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Abstract. Cyclic nucleotides play a major role in cell 
signaling, especially in the nervous system. They act 
as cytoplasmic messengers in a wide range of physio- 
logical responses, but the spatial distribution of their 
sites of action within cells and tissues is not well- 
known. In the vertebrate retina, there is a class of 
well-characterized cGMP binding sites which control 
the permeability of cation channels in the rod outer 
segments (ROS), while cAMP is involved in several 
other systems in the inner retina. Biochemical studies 
of the cGMP-activated permeability in ROS have not 
distinguished between the subcellular compartments of 
disk and plasma membrane. By a new method using 
fluorescein-conjugated cyclic nucleotides, we have 
found strong cyclic GMP binding to the plasma mem- 

brane of the ROS, both on frozen sections of retina 
and in freshly isolated, leaky ROS. We also found a 
high density of cGMP binding sites on structures 
resembling the inner segment calycal processes. Little 
specific binding could be detected on the disk mem- 
branes or on any other retinal layer. In contrast, 
fluorescent cAMP did not label ROS, but gave a strik- 
ing pattern of labeling on several deeper layers of the 
retina. These results suggest that the ROS plasma 
membrane has a much higher density of cGMP-con- 
trolled cation channels than the disk membranes, and 
point to other retinal layers where cAMP is likely to 
shape cellular responses. This method opens up novel 
morphological approaches to the study of cyclic 
nucleotide regulation. 

C 
YCLIC nucleotides regulate a wide variety of cellular 
functions by binding to regulatory sites such as pro- 
tein kinases or ion channels in sensory receptors. In 

the vertebrate retina, which is stratified into photoreceptor 
and neural layers, cyclic nucleotides have distinct distribu- 
tions and roles. Ferrendelli et al. (1980) examined their dis- 
tributions in freeze-dried sections of retinal layers. They 
found very high cGMP levels in the photoreceptors, and 
fairly uniform cAMP levels throughout the retina, with per- 
haps a higher level in the photoreceptor inner segments, and 
high adenylate cyclase activity in the inner plexiform layer. 
The role of cGMP in visual transduction is now well-under- 
stood. This cyclic nucleotide acts as the cytoplasmic mes- 
senger whose concentration is modulated by a cascade of 
signal transduction enzymes, triggered by excitation of the 
light receptor protein, rhodopsin (reviewed by Stryer, 1986). 
Electrophysiological recordings have clearly demonstrated 
that the target of this biochemical cascade is a cGMP-acti- 
vated cation channel (Fesenko et al., 1985; Yau and Nakatani, 
1985; Cobbs and laugh, 1985; Zimmerman and Baylor, 
1986; Nakatani and Yau, 1988). Studies describing a class 
of cGMP regulatory sites in rod outer segment (ROS) ~ mem- 
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branes which activate cation fluxes (Caretta et al., 1979, 
1985; Koch and Kaupp, 1985; Cook et al., 1987) were inter- 
preted as showing the presence of the channels in both ROS 
plasma membrane and in the cytoplasmic disk membranes, 
since cGMP activated fluxes were observed in '~30% of total 
ROS membrane vesicles, and also in leaky rods. 

The protein compositions of ROS disk and plasma mem- 
branes are distinct (Kamps et al., 1982; Molday and Molday, 
1987). The plasma membrane contains about half as much 
rhodopsin as the disk membrane in addition to other compo- 
nents not present in disks. However, disk membranes are 
continually formed by protrusions of the ciliary plasma 
membrane at the base of the outer segments (Steinberg et al., 
1980). At this point the sorting of membrane proteins bound 
for disks and ROS plasma membrane must occur. Chaitin et 
al. (1984) found a high concentration of actin in this region, 
and they proposed it to be involved in protein sorting and 
membrane expansion. 

