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Abstract

Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological
conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of
enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination.
The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies
have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that
USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for
cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer
progression and discuss the development of USP inhibitors for cancer therapy in the future.
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Background
After translation, most proteins can undergo various mod-
ifications, namely, phosphorylation, acetylation, methyla-
tion, sumoylation, glycosylation and ubiquitination, to
modulate their activity. Posttranslational modification
(PTM) of proteins is an important component of all
physiological processes that functions by regulating vari-
ous pathways, including protein degradation, DNA repair
activity, gene regulation and signal transduction [1].
Evolutionarily higher plants and animals have more com-
plex PTMs, indicating that the PTM process is beneficial
to supporting the progression of life [2]. Ubiquitin is a
small 76-amino-acids protein that can be conjugated to
specific target proteins in various forms, namely, polyubi-
quitination and monoubiquitination. Three types of
enzymes, namely, ubiquitin-activating enzymes (E1s),
ubiquitin-conjugating enzymes (E2s), and ubiquitin ligases
(E3s), are responsible for adding the ubiquitin into target
proteins [3]. Seven lysine residues in ubiquitin provide dif-
ferent types of linkages, including monoubiquitination,
polyubiquitination and branched ubiquitination, to regu-
late the different functions of target proteins [4]. Protein

monoubiquitination affects DNA repair activity, gene
regulation, molecule trafficking and endocytosis [5].
Lys48-linked protein polyubiquitination affects protein
degradation in a 26S proteasome-dependent manner.
Lys63-linked protein polyubiquitination is involved in
DNA repair activity, signal transduction, trafficking and
endocytosis [6]. Branched ubiquitination of proteins, such
as in the APC/C complex, is also associated with 26S
proteasome-dependent degradation [4]. All types of ubi-
quitination as a protein modification are crucial to main-
taining normal physiological conditions [7]. Dysregulation
of protein ubiquitination leads to many diseases, including
degenerative diseases and cancer [8, 9].
Deubiquitinases (DUBs) are a group of enzymes that

are able to remove ubiquitin from ubiquitinated pro-
teins, including monoubiquitinated, polyubiquitinated
and branch polyubiquitinated proteins, leading to the
regulation of the stability or activity of the target pro-
teins [10, 11]. More than one hundred deubiquitinases
that regulate all protein deubiquitination have been
identified in humans. DUB members can be divided into
five types: ubiquitin-specific proteases (USPs), ovarian
tumor proteases (OTUs), ubiquitin C-terminal hydrolases
(UCHs), Machado-Joseph disease protein domain prote-
ases (MJDs) and JAMM motif proteases [12, 13]. USPs,
OTUs, UCHs and MJDs are cysteine-dependent proteases
[14, 15]. The JAMM motif is a metal-dependent protease
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[14, 15]. Most of these enzymes exert their functions by
reversing the polyubiquitination or monoubiquitination of
target proteins. An increasing number of studies have
indicated that dysregulation of the DUB causes mal-
function of the ubiquitin system, which can either in-
crease the effects of oncogenes or decrease the tumor
suppressor gene activity. Herein we collected and or-
ganized all recent studies that address the roles of
each USP in cancer progression.

The roles of USPs in tumorigenesis
Many studies indicate that USPs regulate tumor forma-
tion by modulating the proliferation and death of cancer
cells. All USPs and their substrates are shown in Table 1.

