
Lui and Lutchen ﻿Clin Trans Med  (2017) 6:29 
DOI 10.1186/s40169-017-0159-0

REVIEW

The role of heterogeneity in asthma:  
a structure‑to‑function perspective
Justin K. Lui1* and Kenneth R. Lutchen2

Abstract 

A number of methods have evolved through the years in probing the dysfunction that impacts mechanics and 
ventilation in asthma. What has been consistently found is the notion of heterogeneity that is not only captured in 
the frequency dependence of lung mechanics measurements but also rendered on imaging as patchy diffuse areas 
of ventilation defects. The degree of heterogeneity has been linked to airway hyperresponsiveness, a hallmark feature 
of asthma. How these heterogeneous constriction patterns lead to functional impairment in asthma have only been 
recently explored using computational airway tree models. By synthesizing measurements of lung mechanics and 
advances in imaging, computational airway tree models serve as a powerful engine to accelerate our understanding 
of the physiologic changes that occur in asthma. This review will be focused on the current state of investigational 
work on the role of heterogeneity in asthma, specifically exploring the structural and functional relationships.
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Introduction
Asthma is an obstructive lung disease commonly associ-
ated with increased airway hyperresponsiveness (AHR) 
resulting in bronchoconstriction and airway inflam-
mation. When provoked, the airways constrict in a het-
erogeneous pattern leading to airflow obstruction and 
impedance of gas transport to and from the lungs. The 
concept of heterogeneity extends past what occurs 
structurally to also characterizing both the clinical pres-
entation (or phenotype) [1, 2] and underlying patho-
genesis (or endotype) of the disease [3, 4]. Both clinical 
phenotypes and molecular endotypes are interrelated by 
genetic factors which continue to play a key role in the 
development of personalized approaches to the diagnosis 
and treatment of asthma [2, 5, 6]. Although beyond the 
scope of this review, studies have provided evidence in 
the existence of multiple genes associated with lung func-
tion in asthma that may lead to the degree of heteroge-
neous distribution of structural defects and consequent 
functional defects [7–10]. Our review focuses on the 

structure–function consequences of heterogeneous dis-
ease not the genetic origins of such. Specifically, we will 
focus primarily on the various techniques in assessing 
how heterogeneous changes in lung structure caused by 
asthma which result in changes to mechanical and venti-
lation function.

The degree of mechanical dysfunction can be assessed 
from measurements of flow (Qao) and pressure (Pao) at 
the airway opening from which an in-phase (or energy 
loss) component or lung resistance (RL) and an out-of-
phase (or energy storage) component or lung elastance 
(EL) of this relationship can be derived by what is known 
as the forced oscillation technique (FOT) [11–16]. 
Through evaluation of the respiratory system response to 
forced flow, the technique enables a rapid assessment in 
the degree of frequency dependence of RL and EL which 
allows inference on the severity of airflow obstruction 
[17–22] and the degree of bronchodilation after inter-
vention [23–26]. While such methods provide evidence 
of degree in the heterogeneity of constriction, the abil-
ity to visualize ventilation abnormalities due to bron-
choconstriction in asthma has been limited until recent 
advances in imaging. With the advent of hyperpolarized 
helium-3 magnetic resonance imaging (HP 3He MRI), 
there is now a noninvasive method to directly visualize 

Open Access

*Correspondence:  justin.lui@bmc.org 
1 Department of Medicine, University of Massachusetts Medical School, 
55 Lake Avenue North, Worcester, MA 01655, USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40169-017-0159-0&domain=pdf


Page 2 of 11Lui and Lutchen ﻿Clin Trans Med  (2017) 6:29 

areas of ventilated airspaces within the lung [27–36]. 
While normally ventilated lungs exhibit a homogeneous 
distribution of signal, obstructive lung diseases such as 
asthma demonstrate heterogeneously distributed non-
ventilated areas known as ventilation defects. How these 
structural changes alter function has only been recently 
shown through computational modeling approaches of 
the lung [21, 22, 27, 37–41].