A characteristic of cyclic nucleotide regulatory sites is that 
they avidly bind analogues with substitutions on the C8 posi- 
tion. So far the presence of cyclic nucleotide binding sites has 
been demonstrated only in vitro with methods that do not 
provide information on their spatial distribution. To visual- 
ize this distribution in the vertebrate retina, we used ana- 
logues of the cyclic nucleotides cAMP and cGMP with a 
fluorescein group substituted on C8, and observed binding 
of the fluorescent cyclic nucleotides to retinal sections and 
isolated ROS by fluorescence microscopy. 
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Figure 1. Fluorescent cyclic nucleotide binding to frozen sections of unfixed retina. (a) SAF-cGMP (1 #M) staining of the outer segment 
layer. The labeling did not change with time after application of fluorescent nucleotide to the section. (b) Control section, with 1 #M SAF- 
cGMP and 100 #M 8-Br-cGMP added together. Autofluorescent ellipsoids can be seen on both sections. (c) SAF-cAMP (1/~M) staining 
of the retina. The ROS are unlabeled, but the inner segments, outer nuclear, outer plexiform, and inner nuclear layers are progressively 
labeled with time after application of the nucleotide. This section was incubated for 30 min. (d) Control section, incubated for 30 min 
with 1 /zM SAF-cAMP and 1 mM cAMP. Only the ellipsoid autofluorescence remains, p.e., pigment epithelium; o.s., outer segments; 
e., ellipsoids; o.n., outer nuclear layer; o.p., outer plexiform layer; i.n., inner nuclear layer; i.p., inner plexiform layer. Bar, 50 #M. 

Materials and Methods 

Synthesis of S-Thioacetamido-fluorescein Cyclic 
Nucleotides 
The fluorescent substitution on C8 of cAMP and cGMP was done by the 
method previously described for cGMP (Caretta et al., 1985), yielding 
8-thioacetamido-fluorescein (SAF)-cAMP and SAF-cGMP (Italian Patent 
Application 42506A/85). Briefly, cyclic nucleotides were transformed into 
the 8-Br derivatives by reaction with bromine (Muneyama et al., 1971; 
Miller et al., 1973). The 8-Br derivatives were reacted with thiourea to form 
the corresponding isothiouronium salts from which the 8-thioderivatives 
were obtained. Reaction of the 8-thioderivatives with iodacetamide fluores- 
cein (Molecular Probes Inc., Junction City, OR) gave the SAF derivatives. 
The products were purified by TLC on Silica gel (Merck 7774) with 
butanol/acetone/acetic acid/5% ammonia/water (35:25:15:14:16 [vol/vol]). 
Chemical characterization: SAF-cAMP: Rf = 0.7, ;km~x (alkaline methanol) 
= 492 nm; NMR shifts in DMSO (ppm): 10.81 (1), 10.20 (2), 8.29 (1), 8.19 
(1), 7.63 (ld), 7.56 (2), 7.28 (ld), 6.62 (6d), 5.68 (1); ~492 (alkaline metha- 
nol) = 72,000 M-Jcm -I (extrapolated to infinite dilution); solubility: 
alkali, DMSO. SAF-cGMP was previously described (Caretta et al., 1985). 

Fluorescence Microscopy of Frozen Retinal Sections 
Toad eyes (Bufo bufo) were rapidly frozen by plunging into liquid nitrogen- 
cooled pentane. 10-t~M sections were cut on a cryostat. The sections were 
air dried and stained with the SAF-cyclic nucleotides in 130 mM KC1, 20 
mM Tris-HC1, 0.5 mM EDTA, pH 7.6. They were used within 2 h of section- 
ing as they became increasingly autofluorescent. Mild paraformaldehyde 
fixation did not abolish the specific staining but caused additional non- 
specific binding that was not inhibited by competing nucleotides and was 
therefore avoided. To look at the spatial distribution of cyclic nucleotide 
binding sites, the tissue was placed in a dilute solution of the fluorescent 
nucleotide (1/~M was found to be convenient for viewing and photography) 
and equilibrium binding was observed with a Zeiss epifluorescence micro- 
scope. Photographs were taken with Ilford HP5 film, x25 objective, 15- 
30-s exposure. 