USPs are involved in cell cycle progression
Protein ubiquitination is important for the regulation of
cell cycle progression. Ubiquitinases, namely, E1/E2/E3,
are well studied. Recently, several deubiquitinases have
been reported to be involved in cell cycle progression.
USP2 and USP22 can stabilize cyclin D1 to promote cell
cycle progression [16, 17]. A recent study also revealed
that a small molecule, ML364, can inhibit USP2 to pro-
mote degradation, leading to cell cycle arrest [18]. USP7
has been reported to promote the growth of non-small
cell lung cancer cells by stabilizing Ki-67 protein [19].
However, metformin can inhibit esophageal cancer pro-
liferation through the upregulation of USP7, suggesting
that USP7 has different effects on tumorigenesis in the
different cancer types [20–22]. USP24 stabilizes securin
to block the cell cycle progression from metaphase to
anaphase, leading to cell cycle arrest [23]. According to
previous studies, APCC, as an E3-ligase in mitosis, regu-
lates many factors, including securin, to promote cell
cycle progression [24]. In addition to E3-ligases, deubi-
quitinases, such as USP24, may also be important for
cell cycle progression [23]. More evidence is needed to
support the hypothesis that downregulation of USP24 in
mitosis is induced by APCC. USP37 also regulates the
stability of oncogenic fusion protein PLZF/RARA [25].
USP37 links REST to the control of p27 stability and cell
proliferation [26]. USP44 promotes prostate cancer
tumorigenesis by stabilizing EZH2 [27]. USP44 also in-
duces DNA aneuploidy in gastric cancer, which may in-
duce cell cycle arrest and apoptosis [28]. Therefore,
USP44 is a tumor suppressor against chromosome misse-
gregation [29]. In addition, USP44 function as an integral
component of N-CoR to regulate gene expression [30].

USPs-stabilized c-Myc promotes cancer formation
c-Myc is an oncogene that regulates gene expression
and cell cycle progression. USP2 is reported to be in-
volved in activating the c-Myc pathway to regulate pros-
tate cancer formation [31]. USP10 can stabilize c-Myc

expression [32]. USP22 promotes the proliferation, mi-
gration and invasion abilities of glioma, gastric cancer
and colorectal cancer [33–35]. In addition, USP22 stabi-
lizes c-Myc to promote breast cancer progression [36].
USP28 contributes to the proliferation and metastasis of
gastric cancer [37]. The loss of USP28 enhances the ra-
diosensitivity of esophageal cancer cells via the c-Myc
pathway [38]. USP36 stabilizes c-Myc to promote ovar-
ian cancer formation [39]. USP37 directly stabilizes
c-Myc in lung cancer [40]. All the studies reveal that
USPs are important in regulating c-Myc stability during
tumorigenesis.

USPs regulate apoptosis-related factors
p53 is a tumor suppressor, and p53 degradation or mu-
tations are critical factors in cancer formation [41]. Sev-
eral E3 ligases, such as MDM2, have been well studied
[42]. Recent studies have also indicated that several deu-
biquitinases are involved in the regulation of p53 deg-
radation [43]. USP2 and USP7 stabilize MDM2 and
MDM4 to degrade p53, leading to an anti-apoptosis
phenotype [44–46]. USP4 and USP5 inhibit p53 expres-
sion, but the molecular mechanism has yet to be eluci-
dated [47–49]. USP10 can interact with G3BP2 to block
p53 signaling and subsequently contributes to a poor
prostate cancer prognosis [50]. However, in lung cancer,
USP10 can inhibit cell growth and invasion by stabilizing
PTEN, suggesting that the roles of USP10 in the differ-
ent cancer types are distinct [51]. USP15 stabilizes
MDM2 to regulate p53 and NFATc2 in cancer cells and
T cells, respectively, resulting in tumor cell apoptosis
and antitumor T cell responses [52]. USP24 can stabilize
p53 but not c-Myc to inhibit tumorigenesis. USP42 was
reported to stabilize TP53, but USP42 knockdown in-
hibits cancer formation, implying that other unknown
factors related to cancer formation may exist [53]. USP2
stabilizes MDM2 and MDM4 to inhibit the Fas/p53
pathway during tumorigenesis [46, 54]. USP5 inhibits
the p53 pathway [55]. USP7, USP10 and USP24 can
stabilize p53 to inhibit cancer formation [45, 56, 57].
Our previous studies indicated that USP24 is downregu-
lated in patients with early stage lung cancer. Overex-
pression of USP24 induces apoptosis by stabilizing
securin and Bax, respectively [23]. USP27X stabilizes
BCL2L11 to increase the anti-apoptotic effects of MAPK
activity [58]. USP30 also participates in inhibiting apop-
tosis by stabilizing Parkin [59].