Heterogeneity of lung mechanics
The forced oscillation technique
First introduced in 1956 by Dubois et al. [13], the FOT is 
a noninvasive tool for the measurement of the mechani-
cal impedance of the respiratory system. The technique 
involves delivery of pressure oscillations either around 
the chest wall inside an enclosed chamber (Pcw) or alter-
natively at the mouth at the site of airway opening (Pao), 
which is more commonly used. The predefined oscilla-
tions were originally within the range of 4–32 Hz with a 
fixed limited magnitude to allow for spontaneous breath-
ing. The apparatus generally consists of a loudspeaker to 
deliver the pressure signal and utilizes a high inertance 
bias tube placed in parallel to allow for a minimization of 
energy loss from the pressure oscillations while also pro-
viding fresh air to prevent carbon dioxide buildup within 
the dead space. By measuring flow at the airway opening 
(Qao), the ratio of Pcw/Qao can be used to calculate the 
transfer impedance of the system (Ztr). Alternatively, the 
ratio of Pao/Qao can be used to calculate the input imped-
ance of the system (Zin)—this is often referred to as the 
impedance of the total respiratory system (Zrs) with con-
tributions from both the lungs (ZL) and the chest wall 
(Zcw). The corresponding relationship is a complex ratio 
expressed as a function of oscillation frequency, in radi-
ans (ω), divided into an in-phase resistive component 
(Rrs) and an out-of-phase reactive component (Xrs):

in which j is defined as 
√
−1, an imaginary number. In its 

individualized components, Rrs embodies the dissipative 
mechanical properties or energy losses of the respiratory 
system over one cycle at a particular frequency, while Xrs 
embodies the energy storage capacity. To isolate the input 
impedance of the lungs alone (ZL), an esophageal balloon 
catheter is used to measure the intraesophageal pressure 
(Pes) which approximates to be the intrapleural pressure 
(Pip) from which a transpulmonary pressure (Ptp) can be 
calculated by the difference between Pao and Pes, given as:

Over the frequency range of 4–32  Hz, however, Rrs 
has been found to be relatively constant with frequency 

(1)Zrs(ω) = Rrs(ω)+ jXrs(ω)

(2)ZL(ω) =
Pao(ω)− Pes(ω)

Qao(ω)

while Xrs has been found to increase monotonically 
with frequency [12, 14]. These data do not reflect much 
detail in the why or where or how they become abnor-
mal in diseased states such as asthma. In contrast, lower 
frequency ranges (<10 Hz) have been found to be more 
relevant to mechanical properties with increased sen-
sitivity to structural changes that capture phenomena 
such as airway wall distensibility [42, 43], tissue viscoe-
lasticity [44, 45], smaller parallel time-constant hetero-
geneity [46], and expiratory flow limitation [47, 48]. 
Obtaining lung mechanics near spontaneous breathing 
frequencies becomes challenging as it requires subjects 
to remain apneic at functional residual capacity (FRC) 
for extended periods of time while forced oscillations are 
delivered [49]. A solution to this has been the design of 
a computer-driven optimal ventilation waveform (OVW) 
consisting of seven non-sum, non-difference sine waves 
with frequencies spanning from 0.156 to 8 Hz [18, 19, 50, 
51]. The OVW would ventilate the subject with a normal 
tidal volume of air per cycle with a linear piston pump 
while simultaneously delivering forced oscillations at all 
the target frequencies [50]. The clinical utility of using 
FOT at lower frequencies is that such data is sensitive 
to changes in tissue viscoelastic properties as well as the 
occurrence and impact of heterogeneous airway con-
striction inclusive of capturing whether there are near-
closures throughout the airway tree [18, 23]. To quantify 
these phenomena one can apply inverse modeling to the 
data, but to better understand how explicit structural 
changes in a whole lung might impact the data, one can 
apply forward modeling approaches.

Model approaches to lung mechanics
Inverse modeling
A simple inverse model used to characterize Zrs relat-
ing Qao and Pao of the respiratory system is the single 
compartment model comprising elements of resistance 
(Rrs), elastance (Ers), and inertance (Irs) in a linear series 
described below:

Ers, dominant at low frequencies, represents the stiff-
ness of parenchymal tissue and the chest wall. Irs, domi-
nant at high frequencies, represents the energy required 
to move gas within the lungs in response to forced oscil-
lations [12]. The resonant frequency, ω0, in which Xrs is 
zero, can be determined by rearranging Eqs. 1 and 3 to be 
given as:

(3)Zrs(ω) = Rrs(ω)+ jωIrs(ω)+
Ers(ω)

jω

(4)ω0 =

√

Ers(ω)

Irs(ω)
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Over low frequencies in which ω ≪ ω0, the contribu-
tion of Irs approaches zero, and the Xrs is essentially deter-
mined by Ers which is related in common practice as:

