.00) .89 (.01) .85 (.02) .99 (.01) .73 (.03) .38 (.09) .00 (.02) .39 (.04) 1 (.18)

Hard(S)-Hard(M) .99 (.00) .89 (.01) .85 (.01) .99 (.02) .72 (.03) .37 (.07) .00 (.03) .43 (.04) 1.15 (.17)

https://doi.org/10.1371/journal.pone.0203007.t001
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denoted by the degree of spatial correlation among probes within the region. Specifically, we

take zij to be zi *Np(0, S). with spatial covariance given by Sij ¼
expf� dij=swg rðiÞ ¼ rðjÞ

expf� dij=sbg o:w:

(

where dij is the distance between probes. Here σw controls the decay rate of the within cluster

spatial correlation, and σb similarly between clusters. The difficulty of the simulation is con-

trolled by difference between the the within and between spatial correlation decay rate. By vary-

ing the ratio of decay rates, σb/σw, we consider three scenarios of high, medium, and low within

region spatial correlation, relative to between; these scenarios correspond to (σw, σb) = (100KB,

.01KB), (100KB, .1KB), (100KB, 1KB), respectively. We compare SpaCC’s performance to the

linkage disequilibrium method introduced in [6].

In Table 2 we again note that SpaCC outperforms existing region-detection methods across

all regimes and metrics. A portion of SpaCC’s success may be attributed to the continuous

nature of its spatial fusions, wherein clusters are joined in a smooth fashion via continuous

spatial weight decay. The LD method, by contrast, implements a greedy strategy for accumu-

lating clusters based on a discrete window size, here 500 bp. This fixed window size gives the

LD method less flexibility to detect long range clusters when they are present; SpaCC, by not

choosing apriori distance cutoffs, does not have this difficulty.

Applications of SpaCC to Cancer Genomics Data

We now illustrate how SpaCC can be used as a pre-processing tool to improve the analysis of

real array-CGH and DNA-methylation data. Using case studies from TCGA ovarian, breast,

and lung cancers we show how SpaCC can yield improved copy number segmentation results

in Section Ovarian Cancer Copy Number Segmentation, but mainly focus on the more novel

application of detecting methylation regions. For this, we show how SpaCC can yield improve-

ments in subtype discovery, Section Breast Cancer Methylation Subtype Discovery, inferring

epigenetic networks, Section Inferring Epigenetic Networks, and biomarker discovery in

region-based epigenetic-wide association studies (rEWAS), Section Region-Based Epigenetic-

Wide Association Studies. As EWAS and especially rEWAS are relatively new types of epige-

netic analyses, we include a more careful study of this application with additional simulation

results in Section rEWAS Simulation Study and an application to TCGA lung cancer data in

Section Lung Cancer rEWAS Study.

Ovarian Cancer copy number segmentation

We investigate SpaCC’s segmentation performance on Ovarian Cancer TCGA Level 2 Copy

Number data [38]. We report results for Chromosome 17, which is where the important

BRCA1 gene, which has been widely associated with ovarian cancer [40], is located. The num-

ber of probes totals p = 7103 and we consider n = 456 subjects; SpaCC’s runtime in this case is

8 minutes and 30 seconds. In Fig 3, we visually compare segments discovered by SpaCC to

Table 2. SpaCC and linkage disequilibrium performance for region detection on simulated methylation data. We see SpaCC outperforms linkage disequilibrium

across all metrics and for all levels of difficulty, given by the degree of spatial correlation.

Variation of Information Jaccard Rand AdjRand

SpaCC LD SpaCC LD SpaCC LD SpaCC LD

High .03 (.00) .45 (.00) .91 (.00) .46 (.00) .99 (.00) .99 (.00) .95 (.00) .63 (.00)

Medium .17 (.00) .55 (.00) .81 (.00) .43 (.00) .99 (.00) .99 (.00) .90 (.00) .60 (.00)

Low .52 (.02) .76 (.00) .60 (.04) .37 (.00) .99 (.00) .99 (.00) .75 (.03) .54 (.00)

https://doi.org/10.1371/journal.pone.0203007.t002
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those of the two most popular competitors, DNACopy [15] and CNTools [16]. We plot three

subjects’ copy number series for the whole chromosome and overlay the estimated segments,

colored consecutively, detected by each method; the level of each segment corresponds to the

subject’s average copy number per segment. The three subjects plotted represent the subject

with the minimum, median, and maximum copy number changes across the cohort.