The roles of USPs in cancer malignancy
Disrupted regulation of protein ubiquitination is a trig-
ger of various diseases, including cancer. An increasing
number of USPs have been shown to be involved in can-
cer malignancy. All USPs that are involved in cancer
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Table 1 Human ubiquitin specific proteases (USPs) and their reported functions in the cancer progression

Gene symbol Cellular location Substrate Function and remarks in
cancer

Inhibitor References

USP1 N FANCD2
PCNA

DNA repair; Oncogene Pimozideb, ML323,
GW7647, C527, 6-
Amino-pyrimidines,
SJB2-043, SJB3-019A,
PR619

[92, 110–114]

USP2 C, N Fatty acid synthase,
cyclin D1, MDM2 and 4

Fas/p53, NF-κB,
c-Myc; Oncogene

NSC632839, AM146,
RA-9, RA-14, 2-cyano-
pyrimidines and -
triazinesb, ML364, PR619

[18, 31, 44, 114–122]

USP3 N H2A, H2B DDR, Oncogene [123–125]

USP4 C, N TRAF2, TRAF6 TGFβ, NFκB, Wnt,
p53; Oncogene

Vialinin A, PR619 [81, 114, 126–128]

USP5 L, V, Ca p53, DDR, Oncogene G9, Vialinin A,
WP1130, EOAI3402143,
AM146, RA-9, RA-14,
PR619

[49, 93, 106, 114, 118, 127,
129–132]

USP6 Golgi, C NFκB activation;
Oncogene
or Suppressor

[133]

USP7 N, C, PML body HDM2, p53, H2B, TP53,
MDM2 & 4, FOXO4,
PTEN

Oncogene P5091, Cpd14,
P22077, HBX41108,
HBX 19818, HBX
28258, NSC632839,
WO2013030218,
P0050429,
W02013030218,
PR619

[114, 117, 121, 134–146]

USP8 C, N NRDP1, RNF128, STAM2 Oncogene HBX90397, HBX41108,
AM146, RA-9, RA-14,
Ethyloxyimino-9H-
indeno[1,2-b]
pyrazine-2,3-
dicarbonitrile, PR619

[95, 114, 118, 147–150]

USP9X C, E, L, V β-catenin, epsins, AF-6,
SMAD2

TGFβ, Mcl-1, ERG, AGS-3,
ITCH, Wnt, Notch;
Oncogene or suppressor

G9, WP1130, PR619 [106, 107, 114, 130–132, 151–
154]

USP9Y C Spematogenesis [155]

USP10 C, N TP53, SNX3, CFTR c-Myc, p53; Oncogene
or suppressor

P22077, HBX19818,
Spautin-1, PR619

[32, 56, 114, 156–158]

USP11 N, C BRCA2, NFκBIA DDR, NFκB; Oncogene Mitoxantroneb [70, 104, 159–161]

USP12 Androgen receptor Oncogene GW7647 [92, 162–164]

USP13 L, V, C, Na MCL1, BECN1, USP10 Spautin-1 [157, 165–167]

USP14 C, PM Wnt; Oncogene VLX1570b, IU1,
WP1130, b-AP15,
AC17, Auranofinb,
Tricyclic heterocyclics,
Azepan-4-ones,
PR619

[106, 114, 132, 168–175]

USP15 C, N RBX1, SMAD1, 2, 3 & 7 NFκB, Wnt; Oncogene PR619 [114, 176–179]

USP16 N H2A Chromosome
condensation;
Oncogene

PR619 [114, 180–183]

USP17 SUDS3 Oncogene [184–186]

USP18 C, N TAK1, TAB1, PTEN JAK-STAT, NFκB;
Oncogene

[187, 188]

USP19 ER RNF123 ERAD PR619 [114, 189–191]
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Table 1 Human ubiquitin specific proteases (USPs) and their reported functions in the cancer progression (Continued)

Gene symbol Cellular location Substrate Function and remarks in
cancer

Inhibitor References

USP20 C, N, DIO2, ADRB2, TRAF6, Tax Thyroid hormone,
hypoxia, NFκB;
Oncogene

PR619 [114, 192, 193]

USP21 C, N H2A, RIPK1, DDX58,
GATA3, IL33

NFκB, NEDD8;
Oncogene

[72, 194–198]

