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Introduction
Decision making is the process of choosing an option among 
several alternatives. Day-to-day life involves many decision-
making scenarios that range from making decisions at the level 
of an individual (eg, purchases in a supermarket), group (eg, col-
laborative decision making in companies), or an organization 
(eg, recruitment of personnel). In individual decision making, 
choice behavior would reveal subjective and relative preferences 
of an individual among the multiple alternatives available. It is 
therefore imperative to understand the mechanisms involved 
how people arrive at such decisions. Consider an example when 
you are asked to choose between 1 apple versus 2 apples, which 
can be considered a value judgment based on the quantity of the 
reward. Compare this with a situation where you are asked to 
choose between 1 apple and 1 orange. In such scenarios, a more 
rewarding option is not necessarily more (or less) in quantity, 
instead is a different type of reward altogether. Hence, to under-
stand a decision-making phenomenon, we need to understand 
the computation of subjective values of the available alterna-
tives. Decision-making scenarios encountered in real-life situa-
tions are often also repetitive in nature. Thus, understanding the 
dynamics of value computation over time can help us better 
understand how people make decisions the way they do and 
how these decisions can be improved.

Decision making forms a key link between sensation and 
action in which decision transformation maps sensory evidence 
onto an action selection followed by its execution. Thus, studying 
decision making has potential to open a window to study cogni-
tion in general.1 Real-world information is primarily sensory in 
nature, and understandably people attach value to the sensory 
information to prepare for appropriate behavioral responses. How 

does the perceptual judgment of alternatives in such scenarios 
differ from value-based preferences?2 The value computation step 
distinguishes a simple perceptual discrimination task from those 
that involve value-based decision making.3 Theoretical accounts 
have suggested 2 distinct systems for valuation and action selec-
tion.4 At a neuronal level, decision-related signals can be easily 
distinguished from sensory signals, but it is more difficult to iso-
late these from the action signals.5 The selected action that reveals 
the choice made and the cognitive process that precedes the 
choice can be termed as a decision.6 Choices are formed through 
the computations that are performed when samples of informa-
tion (either sensory or values) are integrated toward selecting one 
of several alternatives.7 Thus, choices form a key measure to study 
individual preferences.

As pointed out by Marr,8 to understand the mechanisms of 
any cognitive phenomenon, it becomes imperative to investigate 
at multiple levels covering the computational, algorithmic, and 
architectural implementations. Accordingly, the purpose of this 
review is 2-fold. First, we identify the need for integrated study 
of different domains of decision making, so far studied in an iso-
lated fashion.9 Second, we review and suggest that the integra-
tion of different types of information in decision making could 
be done by studying contextual influences in decision making.

In the next 2 sections, we further review literature from 
value-based and perceptual decision-making domains and 
identify cross-linkages between the 2 domains to help us better 
understand decision-making processes in general.

Value-based decision making
As noted above, valuation of alternatives is central to theoretical, 
empirical, and computational approaches of decision making. 
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For optimal decision making, subjective evaluation of available 
alternatives is necessary prior to making a choice. A general 
mechanism for decision making can be understood by the 
notion of “common currency” where the comparisons of various 
competing alternatives can be made over the same relative 
scale.10 Value-based decision making is mostly investigated in 
the context of “free-choice” or preference tasks allowing subjects 
to choose freely among the various options available. The vari-
ous alternatives provided to the participants vary in magnitude 
or reward probability and then the choice behavior is studied 
with reference to these manipulations.

Valuation has also been central to classical and modern eco-
nomic theories that provide a rich account of human decision-
making behavior and subjective preferences. Studies of decision 
making started with describing outcomes of people’s choices 
when faced with uncertain or risky decision-making scenarios, 
in which the choice outcomes are probabilistic in nature and 
are drawn from a known set of distributions.6 The underlying 
principle used to explain people’s choices was the maximization 
of the expected monetary value of the available alternatives. 
The expected value is given by the sum of payoffs of a particu-
lar state multiplied by its respective probability of occurrence. 
Bernoulli11 demonstrated that expected value is not the maxi-
mization of monetary values, but it depends on other factors 
such as people’s perception of the likelihood of winning over 
the chosen alternative. Kahneman and Tversky12 showed how 
in reality it is difficult to formulate a model that takes into 
account both normative and descriptive theories. Prospect the-
ory was, thus, proposed as a descriptive theory. They also show 
how in real life people violate the normative accounts of maxi-
mization. The fundamental idea behind prospect theory is that 
the utility function is governed by the gains and losses com-
pared with a relative reference point. The utility function looks 
like an asymmetric S-curve around the relative reference point. 
The value function plotted above the reference line is typically 
a concave-shaped curve reflecting the potential gains and is 
convexly shaped for values below the reference line denoting 
potential losses. The asymmetry of the S-shaped curve denotes 
people behaving as risk-averse in the gains domain and risk-
seeking in the loss domain.