The single compartment model is readily applicable to 
data between 4 and 32 Hz in healthy and moderate dis-
ease but of course provides only three lumped properties 
averaged over the entire respiratory system with no res-
olution as to how airways, lung tissue or heterogeneous 
disease impacts them. When taking data out to higher 
frequencies (64–128  Hz) a variant of the six-element 
lumped model that was initially introduced by Dubois 
et al. [13] has been suggested in which airway resistance 
and inertance (Raw, Iaw) are separated from tissue resist-
ance, inertance, and compliance (Rti, Iti, Cti) by a shunt 
compliance to represent the compressibility of alveo-
lar gas (Cg) (Fig.  1) [52–54]. However, when applied to 
human data, this model fails as the data are insufficiently 
sensitive to a resonant peak associated with gas compres-
sion [55, 56].

It is now appreciated that one of the most important 
functional consequences of any lung disease is that it 
impacts the lungs heterogeneously. For example, when a 
system of parallel impedance pathways develop hetero-
geneous constriction the resulting increase in overall RL 

(5)Ers(ω) = −ωX(ω)

and EL at typical breathing frequencies is much higher 
than what would be predicted simply from the average 
decrease in all airway diameters [19, 22]. To capture the 
impact of disease on lung tissue and heterogeneous prop-
erties one can apply inverse models to data at lower fre-
quencies. A commonly used model is the constant phase 
model from 0.1 to 4 Hz. The origins of the constant phase 
model relative to data derived from an alveolar capsule 
technique was used to explicitly measure parenchymal 
tissue viscoelasticity [51, 57] and partition tissue prop-
erties from airway properties within the respiratory sys-
tem. In normal lungs, Raw was found to remain relatively 
constant with increasing frequency while Rti was found 
to decrease in a near-hyperbolic manner [58–61]. Tis-
sue viscoelasticity is best captured with a constant phase 
model [62] based on a variant of the Horie and Hilde-
brandt model for stress-relaxation [63–65]. ZL can be 
divided into its airway (Zaw) and tissue (Zti) components 
described below [62]:

(6)ZL(ω) = Zaw(ω)+ Zti(ω)

(7)Zaw(ω) = Raw(ω)+ jωIaw(ω)

(8)Zti(ω) =
G − jH

ωα

Fig. 1  Schematic of the Horsfield lung model. Individual airways are modeled with a lumped six element model with an alveolar tissue element 
at the terminal units based on a given order (n) and a recursion index (Δ). The dog lung model depicted here is comprised of 47 airway orders 
with a defined length and diameter. Each airway consists of a resistive component (R), an inertial component (I), and as well as a term to account 
for shunting into gas compression in the tube (Cg) and into nonrigid airway walls (Zw). The viscoelastic alveolar tissue element is modeled with a 
tissue damping term (G) coupled to elastance (H) and an inertial tissue component (Iti) with a gas compression corresponding to the volume of the 
alveolus (Cg) (reproduced with permission from [54])
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In which G is a coefficient reflecting viscous energy dis-
sipation (also known as tissue damping) and H is a coef-
ficient reflecting energy storage (also known as tissue 
elastance). The parameter, α, is related to G and H given 
as:

Constant phase refers to the phase angle between 
pressure and flow across the lung tissue in which the 
component tan−1(H/G) is constant and independent of 
frequency. Based on the model, the Rti component of Zti 
can be given as:

To determine the model parameters, a nonlinear gradi-
ent search technique can be used by minimization of a 
performance index, Φ, for the estimation of the “good-
ness-of-fit” index, σ2, given as [18]:

where Re(k) and Im(k) denote the real and imaginary 
components of ZL at the kth frequency, respectively, and 
the subscripts d and m denote the actual data and model 
predicted values, respectively. N is the number of fre-
quencies, and P is the number of free parameters in the 
model. Applying the parameters of this model, RL can be 
partitioned into its airway (i.e., central) component, Raw 
and tissue (i.e., peripheral) components, Rti. Interestingly, 
Rti has been found to constitute a substantial component 
of RL in healthy subjects (~40%) while Raw has been found 
to constitute a substantial component of RL in asthmatic 
subjects (>70%) [18, 23]. The major limitation of using the 
constant phase model is that when airway constriction is 
heterogeneous it creates amplified frequency depend-
ence in both RL and in EL (see “Forward modeling” sec-
tion). The constant phase model has only one parameter, 
G, that can amplify frequency dependence. Hence when 
inversely modeling these data, G increases but this has 
nothing to do with the change in tissue properties [66]. 
Hence while low frequency FOT data itself is highly sen-
sitive to the occurrence of heterogeneous constriction, 
inverse modeling approaches cannot distinguish hetero-
geneous constriction from changes in tissue viscoelastic-
ity from these data.