USP22 N H2A c-Myc; Oncogene PR619 [114, 199–202]

USP24 C TP53, DDB2, MCL1, Bax,
p300, E2F4, securin,
βTrCP

Cell growth repressor;
Metastasis promoter;
Overexpression in M2
macrophages

G9, PR619 [23, 57, 75, 106, 114, 130, 131,
203]

USP25 C, N DDX58 ERAD; Oncogene [204–206]

USP26 N (testis) AR Spermatogenesis [207–209]

USP27X BCL2L11 tumor suppressor [58, 210]

USP28 N CLSPN, c-MYC;
Oncogene or suppressor

PR619 [114, 211, 212]

USP29 Na p53 pathway; Oncogene [213, 214]

USP30 M MFN1, MFN2, DRP1,
Parkin

Hepatocarcinogenesis [215–217]

USP31 N, C Inhibition of NFκB [218]

USP32 PM, Golgi Oncogene [219]

USP33 C, N, centrosome HIF1-α DIO2, ADRB2,
CCP110, ARRB

Tumor suppressor [192, 220–223]

USP34 C, N, PM,
Extracellular

AXIN1, AXIN2, Activation of Wnt;
Inhibition of
EMT and cancer
stemness

[102, 224]

USP35 Na ABIN-2, Aurora B Tumor suppressor
through
inactivating NFκB

[225, 226]

USP36 N c-Myc Oncogene

USP37 N, c-Myc Increase in DNA damage
repair;
Oncogene

USP38 C, N, GAa

USP39 N Oncogene

USP40 C, N, PM

USP41 Na

USP42 Na TP53 p53; Oncogene [53, 227, 228]

USP43 Na H2BK120 Tumor suppressor

USP44 N CDC20, EZH2 Oncogene [229]

USP45 C, N

USP46 L, Va Oncogene Pimozideb [113]

USP47 C POLB Oncogene P5091, Cpd14,
P22077, PR619

[114, 136, 137, 139, 230]

USP48 C, N Gli1 Oncogene PR619 [114]

USP49 N H2B Tumor suppressor [231]

USP50 Na G2/M checkpoint [232]

USP51 Na

PAN2 C, N
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malignancy through the regulation of different pathways
are then discussed.

USPs are involved in EMT and the stemness of cancer
USP11 stabilizes Snail to promote EMT in ovarian can-
cer [60]. USP24 also enhances TGFβ-induced EMT and
metastasis of breast cancer [61]. Several previous studies
have indicated that USP21 affects stem cells by stabiliz-
ing Nanog and IL8 [62]. Inhibition of USP34 induces
EMT and stemness in mammary epithelial cells [63].
Previous reports indicated that USP47 promotes colo-
rectal cancer EMT and malignancy by stabilizing Snail
and activating the Wnt signaling pathway [64].

USPs regulate related pathways to control cancer
metastasis
According to previous studies, several important cancer-
related pathways are regulated by various USP members.
The JNKs-STATs compose an important pathway for

cancer malignancy. Recent studies indicated that STAT3
activation represses USP7, leading to colon cancer devel-
opment [65]. Another recent study indicated that USP3
mRNA functioned as a sponge for miR-224 to increase
the level of SMAD4, resulting in colorectal cancer me-
tastasis [66]. However, the role of USP3, as a deubiquiti-
nase, is still not known [67]. CYLD controls c-Myc
expression through a JNK-dependent signaling pathway
in hepatocellular carcinoma [68].
The NFκB pathway is important for physiological and

pathological progression, including inflammation and
cancer progression. Many recent studies have shown
that ubiquitination regulates not only protein degrad-
ation but also protein activity by modulating the inter-
action between proteins. Several USPs have been
reported to be involved in the NFκB pathway [69]. USP6
is involved in the activation of the NFκB pathway, thus
positively regulating tumorigenesis; however, the mo-
lecular mechanism is not yet known. USP11 can nega-
tively regulate the NFκB pathway by stabilizing IκB [70].