These results visually illustrate the many advantages of SpaCC over existing tools for copy

number segmentation. In particular, DNACopy, while performing well on a per-subject basis

delivers inconsistent segments across multiple subjects. Indeed, the number of segments

returned by DNACopy varies from 1 to 57, depending on subject. Thus, the segments pro-

duced by DNACopy cannot be used as a pre-processing step before further multivariate analy-

ses, as the features are unaligned across the subjects. Conversely, CNTools, while delivering

segments consistent across the subjects, finds difficulty assessing the trade-off between sub-

ject-specific patterns and patterns common to all subjects. The result is an awkward consensus

with many (3754), short segments. This “shattered” appearance makes interpretation difficult

due to both the number of segments and their size. In contrast, SpaCC finds longer more inter-

pretable segments (61), finding a more appropriate balance between subject-specific and com-

mon patterns across the cohort. As such, SpaCC is ideally suited as a pre-processing method to

segment and reduce the dimension of copy number data before further multivariate analyses.

Detecting methylation regions with SpaCC

We now study and illustrate how SpaCC can be used for biomarker discovery and as a pre-pro-

cessing tool that yields a reduced and more meaningful set of features for downstream analysis

of methylation data. First, we apply SpaCC to discover methylation regions from the TCGA

Level 3 Breast Cancer data [39] for chromosome 17 with n = 791 subjects and p = 23515

probes. SpaCC’s runtime in the case of the methylation data is 18 minutes and 40 seconds. We

visually examine methylation regions returned by SpaCC in Fig 4. Notice that the methylation

Fig 3. Copy number segmentation results for TCGA Ovarian Cancer chromosome 17. We compare SpaCC (top) to DNAcopy

(bottom left) and CNTools (bottom right). Copy number series over the chromosome are represented by black points and segments

are represented by horizontal colored lines. The subjects with the minimum, median, and maximum copy number changes over the

cohort are visualized.

https://doi.org/10.1371/journal.pone.0203007.g003
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regions detected are much shorter than their Copy Number counterparts. Segments in the lat-

ter tend to be amplified or deleted in large chromosomal regions, whereas regions of consistent

methylation levels to occur in small localized areas corresponding to promoter regions of

genes [3]. On the right in Fig 4, we can easily see how SpaCC features aggregate across probes

whose levels are meaningful and consistent across all subjects; this is illustrated by the region

denoted in blue. In contrast, SpaCC has not fused the two probes flanking this region as their

levels differ significantly from the blue region for the subjects with the minimum and median

variation in methylation levels shown. These local regions allow us to capture fine-grained

characteristics that are more biologically meaningful than examining single probes. For exam-

ple, the highlighted blue region is hypomethylated in most subjects, but hypermethylated for

the bottom subject shown, which has the maximum variation in methylation levels. This

region corresponds to the promoter region of the ABCC3 gene which is associated with HER2

and luminal breast tumors [41]. In total, SpaCC detected 9,080 methylation regions for chro-

mosome 17, which offers a reduction from the original 23,515 probes.