Reward prediction error and reinforcement learning. Economic 
theories have suggested that choice behavior is determined by 
the values attached to different alternatives in decision-making 
scenarios. The complementary perspective on how these values 
are acquired is provided by reward-related learning theories.13 
Seminal work by Schultz et al14 showed phasic activity of dopa-
minergic midbrain neurons corresponding to prediction error 
which elicits the difference between actual and expected 
rewards. This process is similar to the computational reinforce-
ment learning (RL) algorithms which model how an agent 
learns the values of states and actions.15 The agent’s task is to 
learn an optimal policy that maximizes expected sum of rewards 

with future rewards discounted exponentially by their delay. 
Hence, an agent would begin without any knowledge of the 
environment and would learn or sample through experience 
over time discovering the most rewarding outcomes using 
explore or exploit strategies. The Temporal Difference learn-
ing, gives the differences in predictions over successive time 
steps to model the learning process. The discounted sum of all 
future rewards is computed by an exponential weighting such 
that reinforcement at a distant time step becomes less impor-
tant. This can be expressed as follows:

V s V s R V st t t( ) ← ( ) + − ( )( )α

where st  is the state visited at time t, R is the reward received 
after transitioning and α  is the learning rate parameter.

Q-learning is a modified version of TD learning, where the 
values of state-action pairs are learned directly instead of 
updating values of each state with respect to the previously 
experienced rewards. Q-learning can be formally expressed as 
follows:

Q s a Q s a R Q s at t t t t t, , ,( ) ← ( )+ − ( )( )α

where, Q s at t( , )  is the value of the current state-action pair, α  
is the learning rate and R is the reward received on trial t.

Another class of models, also based on the RL framework, 
known as the actor-critic model consists of 2 modules—an 
actor and a critic. The critic module is responsible for calculat-
ing prediction error, and the actor module is responsible for 
using the prediction error to update the action values and select 
an optimal choice from the available alternatives. Daw et al16 
proposed 2 distinct types of RL mechanisms that could explain 
the difference between habitual and goal-directed behavior 
during learning and decision making. In model-free learning, 
the agent learns through reward prediction error signals which 
are insensitive to the model of the environment, ie, learning is 
based on actual experience of rewards or punishments. 
However, in a model-based learning, the underlying structure 
of the surrounding environment (eg, the reward and transition 
probabilities of a given state-action pair to a new state) helps to 
predict future outcomes of action sequences.

Current Models of Decision Making

The process of decision making involves at least 2 steps—we 
need first to represent the various alternatives and then com-
pute the value of these alternatives. The valuation step in deci-
sion making depends on environmental factors such as context 
and time pressure. Contextual knowledge enables an individual 
to make optimal choices that must be either provided before-
hand or learned through experience over time. The value com-
putation can be considered to be either a bottom-up process or 
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a top-down process. The bottom-up process of valuation is 
dependent on frequency and quantity of reinforcement 
(reward) of the available alternatives. The top-down process 
takes into account environmental factors such as expected out-
comes or cognitive and emotional states.6 This has been pro-
posed earlier in terms of visual processing mechanisms, where 
“low-level information extraction of visual properties is fol-
lowed by higher level decision process of evaluating goals and 
expectations of the participant to prepare for an appropriate 
behavioral response.”17(p454)

Gold and Stocker18 recently reviewed visual decision mak-
ing bringing together a holistic perspective combining events 
that occur long before decision making to postdecision pro-
cesses. More specificially, statistical regularities and perceptual 
learning provide contextual information in addition to top-
down and bottom-up factors that influence a decision. The 
decision process is described in terms of evidence accumulation 
and deliberation culminating in commitment of choice. 
Postdecision evaluative processes inform future decisions.

Doya19 proposed that a decision-making process is com-
posed of 4 steps: first is the accumulation of evidence to recog-
nize the present state, second step involves action evaluation in 
terms of rewards and punishments of the available options, 
third step involves choosing one of the options based on cost 
and benefits calculated in the previous step, and the last step of 
the process is to reevaluate the option according to the out-
come and update the rewards or losses associated with the 
outcome.