USP18 inhibits the NFκB pathway by targeting TAK1
and NEMO for deubiquitination [71]. USP21 stabilizes
IL33 to increase the signal transduction of NFκB [72].
Many studies have revealed that CYLD can inhibit NFκB
signal transduction by regulating various factors, such as
TRAF2/6, NEMO and Tak1 [73]. The polyubiquitination
of TRAFs can increase the recruitment of other related
proteins to induce the NFκB signaling pathway. USP4
and USP20 can promote the cell migration and invasion
activities in breast cancer by inhibiting NFκB activation
via deubiquitination of TRAF2 and TRAF6 [74]. Our re-
cent study also indicated that USP24 can induce the
NFκB pathway by stabilizing the βTrCP, which is the
E3-ligase of IκB and DNMT1, causing the degradation
of IκB and DNMT1 [75]. Regulation of USP35 by the
miR let-7a can inhibit NFκB activation via deubiquitina-
tion and stabilization of ABIN-2 protein to inhibit can-
cer progression [76].
The TGFβ pathway is involved in several aspects of

cancer progression, including cancer malignancy [77].
Different USPs regulate the TGFβ pathway by stabilizing
different factors in this pathway [78]. USP4 and USP15
can stabilize TGFβ receptor type 1 to increase
TGFβ-mediated EMT, leading to metastasis of hepato-
cellular carcinoma and glioblastoma [79–81]. A recent
study indicated that a long noncoding RNA, H19, can
compete with the binding of miR-148a to USP4 mRNA
to increase the signaling activity of TGFβ [82]. USP9X
can control the monoubiquitination of SMAD4 to regu-
late TGFβ-mediated cancer metastasis [83]. According
to previous studies, USPs are crucial for the regulation
of the TGFβ-mediated pathway [84].
The Wnt pathway is important for cancer EMT and

metastasis [85]. USP4 can positively regulate the Wnt
signaling in colorectal cancer [86]. Previous studies indi-
cated that USP9X increases adhesion by destabilizing
β-catenin [87]. USP14 and USP34 are required for Wnt
signaling, but the detailed molecular mechanism is not
yet known [88].

Table 1 Human ubiquitin specific proteases (USPs) and their reported functions in the cancer progression (Continued)

Gene symbol Cellular location Substrate Function and remarks in
cancer

Inhibitor References

USP53 Golgi, Na

USP54 Ma Oncogene

USPL1 N, Cajal body

DUB3 H2AX G2/M checkpoint;
Cancer associated

[233, 234]

CYLD C, N, PM TRAF2/6, NEMO, TRPA1,
Tak1, Lck,
Bcl3, Dvl, DDX58,
K63polyUb-RIPK1,
K63polyUβ-IKBKG

NFκB and JNK-STAT;
Familial tumor
suppressor

[68, 235–239]

The roles of USPs in the cancer progression. apredicted; C: Cytoplasm; N: Nucleus; L: Lysosome; V: Vacuole; ER: Endoplasmic reticulum; M: Mitochondria;
E: Endosome; bClinic trial on going (https://clinicaltrials.gov/ct2/home)
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USPs are involved in the tumor-associated microenvironment
Our recent study found that USP24 is increased in M2
tumor-associated macrophages (TAMs), thereby pro-
moting lung cancer malignancy through an increase in
IL6 expression [75]. Increasing evidence indicates that
TAMs are important for cancer malignancy and drug re-
sistance [89–91]. Therefore, more USPs that are involved
in regulating the tumor-associated microenvironment
are expected to be identified in the future.