(9)α =
2

π
tan−1

(

H

G

)

(10)Rti(ω) =
G

ωα

(11)

Φ =
N
∑

k=1

{

[Red(k)− Rem(k)]
2 + [Imd(k)− Imm(k)]

2
}

(12)σ 2 =
Φ

2N − P

Forward modeling
A powerful approach to assess how constriction pat-
terns and tissue properties can impact lung function is 
to use a forward model to predict impedances at vari-
ous frequency ranges and interpret the results obtained 
from inverse modeling. Here, a baseline airway tree 
was generated from morphometric studies on the lungs 
by Horsfield et  al. [67, 68]. Airway wall properties were 
incorporated which assumed that the wall consists of 
both soft tissue and cartilage with a wall thickness, h, 
as a function of airway generation dependent on airway 
radius, rc, and cross-sectional wall area, WA, described 
below [52, 54, 69, 70].

Constriction was applied to peripheral airways with 
diameters  <0.4  mm, scaled to FRC (above a Horsfield 
order of 6), by varying means, μ, and coefficients of vari-
ation, CV, in the reduction of airway diameters based 
on a Gaussian distribution. At baseline from 0.1 to 1 Hz, 
RL exhibited a mild frequency dependent decrease fol-
lowed by a plateau from 2 to 5  Hz while EL exhibited 
a mild frequency dependent over the same frequencies 
followed by a decrease due to airway inertance that 
becomes more dominant at higher frequencies (Fig.  2) 
[54]. These findings were consistent with the notion of 
viscoelastic tissue properties residing over the lower 
frequency ranges.

Homogeneous constriction (varying μ with minimal 
changes in CV) resulted in uniform increase in RL at 
all frequencies without a noticeable increase in EL. In 
striking contrast, heterogeneous constriction (varying 
CV with minimal changes in μ) resulted in a substan-
tial frequency dependence with a frequency dependent 
decrease in RL and a frequency dependent increase in 
EL mostly taking place at frequencies <2 Hz. Here, while 
the net increase of RL at 4 Hz was far lower than during 
homogeneous constriction with a much higher mean 
reduction of airway diameter, the increase in RL and 
EL at typical breathing rates was much larger at spon-
taneous breathing frequencies. In other words, hetero-
geneous constriction serves to amplify the reduction 
in mechanical and ventilation lung function from that 
predicted by the average reduction in airway diameter 
across the whole tree. This same behavior is observed 
when expanded to a three-dimensional geometric 
model of the lung [41]. Moreover, when a few (~10%) 
of these peripheral airways are closed but distributed 
in a heterogeneous fashion, both RL and EL undergo 
substantial elevations with more frequency depend-
ence when heterogeneous constriction is applied [52, 

(13)h =

√

r2c +
WA

π
− rc
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54]. In addition, there can also be a significant increase 
in EL at higher frequencies believed to be secondary to 
pressures shunting across the walls of the central air-
way [15]. Together, these findings support the notion of 
heterogeneous airway closures occurring mainly at the 
lung periphery [54]. When translated to the measured 
data, the frequency dependent behavior of RL and EL 
provide rich physiological insights on mechanisms of 
dysfunction that may be occurring in asthmatic subjects 
(Fig. 3) [18, 19, 23].

Heterogeneity of lung ventilation
By synthesizing structurally consistent forward mod-
els with data from oscillatory lung mechanics at low 
frequencies, we can detect that indeed airways in asth-
matics constrict heterogeneously. We further show that 
the frequency dependence and heterogeneity seem to 
worsen with disease severity [19] and that, consequently, 
mechanical lung function rapidly declines which greatly 
amplifies the work of breathing. What we cannot tell 
from such data is explicit insight as to physically where 

Fig. 2  Modeled lung resistance (a) and lung elastance (b) derived from an airway tree model. Homogeneous constriction leads to a uniform 
elevation in RL and significant shunting into the compliant central airways presenting as a progressive increase in EL with frequency. Heterogeneous 
constriction leads to an increased frequency dependence in both RL and EL (reproduced with permission from [19])

Fig. 3  Measured lung resistance (a) and lung elastance (b) over a wide array of frequencies using an OVW technique in healthy, mild-to-moderate 
asthma, and severe asthma. With increasing severity of disease, there is more frequency dependence in both RL and EL with significant shunting at 
high frequencies apparent in EL (adapted with permission from [19])
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and to what degree the ventilation distribution has been 
degraded. Moreover, we cannot quantify ventilation dis-
tributions from mechanical heterogeneity alone and 
whether the degree of ventilation degradation can lead 
to amplified mismatches in perfusion and eventually the 
ability to maintain proper blood gases.