Rangel et al20 in one of their reviews on value-based deci-
sion making propose the following multistage framework for 
understanding the processing steps involved in value-based 
decision making. These components of the framework are not 
necessarily separate brain regions; rather, they have overlap-
ping brain structures involved. The framework has 3 compo-
nents. First, they divide the process of decision making into 5 
basic subcomponents—(1) representation, (2) valuation, (3) 
action selection, (4) outcome evaluation, and (5) learning. 
Representation includes identifying internal and external 
states such as hunger level and threat levels, respectively, and 
also a potential course of action associated with each of these 
states. Valuation step is responsible for assigning a value to 
each action given the internal and external states. This step 
results in associating the rewards (or losses) associated with 
each action. The action selection step is the act of comparing 
the valuation of each action and making a choice. After a 
choice is made, the next step is outcome evaluation, where the 
brain measures the desirability of the current outcome associ-
ated with the action taken in the previous step. Finally, the 
representation, valuation, and action selection are updated to 
make better future decisions; this step is called the learning 
step. On the basis of human and animal behavioral evidence, 
the second component of framework of Rangel et  al shows 
that there are 3 types of valuation systems: (1) Pavlovian, (2) 

habitual, and (3) goal-directed systems. The Pavlovian valua-
tion systems are “hard-wired” responses to a small set of envi-
ronmental stimuli. Habitual valuation systems learn and assign 
values on the basis of past experiences or a trial and error 
method. Goal-directed systems assign values to actions by cal-
culating an action outcome mapping and reward associated 
with each of these mappings. Goal-directed systems incorpo-
rate modulating variables that affect the decision-making pro-
cess. Some of these modulating variables are risk and 
uncertainty and delay discounting.

In another review, Kable and Glimcher21 using primate and 
human neurophysiology studies, in addition to neuroeconomic 
models, formulated another multistage decision-making 
framework. This framework included 2 major steps: (1) valua-
tion and (2) choice. During the valuation stage, different fac-
tors of each available alternative are taken into consideration, 
and a subjective value is assigned to each of the options avail-
able. The valuation circuits are seen to be primarily located in 
the ventromedial prefrontal cortex (vmPFC) and striatum. The 
choice stage has comparisons being made of the subjective val-
ues from the previous step to decide on the best alternative. 
Neural representation of choice circuits is found in lateral pre-
frontal and parietal cortex. The valuation and choice stages are 
similar to valuation and action selection step from Rangel’s 
framework. The other components from Rangel’s framework, 
i.e., representation, outcome evaluation, and learning, are not 
explicitly identified in Kable and Glimcher’s framework, but 
the processes performed in these stages are implied in the 
model.

There is a growing consensus that key brain systems 
associated with the subjective valuation network include the 
ventromedial and dorsolateral part of the prefrontal cortex, 
posterior cingulate cortex, and striatum.21 The subjective 
value network converts the different competing alternatives 
into a common currency to facilitate a decision. The valua-
tion system is proposed to be subserved by vmPFC that 
bridges the sensory information with choice execution. It 
receives input from the dopaminergic systems that have 
been shown to encode reward prediction error (see Schultz 
et al,22 for a recent review). More recently, the lateral intra-
parietal cortex has been shown to play a key role in the 
transformation of value (Figure 1).23

The domain of value-based decision making has identified 
computation of value as a common currency for guiding the 
choice process. The next section reviews perceptual decision 
making, where the sensory evidence accumulation rather than 
value computation becomes central to choice behavior.

Perceptual decision making
Consider a scenario where on a clear sunny morning you are 
commuting from home to work. You are effortlessly able to see 
most information, for example, the shops on the sides of the 
road, signboards to turn left or right, or pedestrians waiting to 
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cross the street. However, during foggy weather, the sensory 
information is noisy and hence to reach at a particular decision, 
for example, taking a particular turn or to stop at a traffic light, 
you take longer to accumulate the incomplete or ambiguous 
sensory information from the surroundings. This type of deci-
sion making where you make categorical judgments over the 
accumulated sensory evidence is referred to as perceptual deci-
sion making. The accumulated sensory information is then 
translated to guide us how we behave in the world.

In laboratory settings, perceptual decisions are investigated 
by simulating the uncertain environments through controlled 
tasks, for example, by asking participants to discriminate the 
direction of a noisy patch of random dots or a Gabor patch 
consisting of alternating gratings with certain orientations. 
However, in real life, there are various other factors that appear 
simultaneously with the visual stimulus of interest which may or 
may not influence the decision-making process. Some of these 
factors are the difficulty of the task presented, prior probability 
of the event occurrence or knowing the outcome of the task. 
Because perceptual decisions are easier to control and quantify 
as compared with other decisions, perceptual decision-making 
domain has been studied extensively using various behavioral, 
computational, and neural approaches (see Hanks and 
Summerfield,24 for a recent review). We now discuss various 
experimental approaches used to understand the process of per-
ceptual decision making in humans and primates. Most com-
monly used approaches to investigate perceptual decision 
making are based on different visual discrimination tasks where 
the participant has to identify a certain stimuli or pattern from 
a noisy environment. A random dot motion task is perhaps the 
most widely used task to investigate perceptual decision mecha-
nisms. In this paradigm, the participants are asked to identify 
the motion of coherently moving dots among a patch of noisy 
dots moving in random motion. In nonhuman primate studies, 
the identification of direction is usually revealed by eye move-
ments. In human participants, the direction identification 