The roles of USPs in DNA damage repair activity
DNA damage repair activity is related to the genomic in-
tegrity. A decrease in the DNA damage repair activity
causes drug resistance under drug treatment, such as
chemotherapy. According to recent studies, many deubi-
quitinases are involved in DNA damage repair pathways,
indicating that deubiquitinases may be important for the
induction of drug resistance. USP1 participates in restor-
ing sensitivity to cisplatin in drug-resistance lung cancer
cells by stabilizing FANCD2 [92]. USP3, 5 and 11 have
been reported to be involved in increasing DNA damage
repair activity by activating the DDR pathway [67, 93,
94]. USP8 may participate in TKI-induced drug resist-
ance by increasing the levels of several receptor tyrosine
kinases, including EGFR, ERBB2, ERBB3, and MET [95].
However, no substrate has been found to date. A recent
study indicated that USP14 may be involved in cisplatin
resistance by modulating the Akt/ERK signaling pathway
in gastric cancer [96]. USP21 increases DNA repair and
tumor growth by stabilizing BRCA2 [97]. USP22 pro-
motes resistance to EGFR-TKIs by stabilizing EGFR in
EGFR-mutant lung adenocarcinoma [98]. A recent study
also indicated that the loss of USP22 causes to myeloid
leukemia upon Kras activation through a PU.1-depen-
dent mechanism [99]. USP22 induces cisplatin resistance
in lung cancer by regulating γH2AX-mediated DNA
damage repair and Ku70/Bax-mediated apoptosis [100].
USP22 knockdown increases the chemosensitivity of he-
patocellular carcinoma cells to 5-FU by upregulating
Smad4 and suppressing Akt [101]. USP26 is involved in
the HR-dependent repair pathway. USP34 inhibits EMT
and cancer stemness and may therefore induce more re-
sistance to the drug treatment [102]. USP26 and USP37
participate in HR repair pathway by counteracting
RAP80 [103]. USP47 promotes gastric cancer growth by
regulating RelA. Many USPs discussed here are involved
in DNA damage repair pathways, suggesting that USPs
may be the potential targets for drug development of
drug resistance in the future.

USPs as targets for drug development in cancer prevention
In the past ten years, an increasing number of studies
have indicated that most of USPs positively regulate can-
cer progression, including cell growth and malignancy.

Recently, more inhibitors of USPs have been identified
(Table 1). Most of the inhibitors can block more than
one USP. Thus, increasing the specificity and effect of
the inhibitors should be important in the future develop-
ment. Herein we discussed how to develop a specific in-
hibitor of USPs. The development of USP inhibitors has
resulted in a range of small molecule inhibitors and has
been summarized in previous reviews [104, 105]. Many
identified USP inhibitors have been suggested to have
paninhibitory activity [104, 105]. For example, com-
pound WP1130 has a broad panenzymatic DUB profile
and can directly inhibit USP9x, USP5 and USP14
[106, 107]. However, this paninhibition may produce un-
wanted side effects. Designing a drug targeting a specific
USP has proven challenging. This is due to the similarity
of the conserved catalytic domain of the USP family.
Therefore, identifying nonconserved regions is useful for
designing specific USP inhibitors. In addition, further re-
search on the interactions between compounds and the
USP catalytic site is needed.
Sequence conservation analysis can provide clues for

designing a selective inhibitor against a target protein.
Using the crystal structure of a target protein, re-
searchers can infer interactions in the catalytic domain
to identify and design selective inhibitors. A sequence
conservation analysis of USP was performed for this re-
view. USP domain sequences were obtained from the
UniProt Consortium [108]. A multiple sequence align-
ment (MSA) was performed using T-Coffee (http://tcof
fee.crg.cat). Next, the MSA was submitted to the Con-
surf server (http://consurf.tau.ac.il/2016/) to identify
conserved and nonconserved sequences. Each residue
position was assigned a conservation score from variable
(1) to conserved (9). Finally, the conservation score was
mapped to the structure of USP7. Conserved and non-
conserved regions exist in the USP catalytic domain
(Fig. 1). For example, USP7 residue F409 has a high
conservation score of 9. Residue F409, when USP7 is
in complex with an inhibitor, adopts a conformation that
produces a hydrophobic region that can be exploited by
an inhibitor [109]. With the absence of crystal structures
in complex with an inhibitor for other USP family mem-
bers, analyzing the catalytic domain sequence remains
crucial for designing possible inhibitors.
The sequence conservation analysis of the catalytic do-