Multiple breath nitrogen washout
Multiple breath nitrogen (N2) washout (MBNW) is a 
non-invasive approach in the quantitative assessment of 
ventilation heterogeneity [71–79]. The technique allows 
prediction of two types of gas transport in the periph-
ery, one that is diffusion–convection-dependent (Sacin) 
and one that is convection-dependent (Scond), based on 
the pattern of N2 washout from the lung during tidal 
breathing of 100% oxygen [80]. Sacin and Scond are calcu-
lated slopes that reflect the degree of acinar and conduc-
tive airway heterogeneity, respectively. Increases in Sacin 
and Scond can be found following bronchoprovocation 
by methacholine in both healthy and asthmatic subjects 
[72, 78]. A lung clearance index (LCI) has been another 
parameter also used to quantify the degree of ventilation 
heterogeneity. Although LCI has been found to be corre-
lated to Sacin and Scond, its utility and interpretation is still 
limited [79] since it is a bulk index of reduced ventilation 
efficiency over the entire lung and not an explicit index 
of heterogeneity of ventilation. Applying indices of Sacin 
and Scond, the degree of ventilation heterogeneity at base-
line has been found to be linked to the degree of AHR, 
a hallmark feature of asthma, and can also be used as a 
predictor of asthma control [71, 73–76]. However, the 
technique does not maintain any spatial nor specific ana-
tomic regional information. MBNW can only partition 
the lungs into two main regions: a more central conduc-
tive airway region and a more peripheral acinar region. In 
addition, there were questions of whether the technique 
can be used to detect poorly ventilated to completely 
non-ventilated areas of the lungs given findings from 
recent modeling studies [78].

Hyperpolarized helium‑3 magnetic resonance imaging
HP 3He MRI is a novel imaging modality that directly 
renders ventilated areas in the lungs through inhalation 
of a noble gas mixture. While normal healthy lungs tend 
to exhibit a homogenously distributed pattern of ventila-
tion, diseased lungs, such as in asthma, tend to exhibit 
patchy areas of ventilation defects (very low levels of HP 
3He) distributed heterogeneously throughout the lungs 
(Fig.  4) [27–37, 81]. The number and size of ventilation 
defects have been found to be correlated to spirometry 
with how the gas redistributes in the lung to be related 
to asthma severity [82, 83]. A substantial number (~75%) 
of these ventilation defects persisted or recurred at the 
same location, and most (~71%) did not change in size 
[29, 30, 80] although new ones can occur as well over 
time. Original analysis of these images for assessing 
ventilation defects were subjective at best, while more 
recently we have seen the emergence of quantitative 
approaches [28–30]. One approach has been calculating 
a CV of signal intensity within these images as a surro-
gate for ventilation heterogeneity [27, 32, 37]. Unsurpris-
ingly, ventilation heterogeneity (i.e., the CV) was found to 
increase following bronchoconstriction with methacho-
line [27, 32, 37]. Additionally, the degree of ventilation 
heterogeneity was also found to be correlated with meas-
urements of lung mechanics [32], further reinforcing the 
relationship with asthma severity found from prior quali-
tative studies which compared measurements to spirom-
etry [28]. Moreover, concordant with previous findings 
using MBNW, the degree of ventilation heterogeneity at 
baseline was also found to be correlated to AHR (Fig. 5) 
[32]. This finding has very important implications: (1) 
whether underlying airway conditions prior to bron-
choprovocation is a critical factor leading to increased 
AHR and (2) whether a preexisting abnormal pattern of 
ventilation (i.e., heterogeneity) will enhance the subse-
quent degradation in lung function consistent with insta-
bility mechanisms proposed through modeling studies 
[39, 84].