response is usually recorded as a key press corresponding to a 
particular direction of motion. Typically, such studies use a 
2-alternative forced choice (2AFC) setup where the minority 
coherent dots move in either the left or the right direction. 
Random dot motion task has 2 variants. The first is where sub-
jects are allowed to report the direction of the coherently mov-
ing dots as soon as they recognize the motion of the dots. This 
is known as the reaction time variant. Such an experimental 
setup not only shows when the participant decided on the stim-
ulus direction but also shows how much evidence was required 
to reach that particular decision. This is a good setup for inves-
tigating the speed-accuracy trade-off in perception. The second 
variant of the task is where the stimulus is displayed for a fixed 
amount of time usually for 1 or 2 seconds.

Several computational models have been used that charac-
terize performance and explain how humans and animals arrive 
at a decision when faced with a noisy environment. Signal 
detection theory (SDT) offers a simple explanation of how 
stimulus information is accumulated over time to arrive at a 
decision. It is a mathematical procedure that can quantify 
between the signal (stimuli of interest) and noise (background 
stimuli of no interest). The main advantage of using SDT over 
other popular mathematical frameworks such as information 
theory and game theory approaches is that it can specify how a 
single observation leads to a single response. SDT can also be 
applied to both behavioral and neuronal data. There is also a 
notion that representation of sensory evidence further gives 
rise to something called a decision variable over which a deci-
sion rule is applied.1

The SDT suggests that a decision is reached on the basis of 
a single sample of information, whereas another prominent 
framework of perceptual decision making is sequential sam-
pling models (SSMs) that assume multiple samples are inte-
grated over time until a decision boundary is reached.25 
Sequential sampling models of decision making can be seen as 
a time domain extension of the SDT. All SSMs repeatedly 
sample and accumulate evidence over time to reach a decision. 
Sequential sampling models are separated into 2 classes: diffu-
sion models26 that assume relative evidence accumulation over 
time and race models that assume independent evidence accu-
mulation and response commitment once the first accumulator 
crosses a boundary.27

Diffusion Decision Models

Diffusion models are used to model fast 2-choice decisions (see 
Ratcliff et al,26 for a recent review). These models assume accu-
mulation of noisy information over time toward the decision 
criteria representing the 2 available choices. The 2 choices are 
represented as upper and lower boundaries. Once the accumu-
lated evidence crosses a threshold toward 1 of the 2 choice 
decision boundaries, the corresponding option is chosen. This 
assumption not only gives the choice distributions but also 
gives the response time distributions which is the time taken by 

Figure 1. Neural model of decision making.
Adapted from Levy and Glimcher.10
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the model to reach a decision boundary. The speed with which 
the evidence accumulation process approaches 1 of the 2 deci-
sion boundaries represents the relative evidence toward 1 of the 
2 boundaries and is termed as drift rate (v). Due to noise in 
each trial of the drift process, the time taken to reach a particu-
lar boundary would vary across trials. If such a consistent vari-
ation is observed over different conditions, the drift rate reflects 
task difficulty with smaller drift rates representing more diffi-
cult tasks. When participants’ performances are compared, drift 
is a measure for individual cognitive or perceptual speed of 
information processing. The distance between the 2 bounda-
ries is called threshold and is denoted by “a.” Threshold per trial 
gives the amount of evidence to be accumulated until a response 
can be executed. A lower threshold leads to not only faster 
responses but also increased noise influence on judgments 
making the decisions impulsive and more error prone. A higher 
threshold leads to careful responses (slower more accurate but 
skewed RT distributions). Different studies have shown that 
the parameter “a” is sensitive to speed versus accuracy instruc-
tions. In addition, slowing in response times is shown to be 
attributed to age-related changes which can be partially 
explained by the conservative response styles. Response time 
per trial does not solely comprise the decision making but also 
includes perception, movement initiation, and execution which 
clubbed together form the nondecision time parameter (t) of 
the drift diffusion process. The drift diffusion model also 
includes a bias parameter z, which represents the starting point 
of the drift process relative to the 2 boundaries. Bias parameter 
is responsible for the starting point of response time distribu-
tions for each trial. Difference in bias parameter across condi-
tions can reflect choices encountered with different payoff 
matrices (Figure 2). For example, the starting point moves 
toward a response threshold when the corresponding response 
leads to greater rewards (see Voss et al,28 for a review).