main produced two nonconserved regions, designated
Site 1 and Site 2. These are unique regions that vary be-
tween the USP family members and may be used to de-
sign a selective compound (Fig. 1a). The side chains of
USP7 residues Q297 and Q351 are angled toward the
Site 1 region. This allows possible hydrogen bond forma-
tion between a compound and USP7. However, the se-
quence analysis revealed different types of amino acids
in these positions for USP family members. For instance,
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residue Q297 of USP7 is replaced by an alanine residue
in USP18 and 54 (Fig. 1b). The alanine residue contains
a shorter side chain than USP7 residue Q297. Further-
more, the alanine residue would not facilitate a hydrogen
bond with its side chain. As a result, the catalytic region
at Site 1 may be larger in other USP family members.
This suggests that a compound with a larger nonpolar
functional group would form additional van der Waals
interactions with alanine. Such molecules may be more
selective toward USP family members with alanine in
this position. Many USP family members contain a
serine at the 351 position (Fig. 1b). The serine side chain
is shorter than the glutamine residue side chain. USP18
and USP41 contain an alanine and a threonine residue
at the USP7 residue Q297 and Q351 position, respect-
ively (Fig. 1b). This would suggest a larger Site 1 region.
For example, the analysis suggests that USP18 and
USP41 may have a larger Site 1 region. This region can
accommodate a larger compound as well as a possible
hydrogen bond with the threonine side chain to yield a
selective USP18 or USP41 inhibitor. Finally, USP7

residue M410 occupies a region in the periphery of the
USP7 catalytic site. Many USP family members contain
residues at this position that are negatively charged. The
presence of glutamate and aspartic acid residues at this
position may form a salt bridge with a compound that
has a positively charged functional group to make a spe-
cific interaction. Thus, the sequence conservation ana-
lysis suggests that a nonconserved pocket can be used to
design selective USP inhibitors.
Site 2 is the other identified nonconserved region. This

region consists of USP7 residues M292, N460 and H461
(Fig. 1a). According to the reference structure USP7, the
side chains of residues at positions 292 and 460 face
away from the catalytic region. This suggests that no dir-
ect interactions between compounds and the residue
side chain occur with this region. However, the residue
type at position 461 in USP7 is variable among the USP
family (Fig. 1b). The side chain of residue USP7 H461
points inwards toward Site 2. This suggests that interac-
tions at this position can greatly aid in USP selectivity.
For example, USP12 contains an asparagine residue at

Fig. 1 The USP family of proteins contain conserved and nonconserved catalytic regions. a Conservation score of the USP residue. The structure
of USP7 (PDB ID: 5N9R) is used as a reference. Regions are shaded in blue, indicating nonconserved, or red, indicating conserved. The insert
shows USP7 catalytic site residues and cocrystal ligand (yellow) as a stick model. The sequence pattern for the USP protein family is shown, with
the USP7 sequence as a reference. Sites are highlighted as shown. The green line denotes the hydrogen bond. b Sequence alignment of Site 1
(green) and Site 2 (yellow). The sequence pattern figure was produced using the weblogo3 server (http://weblogo.threeplusone.com/create.cgi).
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this position and can form a hydrogen bond with a com-
pound in this region. Possible hydrogen bond formation
is also observed at this position with a serine residue in
USP37. USP37 may also have a larger catalytic region at
Site 2 due to the shorter side chain of serine. As a result,
USP37 may be able to accommodate a compound with a
larger moiety at Site 2. In total, the sequence conserva-
tion analysis identified two nonconserved sites. Interac-
tions with the nonconserved sites present the possibility
of designing a selective UPS inhibitor.

Conclusion
Post-translational modification of protein is important
for maintaining the physiological function. Dysregulation
of protein ubiquitination will induce many diseases, such
as cancer. E1/E2/E3-ligases and deubiquitinases regulate
protein ubiquitination to control the function and stabil-
ity of protein. Although many studies have addressed
the importance of the USPs in cancer progression, sev-
eral issues about USPs are still unknown. First, most of
the substrates contain more than one deubiquitinases,
why are more deubiquitinases needed to regulate the
same protein? Second, according many previous studies,
a lot of USPs are involved in the DNA damage repair ac-
tivity, implying USPs may be related to drug resistance
during cancer treatment. Therefore, more in-depth stud-
ies for clarifying the molecular mechanism are import-
ant. Finally, many USPs have been used as the target to
develop the inhibitors. How to develop the inhibitors
with more effective, low side effect and higher specificity
is the most important issue in the future.
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