Breast cancer methylation subtype discovery. Several have recently suggested that meth-

ylation levels can be used to define cancer subtypes, and in breast cancer, methylation levels

have been used to characterize the well-known expression-based subtypes [42]. Here, we illus-

trate how reducing methylation data to the SpaCC-derived reduced set of features offers

improvements in downstream multivariate analyses such as subtype detection. We continue to

work with the TCGA breast cancer data for chromosome 17 and consider classifying between

the Basal and Luminal (A and B) subtypes. To fairly assess the performance of SpaCC’s region-

based features relative to using the raw probe values, we consider a simple classification

scheme where we first reduce the data using principal components and then fit a Naive Bayes

classifier. In Fig 5, we repeatedly split the data into training and test sets and report the mis-

classification errors on the test sets for a range of principal components (PCs). We also show

PC scatterplots for SpaCC-based and probe-based analysis, illustrating the superior discrimi-

natory power of SpaCC-based features. Also notice that SpaCC-based features outperform in

terms of misclassification error for all the number of PCs considered. By reducing the noisy

probe-level data into more biologically meaningful units, SpaCC is able to yield improved

results for subtype detection.

Fig 4. Breast cancer methylation region detection results. A portion of Chromosome 17 with SpaCC-detected regions overlayed

for the subjects with the minimum, median, and maximum variation in methylation levels (left). We zoom in on the 48.70Mb–

48.72Mb region of chromosome 17 (right) containing the promoter region of the ABCC3 gene.

https://doi.org/10.1371/journal.pone.0203007.g004
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Inferring epigenetic networks. Various genomic regions have been consistently shown to

be hyper- or hypomethylated together in sets of cancer patients [43]. One way of understand-

ing relationships between methylated regions in cancer is by inferring epigenetic networks.

Here, we show how SpaCC’s region-based features can lead to more meaningful and interpret-

able epigenetic networks. We continue to study the TCGA breast cancer chromosome 17 data

and use Gaussian Graphical Models to infer networks using both raw probes and SpaCC-esti-

mated regions. For the probe-based network, we consider the traditional approach, taking the

raw probe measurements as nodes and representing conditional dependency estimates via

connecting edges. For the region network, the mean vectors of SpaCC estimated genomic

regions are used in place of raw probe vectors. As before, conditional dependencies, now

between genomic regions, are represented via edges. In both cases, conditional dependency

relationships are estimated via the graphical lasso [44, 45] with a common (dimension depen-

dent) regularization parameter l ¼ 8

ffiffiffiffiffiffiffiffi
logðpÞ
n

q

and stability selection [46] with a common thresh-

old parameter of τ = .95.

Results for the probe-based and region-based epigenetic networks are shown in Fig 6. Net-

works inferred for probe features contain a much larger proportion of edges connecting spa-

tially adjacent probes; summaries of the genomic distances between connected nodes are given

in Table 3. This finding is not unexpected given the high degree of spatial correlation inherent

in methylation levels. Connections between local regions, however, are less meaningful biolog-

ically. SpaCC, on the other hand, reduces the data to its relevant biological units and hence

inferred networks have a larger portion of long range connections that are more likely of inter-

est to scientists. For example, the TBCD gene highlighted in Fig 6 plays a role in the cytokinesis

stage of cell division [47] and has been shown to be upregulated in breast cancer [48]. As can

be seen in the probe-based inferred network, probes in the TBCD region of chromosome 17

form only local connections. In contrast, SpaCC aggregates many of the probes in the regions

Fig 5. (Left) Principal Component scatterplots for SpaCC features (top) and raw probes (bottom), illustrating increased separation

between Basal and Luminal subtypes for SpaCC features. (Right) Naive Bayes misclassification error on repeated test/train splits for

both Probe and SpaCC features. SpaCC achieves lower error rates for all number of PC’s.

https://doi.org/10.1371/journal.pone.0203007.g005
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surrounding the TBCD gene. The resulting network estimate no longer contains TBCD intra-

gene connections, and instead forms longer range connections. One such long range connec-

tion illustrated above is to the SEPT9 gene region which has exhibited high expression levels in

breast cancer cell lines [49]. While the connection between the epigenetics of TBCD and

SEPT9 has not been experimentally established, both genes have been associated with breast

cancer and thus represent the precise type of potential connection which scientists seek to dis-

cover using graphical models. By aggregating probes into relevant biological units, SpaCC-

based graphical models are able to discover potentially novel functional relationships between

epigenomic regions which would otherwise be masked.