There are also other models that aim to understand per-
ceptual decision making which are inspired by the underlying 
biologically phenomenon such as inhibition mechanisms of 
neurons and information decay over time. Leaky competing 
accumulator (LCA) model is one such leaky diffusion model. 
The LCA is a connectionist network model of decision mak-
ing. Preferences in this model are based on the sequential 
evaluation of advantages and disadvantages of each pros-
pect.29 Another model similar to the LCA is the linear bal-
listic accumulator (LBA). The LBA has 2 accumulators as in 
the LCA but assumes a noisy environment for longer time-
scales but a noise-free environment during the evidence accu-
mulation process.30

As described in the previous 2 sections, research in percep-
tual decision making has mainly relied on experimental para-
digms and computational models that are different from those 
of value-based decision making. Most of the decisions pertain-
ing to social situations involve more than one individual, which 
forms yet another domain of study in decision-making research, 
expanded in the following section.

Social decision making
Traditionally, decision making has been investigated under the 
light of individual decision making. The experiments designed 
are such that participants are asked to choose between different 
available options of monetary gambles or goods. Participants’ 
choices in such settings only depend on their individual prefer-
ences and valuation. However, in real-life scenarios, the deci-
sion making by individuals is not done in isolation but is an 
outcome of complex social interactions which sometimes also 
depends on the choices of other individuals. Scientists in recent 
years have begun investigating social decisions using approaches 
from game theory which is a part of experimental economics. 
Game-theoretic constructs are useful to investigate situations 

Figure 2. Schematic diagram of a drift diffusion model.
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that involve conflict between short-term rewards and more dis-
tant, but potentially larger, rewards. For example, to keep long-
term benefits of a sustained cooperative relationship would I be 
willing to go through the immediate costs attached to altruism 
(see Rilling and Sanfey,31 for a review). A variety of neurosci-
entific methods are also being used to understand a more 
detailed picture of psychological and neural correlates underly-
ing social decision making.

Experimental games such as the ultimatum game and trust 
games have been widely used to study strategic interactions 
during fair versus unfair behaviors. In an ultimatum game, 2 
players are given an opportunity to divide a given some of 
money among themselves. One of the players is called as pro-
poser who decides on what should be the proportion of divid-
ing the money. The other player called the responder can either 
accept or reject the proposer’s offer of the division. If the 
responder accepts the offer, then the money is split as proposed. 
In case the responder decides to reject the offer, both proposer 
and responder end up with receiving nothing. According to 
Nash equilibrium prediction, if people make choices purely out 
of self-motivation, then any offer made by the proposer should 
always be accepted by the responder, and the proposer should 
always offer the smallest nonzero amount. However, it is seen 
that offers below 20% split are rejected half of the time32 pos-
sibly owing to the feeling of being mistreated. Thus, partici-
pant’s choices are motivated not only by self-interest but also 
by other factors. Neuroscientific methods can help unraveling 
these complex decision-making interactions. Trust game is 
useful to study reciprocity which is another essential element of 
social interaction. Trust game involves 2 participants: one 
player is the investor and the other is the trustee. The investor 
decides to how much money has to be invested together with 
the trustee. The amount that the investor decides is than mul-
tiplied by some factor and the new increased amount is then at 
the disposal of the investor to return (or not) to the investor. 
According to game theory predictions, trustee out of his 
rational and self-motivated interests would never honor the 
investor’s trust and would end up returning zero money to the 
investor and the investor knowing this would never invest any-
thing in the first place. However, in real-life scenarios, it is seen 
that trustees do transfer some amount of money and the trust 
is reciprocated.33 Prisoner’s dilemma is another experimental 
game used for investigating reciprocity. This game helps us bet-
ter understand competition and cooperation in complex social 
settings. In this game, both players decide to choose whether to 
trust the other player or not without knowing each other’s 
intent. In prisoner’s dilemma, the highest payoff is achieved 
when one of the partners cooperates and the other defects. If 
both participants decide to cooperate, a moderate payoff is 
achieved and when both decide to defect the participants 
receive the least payoff.

The paradigms mentioned above involving social decision 
making extend individual decisions to highly complex social 

scenarios. Thus, in addition to the valuation of multiple alter-
natives, the decisions in social interactions also depend on 
choices of others, which affect both the individual as well as 
others.31

How context-dependent perception affects valuation 
and choice
In visual perception domain, this has been long known that 
context of surrounding objects in the field of view affects the 
perception of the target object. Perceptual attributes of an 
object such as perceived size, shape, and color of objects are 
liable to change due to changes in the context despite the actual 
physical attributes being constant at all times. For example, 
Ebbinghaus illusion (or Titchener circles) shows 2 objects 
which look equal in size, but when the same objects are sur-
rounded by other objects, the target objects are perceived to be 
of different sizes.