Isolated ROS 
ROS were isolated from dark adapted toad retinas by vortexing them in a 
small volume of the same buffer as above. The ROS suspension was mixed 
with SAF-cGMP and immediately observed in a Zeiss epifluorescence mi- 
croscope. Again, a SAF-cGMP concentration of 1/~M was used, but values 
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Table L Effect of Control Nucleotides on SAF-cGMP 
Labeling and on Permeability Activation of ROS 

Inhibition Permeability 
Nucleotide Concentration/mM of labeling activation 

SAF-cGMP 0.001 + 
cGMP 1" ±* ±* 
cGMP + IBMX 1.0 + 0.5 + + 
IBMX 0.5 - - 
8-Br-cGMP 0.03 + + 
8-thiobenzyl-cGMP 0.03 + + 
2',3'-cGMP + IBMX 1.0 + 0.5 - - 
deoxy cGMP + IBMX 1.0 + 0.5 - - 
GMP 1.0 - - 
GTP 1.0 - - 
cAMP 1.0 - - 

Results were identical for isolated ROS and retinal sections. Fluorescein alone 
did not cause any labeling. The permeability measurements were made as in 
Caretta et al. (1988). 
* True concentration not known because of hydrolysis. Intermediate levels of 
labeling and permeability activation were observed. 

between 0.3 and 15 #M gave similar results. The leaky ROS retained their 
structural integrity for up to 30 min at room temperature. Photographs were 
taken with llford HP5 film, xl00 objective, 45-60-s exposure. 

Resul t s  

Cyclic Nucleotide Binding Sites in Sections of  Retina 

When cryostat sections of unfixed, rapidly frozen mouse or 
toad retina were placed in a solution with 1 #M SAF-cGMP, 
the photoreceptor outer segments were promptly and strongly 
labeled. The outlines of the sectioned ROS were clearly visi- 
ble, despite the disruption due to sectioning of unfixed tissue 
(Fig. 1 a). This distribution was not due to impeded diffusion 
of the fluorescent nucleotide, because antibodies diffuse 
freely into the ROS in cryostat sections, giving uniform 
labeling of disk membrane antigens (see, for example, Lerea 
et al., 1986). There was an area of brighter labeling at the 
base of the ROS, in the region where the inner segment mem- 
brane extends calycal processes around the outer segment, 
just above the ellipsoids. 8-Br-cGMP abolished the ROS 
staining (Fig. 1 b) indicating competition for a cGMP bind- 
ing site. Only a bright autofluorescence in the ellipsoids re- 
mained in this case. Other retinal layers were not labeled by 
SAF-cGMP. When the toad retina sections were stained with 
SAF-cAMP (1 #M), strong labeling appeared in the pho- 
toreceptor inner segments, outer nuclear and outer plexiform 
layers, but not in the outer segments of the photoreceptors 
nor in the inner plexiform or ganglion cell layers (Fig. 1 c). 
This labeling was reduced by simultaneous addition of 1 mM 
cAMP (but not by other nucleotides, the adenine nucleotide 
equivalents of Table I), indicating that specific cAMP bind- 
ing sites were visualized (Fig. 1 d). Unlike the staining with 
SAF-cGMP, this labeling increased over a 30-min incuba- 
tion. A similar labeling pattern, was observed in mouse reti- 
nal sections (not shown). Neither SAF-cGMP nor SAF-cAMP 
labeling was reduced by isobutylmethylxanthine (IBMX), a 
ligand for the catalytic site of phosphodiesterase, ruling out 
binding of fluorescent nucleotides to these sites. 