Region-based epigenetic-wide association studies

Finally, we study how SpaCC can improve systematic discovery of epigentic markers associ-

ated with disease through epigenome-wide association studies (EWAS). Analogous to more

widely used GWAS, EWAS conducts univariate tests for association with an outcome at each

epigenetic marker (probe at a CpG site) and adjusts significance levels for multiplicity. As the

epigenome can encode environmental or behavioral characteristics of human subjects [50],

EWAS can help discover how factors other than genetics contribute to disease. For EWAS

with DNA Methylation data, however, the number of subjects is typically small relative to the

� 450,000 CpG sites measured by the latest Illumina platform, thus leading to a possibly

under-powered study. To address this, we propose to first reduce methylation data to genomic

regions via SpaCC and then conduct an association study on the regions; we term this a

region-based epigenome-wide association study (rEWAS). As SpaCC retains genomic regions

that behave as functional units, we expect that this will reduce the number of tests conducted,

Table 3. Summary of genomic distances between connected nodes for both SpaCC features and probe features, measured in kb. We note SpaCC favors longer range

connections, as evidenced by larger genomic distance between neighbors.

Analysis Type Mean Median 25% 75% 90% 95%

Region 6554.18 30.33 .18 5252.73 31371.98 36738.76

Probe 2589.0428 0.075 .019 .208 2509.20 21967.56

https://doi.org/10.1371/journal.pone.0203007.t003

Fig 6. Estimated methylation networks for chromosome 17. The presence of uninformative short-range regional connections

obtained with raw probe data (right) is illustrated via the TBCD gene. The region-based network (left) eliminates local connections

allowing for longer range relationships (e.g. SEPT9 gene).

https://doi.org/10.1371/journal.pone.0203007.g006
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leading to an increase in statistical power, while still being able to detect epigenetic markers of

disease. Note that testing regions in rEWAS is similar in spirit to testing groups of genetic

markers based on linkage disequilibrium in GWAS [51]. Also note that some EWAS analyses

have proposed to test regions, but they have typically considered tests for global methylation

levels [52, 53] instead of localized genomic regions as we propose with SpaCC. In this section,

we first evaluate the efficacy of SpaCC-based rEWAS via a simulation study and then present a

rEWAS example to detect epigenetic markers of survival in lung cancer.

rEWAS simulation study. Since rEWAS is a new type of association study, we first use

simulated methylation data to assess the performance of SpaCC-based rEWAS compared to

traditional EWAS analysis using the raw probes. As in Section Simulation Studies: Methylation

Region Detection, we base our simulated data on TCGA Breast Cancer Level 3 methylation

data for chromosome 17. We obtain initial regions, {cg} via SpaCC and then simulate region

means for each subject asmig * beta(2, 2). Next, individual probes, Xij are simulated as devia-

tions about the region means via Xij * beta(α, τ), where α, τ are chosen to ensure E[Xij] =mig.
Finally, we generate our response as a linear function of a subset of the region means:

yi ¼ b1mig1
þ . . . bdmigd

þ �i, where �* N(0, σ2), and bl � Nðbseed;
ffiffiffiffiffiffiffiffi
bseed

p
Þ. The difficulty of

the simulation is controlled by the signal-to-ratio (SNR) level, here the size of βseed relative to

σ2. Our simulation consists of n = 94 patients relative to p = 23,515 probes.

We compare our SpaCC-based rEWAS approach to rEWAS using linkage disequilibrium

[6] and the Fisher product method [54] as well as EWAS on the raw probes; see S3 Appendix

for details. For all methods, we fit a univariate linear regression model at each probe or region

and corrected for multiplicity using Benjamini-Hochberg’s method to control the FDR [55].