However, in the field of value-based decision making, 
these ideas of context as modulators have not been considered 
by the standard economic theories. The expected utility the-
ory and optimal foraging theory34 assume that irrelevant 
information (or context) does not affect the decision out-
come. This also means that the value calculation step is strictly 
performed only on relevant alternatives and contextual infor-
mation such as temporal history and available resources do 
not bias decision making. Contrary to the above-mentioned 
theories, a number of studies have shown that context 
strongly affects choice behavior violating the assumption of 
normative theories that humans are rational decision makers. 
In multialternative choice, inclusion of other options can 
alter choices among a fixed set of options.35,36 The attraction 
effect is the enhancement of the preference for one of the 
options by introducing a similar but inferior decoy option. 
The similarity effect increases the probability of selecting the 
dissimilar option, and the compromise effect increases the 
probability of selecting the third option that is intermediate 
to the 2 original options.37 Studies, for example, show that 
context can lead to a bias in subjective valuation and hence 
lead to a change in preferences38; choice behavior was also 
shown to be biased when the same alternatives were differ-
ently worded (framing effect39).

The decision field theory40 was based on the idea of sequen-
tial sampling of information that is accumulated over time to 
make a decision in uncertain environments. Kőszegi and 
Rabin41 developed a reference-dependent model of prefer-
ences. They assume that a person’s reference point is deter-
mined by the context of the rational expectations about 
outcomes from recent past. They illustrated that the endow-
ment effect (ie, people ascribe more value to things merely 
because they own them) observed in laboratory settings disap-
pears in real market due to the reference-dependent expecta-
tion of sellers and buyers in the context of trade. Stewart et al42 
proposed theory of decision by sampling in which valuation of 
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alternatives depends on both the immediate context and from 
memory (ie, outcomes from previous decisions). This suggests 
that people do not use internal scales for value but rather con-
stitute simple cognitive processes such as comparison of rela-
tive rank of an alternative. Therefore, subjective values are 
constructed online depending on both the immediate context 
and also from memory. More recently, Bayesian models have 
been proposed that explain choice behavior in terms of incen-
tive values reflecting relative values of rewards in a given con-
text.43,44 The theory suggests that value of an option corresponds 
to a precision-weighted prediction error. The predictions are 
based on the expectations of the reward. This theory could 
explain contextual effects of options those that are presented in 
the past as well as options currently available.

Examples from both perceptual and value-based domains 
suggest that decision processes are dependent on the specific 
context a decision maker is facing while encountering these 
choices. Context faced by a decision maker could, for example, 
be the history of reward experiences or could also depend on 
the relative value of other possible alternatives being presented. 
Breiter et  al45 showed 3 kinds of prospects in which partici-
pants could win or lose money (good: US $10, US $2.50, US 
$0; intermediate: US $2.50, US $0, −US $1.50; and bad: US $0, 
−US $1.50, −US $6). The outcome of US $0 on a good pros-
pect will be experienced as a loss and the same outcome in a 
bad prospect would be experienced as a win. Accordingly, 
responses in amygdala and nucleus accumbens were found to 
be context dependent. Similar finding of context dependence 
across a number of brain regions was reported by Nieuwenhuis 
et al46 who compared win and loss gambles involving a com-
mon outcome of winning or losing nothing (Figure 3).

Contexts can be manifested in 2 different ways, i.e., spatial 
context and temporal context. Spatial context refers to the 
value of other simultaneously available options within a trial, 
whereas temporal context is the outcomes experienced over 
time or across trials.47 A study by Tremblay and Schultz48 

elucidates temporal context manipulation in the orbitofrontal 
neurons. A monkey was presented with 3 different cues that 
yielded 3 different rewards—cereal, apple, and raisins. In one 
block, the pair of rewards available were a cereal or an apple and 
the rigorous firing rate of neurons for apple indicated a higher 
preference for apple. However, in another block, when the less 
preferred reward of cereal was replaced with a more preferred 
reward, raisin, the neurons fired rigorously for raisins implicat-
ing neuronal coding of preferred choice. The neuronal firing 
for the previously higher preferred choice (apple) reduced 
when paired with a different alternative. This indicates that the 
neuronal activity encodes a relative preference over time in the 
context of other available rewards. Similarly, Padoa-Schioppa49 
demonstrated that neuronal firing in orbitofrontal cortex 
adapted to different ranges of reward magnitude when com-
pared with no reward. Earlier findings by Tobler et  al50 and 
Kobayashi et al51 suggest that dopaminergic neurons and orbit-
ofrontal neurons adapt to the range of input reward magni-
tudes. This phenomenon can be explained using the efficient 
coding hypothesis.