cGMP Binding Sites in ROS 

To obtain better resolution of the SAF-cGMP labeling, a sus- 

pension of isolated toad, mouse or bovine ROS was observed 
in the presence of 1 #M SAF-cGMP. It is known that when 
isolated ROS are treated with a membrane impermeant 
fluorescent dye, e.g., N,N'-didansylcystine, some are found 
to be leaky and allow penetration of the dye into the cytoplas- 
mic space, which appears uniformly fluorescent, whereas 
others are sealed and exclude the dye (Yoshikami et al., 
1974). Only some of the ROS were labeled with SAF-cGMP, 
and the fluorescence labeling was not uniform. When "the 
edges of the cylindrical ROS were in focus, the label was in 
a bright line defining their surfaces and there was weak 
fluorescence in the interior of the ROS (Fig. 2, a and b). This 
peripheral labeling could not be attributed to refraction 
effects because it could be observed in a 35 % sucrose solu- 
tion, nor could it be ascribed to restricted diffusion of the 
fluorescent nucleotide within the ROS, since the interior of 
labeled ROS at high SAF-cGMP concentrations (e.g., 15 
#M) was almost as bright as the background fluorescence of 
free labeled nucleotide. By comparison, immunofluorescent 
labeling of rhodopsin or transducin gives uniformly fluores- 
cent ROS (Witt et al., 1984). In deteriorating ROS (i.e., >1 h 
old) the separating disk stacks appeared dark, while the 
fluorescent surface layer could be seen to aggregate and de- 
tach from the disk stacks. Addition of 100/~M 8-Br-cGMP 
with 1 #M SAF-cGMP completely abolished the peripheral 
labeling (Fig. 2 c), but leaky ROS could still be discerned 
since they were slightly brighter than the background, proba- 
bly because of nonspecific binding (Fig. 2 c). In bright field 
they could not be distinguished from sealed ROS (Fig. 2 d). 
By focussing on the top and bottom surfaces of the toad ROS 
so that the plasma membrane was viewed face on instead of 
edge on, areas of brightly stained lines and rings were often 
seen at one end of the ROS (Fig. 2 e). When the focus was 
on the outline of the ROS, this region appeared as a bright, 
diffuse band (Fig. 2 b, left). This may correspond to the band 
of brighter staining at the bases of the ROS in the section 
(Fig. 1 a). These observations are consistent with a high den- 
sity of cGMP binding sites in the calycal processes. 

Nucleotide Specificity 

A series of control experiments was done to establish the 
nucleotide specificity of the binding sites for SAF-cGMP, 
both in retinal sections and in isolated ROS (Table I). 
Provided that IBMX was present to slow down its hydrolysis 
by phosphodiesterase, cGMP or the 8-substituted analogues, 
added simultaneously with SAF-cGMP, blocked the fluores- 
cent labeling. Other analogues were ineffective at competing 
for the SAF-cGMP binding sites. This series is compared to 
the nucleotide specificity for activating the membrane per- 
meability (Table I). Labeling of ROS plasma membranes is 
abolished by nucleotides which activate the cation channels. 
In vitro these compete with SAF-cGMP for binding sites on 
photoreceptor membranes (Caretta et al., 1985). The larger 
and more hydrophobic the substituent on C8, the higher the 
affinity. Analogue concentrations at half-maximal activation 
of the cation conductance are given by Caretta et al. (1985). 
The cGMP binding sites and the cGMP activated permeabil- 
ity also show the same sensitivity to detergent and urea treat- 
ment and resistance to trypsin (Capovilla et al., 1983). 
Labeling of noncatalytic sites on the phosphodiesterase is ex- 
cluded by in vitro binding studies in which removal or read- 
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Figure 2. Fluorescent cGMP binding sites in isolated toad ROS. (a and b) ROS in 1 #M SAF-cGMP. An end-on view can be seen in the 
lower part of a, where a short fragment is oriented vertically, giving a broken, circular profile. The scalloped edges of its plasma membrane 
can be seen to follow the pattern of disk incisures. In the lower part of b, a sealed ROS is seen as a dark area. Gradations of fluorescent 
intensity are apparent within the labeled ROS. However, the darker areas may be due to depletion of label by photobleaching during the 
photographic exposure in regions of the ROS far from open ends or breaks in the plasma membrane. (c) Control, 100 #M 8-Br-cGMP 
was added with the 1 #M SAF-cGMP. No staining is observed, and the leaky rods can be barely detected as slightly lighter than the 
1 #M SAF-cGMP background, while the sealed rod is slightly darker. (d) Bright field image of the area in c. (e) Four views of the end 
structure, in which cGMP binding sites are seen in a series of stripes when the plane of focus is at the top or bottom surface of the rod 
instead of at the midplane. The very bright area at the bottom left is a photoreceptor ellipsoid, containing mitochondria. These showed 
bright autofluorescenee, which was independent of all added nucleotides. Bars, (a, b, and e) 10 #M; (c and d) 40 #m. 

dition of the phosphodiesterase has no effect on SAF-cGMP 
binding (Caretta et al., 1988). 