The objective is to recover the regions or all the probes contained within the regions that deter-

mine the outcome. Notice then that there are two ways to report the true positive rate (TPR)

and false discovery proportion (FDP) for this simulation study. First, we can use the regions

detected as significant and compare the spatial extent of a detected region to that of the corre-

sponding true region to determine a true positive rate; we call this the region point-of-view

(RegionPOV) and the FDP is defined analogously. Second, we can compare the probes

detected, or the probes within regions detected as significant, to the probes that lie within the

true regions to determine the true positive rate; we call this the probe point-of-view (Probe-

POV). S4 Appendix contains formal definitions of these metrics used to evaluate our simula-

tion study.

In Fig 7, we report the results of our simulation study at various SNR levels and FDR levels.

Compared to probe-based EWAS and LD-based rEWAS, SpaCC-based rEWAS, achieves com-

parable FDP levels while achieving higher TPR according to both probe and region-based met-

rics. Overall, this study confirms our intuition that first reducing methylation data to regions

via SpaCC, leads to increases in statistical power for EWAS.

Lung cancer rEWAS study. We now use our SpaCC-based rEWAS approach to discover

epigenetic markers associated with lung cancer survival. We use the TCGA lung cancer DNA

methylation data which has n = 458 patients and p = 394,001 probes across all chromosomes

[56]. A univariate Cox proportional hazards model is used to test for associations with survival

at each probe (CpG site) for EWAS or at each SpaCC-region for rEWAS. The Benjamini-

Hochberg procedure was used to control the FDR at the 1% and 5% levels. The p-values at

each genomic location for EWAS and SpaCC-based rEWAS are displayed in Manhattan plots

in Fig 8; the alternating colors represent chromosomes. Horizontal lines are shown at the 1%

and 5% FDR levels; vertical lines denoting p-values that cross these thresholds are statistically

significant. Notice that the Manhattan plots for both EWAS and rEWAS retain a similar shape,

indicating that both methods found a common epigenome-wide signature for lung cancer
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survival. On closer inspection, we see that SpaCC-based rEWAS yields a larger number of dis-

coveries at equivalent FDR-levels. At the 1% FDR level, EWAS found 29 significant CpG sites,

whereas SpaCC-based rEWAS found 49 significant regions which contain a total of 77 CpG

sites. Similarly at the 5% FDR level, EWAS had 287 discoveries while SpaCC-based rEWAS

found 556 regions which contain 861 CpG sites. The overlap in significant discoveries are

shown in Tables 4 and 5. Notice especially at the 1% FDR level that our SpaCC rEWAS method

Fig 7. rEWAS simulation results: True positive rate (TPR) and false discovery proportion (FDP) for SpaCC-based rEWAS, LD-

based rEWAS and probe-based EWAS over various SNR levels and FDR levels. Results are reported according to both probe

point-of-view (ProbePOV; top) and Region point-of-view (RegionPOV; bottom) metrics.

https://doi.org/10.1371/journal.pone.0203007.g007
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missed only 4 CpG sites declared significant by EWAS, but in the converse, EWAS missed 54

discoveries made by rEWAS.

Our analysis reveals several important epigenetic markers which are largely consistent with

the cancer literature. In the top portion of the Table 6, we list the most significant discoveries

Fig 8. Manhattan plots with 1% and 5% FDR lines for EWAS (top) and SpaCC-based rEWAS (bottom) analysis for lung cancer

methylation. We note the region-based analysis recovers a sizable portion of the probes deemed significant in the probe-based

analysis. In addition, a large number of additional probes are recovered at an equivalent FDR-level.

https://doi.org/10.1371/journal.pone.0203007.g008

Table 4. Probe (region) significance overlap between region and probe based analysis at 5% FDR level. Total Num-

ber of .05-level probes is 287. Total Number of .05-level regions is 556. Total Number of probes in .05-level regions is

861.

Region

+ −
Probe + 247 (216) 40 (39)

− 614 (340)

https://doi.org/10.1371/journal.pone.0203007.t004

Table 5. Probe (region) significance overlap between region and probe based analysis at 1% FDR level. Total num-

ber of .01-level probes is 29. Total number of .01-level regions is 49. Total Number of probes in .01-regions is 77.