The efficient coding hypothesis is inspired by information 
coding theory used for communication networks. Scientists 
suggested that neurons use a similar process to efficiently 
encode information.52,53 The efficient coding hypothesis states 
that a group of neurons adjusts the spiking rates to encode 
maximum information for efficient resource utilization, similar 
to communication systems which attempt to transfer informa-
tion in fewest possible bits. A large body of literature in visual 
neuroscience has shown that neurons in the sensory circuits 
adapt to the properties of the surroundings. Similar to the vis-
ual information transfer system in the brain, some researchers 
now suggest that the decision-making circuitry in the brain 
also follows the efficient coding hypothesis.53 For example, a 
monkey is presented with 2 choices—one drop of juice versus a 
full jug of juice. In such a case, it is easier for the monkey to 
make a decision as in the former case the spiking of neurons 

Figure 3. Context gambles.
Adapted from Nieuwenhuis et al.46
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would be far less than the latter. Now consider an example, 
where the monkey has a choice between a jug of juice which is 
almost full versus a jug that is completely full. In this case, if 
neurons were to encode exact information, then it would 
become quite difficult for the monkey to make a choice when 
let us say one neuron fires 80 spikes a second versus the other 
one which fires at 100 spikes a second. Scientists now propose 
that brain avoids this problem by encoding the subjective value 
information by the relative difference between the 2 available 
choices. In the above example, this would lead to the neurons 
encoding the jug almost full with a low firing rate as it is cur-
rently the worst choice of the 2 when compared with the other 
more rewarding option. It now again becomes easy for the 
monkey to make a choice between the 2 options. Neuronal 
adaptation, therefore, can have additive (shift) and multiplica-
tive (gain) normalization that scales the reward values relative 
to other available alternatives (ie, context). Indeed, normaliza-
tion has been proposed to form the basis for context-depend-
ent decision making.54

Context modulation is one such efficient coding hypothesis 
which is involved in both decision and sensory system cir-
cuitry.55 As such, in the current literature, there is no specific 
definition for context or its modulation. Broadly context mod-
ulation can be defined by the interaction between 2 different 
kinds of inputs: first consists of the feed-forward connections 
from the earlier areas in the preprocessing stream and second 
consists of the modulatory system that controls the system 
response to the driving inputs. A theory of context modulation 
would also explain the optimality of behavior contrasting with 
the earlier notions of independence of irrelevant alternatives 
axiom.

Recent studies by Rigoli et  al43 manipulated context in 
value-based decisions and found a role for hippocampus and 
dopaminergic midbrain mediating the corresponding neural 
adaptations. Their manipulation involved partially overlapping 
high- and low-value contexts. The reward values common to 
both the contexts were used to identify the corresponding con-
text-sensitive neural mechanisms.

Toward a Domain-Generic Understanding of 
Decision Making
For decades, research in decision making has focused on using 
paradigms and computational models that individually focus 
on investigating perceptual, value-based, or social decision-
making scenarios in isolation. However, in real life, decision-
making scenarios rarely occur as isolated scenarios belonging to 
1 of the 3 decision-making domains. In real-life scenarios, we 
do not always encounter choices which are more or less reward-
ing, but we also come across alternatives or rewards which are 
of different types. Furthermore, perceptual decisions can be 
ultimately seen as reward driven and in the same vein economic 
decisions might require perceptual valuation of available 
options.9 Recent studies have shown supportive neural and 

behavioral evidence in monkey studies23,56,57 for investigating 
perceptual and economic decisions in an integrated way.

Given that contextual effects are apparent both in sensory 
perception and valuation, the current literature has a gap in 
understanding contextual influences in decision making. As 
elaborated earlier, the subcomponents of decision making 
involve both sensory encoding (representation) and valuation 
before choice execution. It is therefore imperative that we need 
to understand which of the subcomponents of decision pro-
cesses are modulated by contextual information. We propose 
that it is necessary to identify not only the existence of context-
induced bias but also the uses of contextual information to 
understand which stages of the decision-making process are 
influenced. Specifically, integration of simultaneously available 
contextual information can be distinguished from experience-
based or temporal context. These context-sensitive mecha-
nisms are similar to widely known simultaneous and successive 
contrast effects in vision. Contextual influences in valuation 
have been proposed to involve the spatial and temporal con-
texts in line with the efficient coding hypothesis.53 According 
to the general agreement of a Bayesian observer, individuals 
incorporate experience in terms of a prior. Therefore, studying 
the subprocesses involved in decision making involves not only 
the valuation of alternatives and incorporation of simultane-
ously available contextual information but also the prior by 
considering the temporal context of the decision-making sce-
narios. There also is a need to establish the role of common 
currency hypothesis in decisions that do not explicitly invoke 
valuation processes such as in perceptual judgment. A key 
question then is to what extent the cognitive processes of deci-
sion making are similar or different across different domains—
perceptual and economic (value-based). This can be studied 
using experimental paradigms that integrate these 2 domains. 
A relatively new line of investigation is studying the integra-
tion of reward values with perceptual decisions.9,23,57–60