Discussion 

The most likely identity of the SAF-cGMP binding sites is 
the cGMP receptor of  the cation channel that mediates the 
electrical response of photoreceptors to light (see Stryer, 
1986). Only cGMP analogues that activate the cation con- 
ductance gave competitive inhibition of labeling. The pro- 
teins specific to ROS plasma membrane observed by Kamps 
et al. (1982) and Molday and Molday (1987) probably in- 
clude the putative cGMP activated channels isolated by Cook 

et al. (1987) and/or Matesic and Liebman (1987). Our label- 
ing provides the first evidence for a dramatic difference in 
the density of  cGMP binding sites in plasma and disk mem- 
branes of ROS. Sorting of membrane proteins into disk sur- 
face, disk rim, and plasma membrane is thought to occur as 
new membrane is formed at the inner face of  the connecting 
cilium (Steinberg et al., 1980). During this process, the 
cGMP binding protein may interact with the ciliary cytoskel- 
eton to effect its partitioning to the plasma membrane. We 
were able to detect plasma membrane labeling above the 
background at free SAF-cGMP concentrations from 0.3 to 
15 #M. Assuming our lower limit of  detection is 0.3 #M, this 
sets an upper limit of 0.3 #M to the cGMP binding site con- 
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centration in disk membranes. Above 15 #M the fluores- 
cence started to show quenching. Thus, the cGMP binding 
site concentration in the plasma membranes is at least 15 
#M, as it was visible against a background fluorescence con- 
centration of 15 #M. In binding studies, it was determined 
that ~10 ~ SAF-cGMP binding sites are present per bovine 
ROS (Caretta et al., 1985). Localization within *100/~m 2 
of plasma membrane implies that their density in bovine 
ROS plasma membrane is ,,ol,000 #m -2, even if the disk 
membranes are assumed to contain 0.3 ttM binding sites. 
This predicts a plasma membrane concentration of binding 
sites much higher than 15/~M, the maximum we can mea- 
sure by fluorescence. 

A significant proportion of the binding sites is present in 
the linear structures at the bases of the ROS (Fig. 2 e), which 
are likely to be identical with the inner segment calycal 
processes. These processes, whose function is unknown, 
consist of extensions of the inner segment plasma membrane 
enclosing bundles of actin filaments (Burnside, 1978; Stein- 
berg et al., 1980). They can remain partially intact in dis- 
sociated toad ROS (Spencer et al., 1988). With fluorescent 
actin staining, they appear as slightly tapered structures (Del 
Priore et al., 1987). It is interesting to note that the calycal 
processes of dark-adapted toad rods contain 48k protein, 
which shifts to the outer segments in the light (Mangini and 
Pepperberg, 1988). 48k protein is a soluble component of the 
photoreceptors, also known as retinal S antigen or arrestin, 
because of its involvement in autoimmune uveoretinitis, and 
its role in quenching light activation of the cGMP phospho- 
diesterase, respectively (for references see Mangini and Pep- 
perberg, 1988). Taken together, these observations suggest 
a possible participation of the inner segment calycal pro- 
cesses in visual transduction. 

The observation of cAMP binding to noncatalytic sites in 
central layers of the retina is novel, and provides a morpho- 
logical basis for further studies of cAMP regulation in the 
retina. The high concentration of cAMP binding sites found 
in the photoreceptor inner segments (Fig. 1 c) may be related 
to the mechanisms of photomechanical movement in lower 
vertebrate rods and cones analyzed by Burnside and her col- 
leagues (see Burnside and Ackland, 1987). Their studies on 
the motility mechanism, mainly in teleost cones, have shown 
that cAMP-dependent protein kinase inhibits myosin light 
chain kinase, preventing myoid contraction in cones. A simi- 
lar system operates in rods, although cAMP stimulates myoid 
contraction. Our labeling is consistent with a major regula- 
tory role for cAMP in toad photoreceptor inner segments and 
the most likely identity of the binding site is cAMP-depen- 
dent protein kinase. However, we have also observed label- 
ing in the inner segment layer of mouse retina, which does 
not exhibit photomechanical movements of its photorecep- 
tors. cAMP binding sites in the outer plexiform/inner nu- 
clear layers may be related to the role of cAMP in regulating 
gap junction coupling of horizontal cells (Piccolino et al., 
1984). A dopamine-activated adenylate cyclase reduces re- 
ceptive field size by reduction of gap junction permeability, 
perhaps via a cAMP-dependent kinase. 

In summary, this work demonstrates a simple method for 
localizing regulatory cyclic nucleotide binding sites in cells 
and tissues, and allows the correlation of physiological, mor- 
phological and biochemical observations. 
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