Region

+ −
Probe + 25 (21) 4 (4)

− 52 (28)

https://doi.org/10.1371/journal.pone.0203007.t005
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from rEWAS which were also discovered by EWAS. We also report the epigenetic marker

location, its gene target or the nearest gene, and a brief description of its role in the cancer lit-

erature. Note that further details on the literature are given in S6 Appendix. In the bottom por-

tion of Table 6, we highlight the most significant discoveries found exclusively by rEWAS;

these are known markers for lung cancer. Overall, our analysis reveals that reducing methyla-

tion data to biologically meaningful genomic regions via SpaCC before conducting EWAS

studies, leads to major increases in statistical power for discovering epigenetic markers.

Discussion

Building on the success of fusion-based penalties and convex clustering methods, we have

introduced a clustering technique for spatially correlated data called Spatial Convex Cluster-

ing, or SpaCC. Our work has focused on SpaCC’s application to spatial genomics data, includ-

ing copy number variation and methylation. While existing segmentation methods (both

single- and multi-subject) exist for problem of Copy Number Segmentation, none currently

employ the degree of automation found via SpaCC. With its ability to handle missing data and

choose the number and extent of multi-subject genomic regions in a data-driven manner,

SpaCC gives practitioners a powerful new tool for copy number analysis. More novel is

SpaCC’s application outside the traditional realm of Copy Number Segmentation. Through

both simulations and real data examples we have shown SpaCC to be a successful tool for

reducing DNA methylation data to its functional genomic regions. This region-based

approach to methylation data yields increased biomarker discovery along with an interpretable

feature set. SpaCC’s success in the non-traditional domain of methylation data signals many

potential applications across a variety of spatial settings. While this paper has focused on the

analysis of methylation data, the SpaCC framework is not limited to this data type, nor geno-

mic data in particular. Extensions of SpaCC may be appropriate for clustering spatially regis-

tered read counts from RNA-sequencing data to discover new isoforms and alternate splicing.

Beyond genomics, similar fusion-based approaches may also be applied other biological data

sources with known local spatial structure such as brain imaging. In all applications, SpaCC

provides a automated data-driven approach to region detection, eliminating or reducing sub-

jective or ad-hoc decisions. Taken together, the method and future extensions can allow scien-

tists to perform a single integrative analysis to discover meaningful regions across differing

Table 6. Significant discoveries found by SpaCC-based rEWAS. The top portion describes the top ten most significant discoveries; the bottom portion describes a subset

of discoveries detected exclusively by rEWAS.

Gene p-value Chrm.(Loc.) Description

LARP1 2.5e-9 5 (154.09–154.197) Regulator of mTOR, prognostic marker

ZFAND2A 2.7e-8 7 (1.198–1.199) Target for lung cancer therapy

TRAPPC9 9.8e-8 8 (140.74–141.46) High expression in cancer cell lines

PKP3 1.0e-7 11 (.39–.40) Oncogene, prognostic marker

GMDS 1.1e-7 6 (1.62–2.24) Relation to NK escape

FBN1 1.1e-7 15 (48.70–48.93) Hypermethylation in colorectal cancer

MYO1E 1.2e-7 15 (59.42–59.66) Inhibition may prevent metastasis

IGF1R 1.2e-7 15 (99.19–99.50) Silencing enhances sensitivity to DNA-damage

FAM53B 1.7e-7 10 (126.30–126.43) Role in cell proliferation

ANAPC11 2.2e-7 17 (79.84–79.85) Role in lung development.

CCDC12 7.6e-6 3 (46.96–47.02) Contained in 3p21.3 tumor suppressor region

WWOX 1.6e-5 16 (78.13 -79.24) Biomarker for lung cancer

ARL14 1.8e-5 5 (160.394–160.396) Homologue to tumor suppressor gene ARLTS1

https://doi.org/10.1371/journal.pone.0203007.t006
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biological modalities. An R package SpaCCr implementing our method is available from

CRAN [57].
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