Akin to the perceptual decisions, we can consider that the 
valuation process also has an accumulation of evidence. 
Recently, there have been successful attempts to use the drift 
diffusion model to investigate value-based decisions.61 
Although this is intuitive in perceptual decision making, there 
is little explanation on how such an evidence accumulation of 
valuation might take place. Value-based decision making has 
so far been studied majorly by prespecifying the probabilities 
and associated outcome values. Chawla and Miyapuram62 
studied value-based decisions in an experience-based, repeti-
tive decision-making setup. Participants have to repeatedly 
sample from 2 cards left or right that would reveal a corre-
sponding outcome. We here investigated how past experience 
shapes expectations. This experimental approach is also inter-
estingly suitable to study a variety of reinforcement types. 
Hence, this experimental approach can be used for domain-
generic studies of decision making. Using meta-analysis of 
brain imaging studies, we investigated the neural mechanisms 



Chawla and Miyapuram 9

involved in different types of decision making.63-65 If a single 
system exists that supports computation of a (common) deci-
sion variable, then we should find overlapping regions of brain 
activation. However, if the value and perceptual decisions 
involve different processes, then we would observe involve-
ment of different sets of brain activations. According to the 
common currency coding hypothesis, the neural substrates of 
decision making would involve a common circuit across differ-
ent domains of decision making.10 One challenge in verifying 
this hypothesis is that different paradigms are used for differ-
ent domains of decision making and therefore cannot be stud-
ied in single studies. Although there are very few studies that 
study the cross-linkages between different decision-making 
domains, we found common or domain-generic, as well as 
domain-specific, brain activations.64 The common network 
revealed by the conjunction analysis comprises basal ganglia 
(caudate, putamen, pallidum), insula, together with inferior 
frontal region, supplementary motor area, and thalamus. These 
regions could form the common currency evaluation and 
choice execution networks in the brain. The inferior parietal 
area appears to be involved in both perceptual and value-based 
decision making, but not necessarily in social decision making. 
Anterior cingulate cortex and medial prefrontal cortex show 
selectivity toward social and value-based decision making. It 
further remains open to future work to identify the specific 
cognitive and neural mechanisms supporting the temporal 
dynamics corresponding to the different stages of decision 
making.

Conclusions, Limitations, and Future Research
Through this review, we propose that models of decision mak-
ing should not only consider the evaluation of simultaneously 
available alternatives but also include explicitly the context/
prior information gained from experience. In other words, we 
can speculate a multistage decision model that should segre-
gate stimulus encoding, choice or action selection, and execu-
tion processes from that of computation of a decision variable. 
Furthermore, the outcome evaluation should be integrated 
back to update the prior for making future decisions.19 We can 
arrive at 2 kinds of models for decision making. First, a cogni-
tive model needs to specify the various stages and their role in 
decision making. For example, previous literature has not 
attempted to tease apart whether top-down information influ-
ences stimulus encoding or choice execution stage. Future work 
needs to reconcile the decision process, i.e., computation deci-
sion variable with the parallel accounts of a common currency 
of valuation models. Second, a neural model can specify which 
regions of the brain participate in these different stages of deci-
sion making. Neural computation is an extremely complex 
phenomenon to be understood in terms of spatial segregation 
in the brain regions subserving various functions over time or 
in parallel. It might be possible that over different timescales, 
multiple functions are performed by a network of overlapping 

brain regions (see also Schultz et al, 2017). The study of deci-
sion making as presented in this review reflects a small subset 
of experiments suitable for a laboratory environment. Other 
research in the field of decision making has already addressed 
questions pertaining to the ecological validity of laboratory-
based research.66 Behavior measures such as choice made and 
response times are measures of the outcomes of a decision pro-
cess. Computational modeling approaches are suitable for sim-
ulating the decision process resulting in behavioral outcomes. 
The computational modeling approach inherently has a crucial 
limitation that it can match the experimental observations but 
cannot make claims about the mechanisms underlying the 
cognitive phenomenon being investigated, which in our case 
was decision making. For ease of scientific investigations and 
rigor, cognitive phenomena are studied largely in isolation. By 
taking an example of decision making, this review appeals the 
need for a holistic and a system-level understanding of a cogni-
tive phenomenon.
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