Fig. 4  Hyperpolarized helium-3 MRI axial slice of a mild asthmatic (left panel), a moderate asthmatic (middle panel), and a severe asthmatic (right 
panel). As depicted by the arrows, increasing severity of disease is associated with increasing ventilation defects and ventilation heterogeneity 
(reproduced with permission from [28])
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Image functional modeling to distill specific 
anatomic airway origins of reduced function
To probe airway conditions linking structural changes 
in the lungs to measurements of mechanical function, 
an approach termed image functional modeling (IFM) 
was devised. The method employs a three-dimensional 
airway tree model based on a volume filling algorithm 
developed by Tawhai et al. [22, 27, 85]. Parameters within 
the model include dimensions and location of all airways 

inclusive of their branching angles obtained from previ-
ous morphometric studies with human airways [68, 85]. 
A stack-based algorithm traverses the airway tree and 
determines the highest branch to designate for closure 
to reproduce the ventilation defect in precise anatomic 
locations of the model that correspond to the anatomic 
locations of the image. Each branch within the airway 
tree is modeled assuming laminar flow in a compliant 
walled tube and hence requires a distinct flow resistance 
and inertance partitioned via a shunt airway wall compli-
ance with each parameter for an airway branch a func-
tion of its length, diameter and wall material properties 
(Eq.  13). The terminal airways are then connected to a 
gas compression associated with the alveolar gas in par-
allel with a constant-phase tissue model all scaled to the 
appropriate volume. Impedance of the entire tree as well 
as ventilation distribution to all alveolar regions can be 
calculated by the appropriate series and parallel calcula-
tions also through a stack-based algorithm. All airway 
diameters are scaled to FRC, and the subsequent lung 
volume at FRC is distributed evenly among the terminal 
alveolar units.

One can synthesize these forward models with imaging 
and FOT data taken in asthmatics after inducing airway 
constriction by administering an airway smooth muscle 
agonist (i.e., methacholine). Heterogeneous constriction 
patterns can be imposed onto the airway tree to simulate 
oscillatory lung mechanics (Fig.  6) to best match meas-
ured frequency dependence of RL and EL determined by 
Eq. 11 [41, 52–54]. Simultaneously, one can overlay data 
from ventilation imaging of the lung obtained from PET 
[21, 22] and HP 3He MRI [27] onto the 3D anatomic 

Fig. 5  Relationship between baseline CV and AHR. Here, AHR was 
measured by the concentration of methacholine that elicits a 20% 
decrease in the subject’s FEV1 compared to baseline (PC20) dose. 
Lower PC20 doses denote higher degree of AHR. Note that there is a 
negative correlation between the baseline levels of ventilation het-
erogeneity, (i.e., the CV), and the PC20 dose in the asthmatic subjects 
(reproduced with permission from [32])

Fig. 6  A model airway tree for an asthmatic subjects following bronchoconstriction with methacholine (left) and following bronchodilation with 
albuterol (right). Open ventilated airways are depicted in black with closed nonventilated airways depicted in red. Note that following bronchodila-
tion, most, but not all, of the airways recover (reproduced with permission from [27])
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airway tree and then impose on the model the appro-
priate anatomic locations of the sites of airway closures 
and/or ventilation defects to match the imaging data 
(Fig.  7). This is accomplished by first scaling the airway 
tree model to the volume defined by ventilation imaging 
followed by subsequent mapping of the terminal alveo-
lar units to each ventilation defect. What is unique and 
ideal about the approach is that it isolates airway condi-
tions that requires simultaneous matching of two func-
tional measures for heterogeneity in lung mechanics and 
in ventilation.

It was found that for mild to moderate asthmatic sub-
jects, one cannot match both data sets simultaneously 
by only constricting or closing larger airways. Doing so 
either caused ventilation defects in model locations that 
did not occur in the actual imaging data, impedance 
increases inconsistent with the data, or both. The only 

way to match both data simultaneously required hetero-
geneous closures of small peripheral airways (<2  mm) 
in the airway tree [22, 27]. The airways leading to these 
ventilation defects did not need to be completely closed 
but rather constricted by  ~70% of their baseline diam-
eters [27]. This implies that although these airways may 
be ventilated, they operate with a time constant such that 
they are functionally closed in gas exchange [27]. Moreo-
ver, severe constriction of the terminal alveolar units and 
airways leading to these ventilation defects were not suf-
ficient to explain the degree of mechanical dysfunction 
during bronchoconstriction [21]. Although anatomi-
cally consistent airway tree models have been designed 
to explain ventilation defects via large airway closures, 
their significance and mechanical implications are still 
unclear [40]. It has been speculated that with more severe 
asthma, airway closures may occur in larger airways 

Fig. 7  Overview of image functional modeling. a Terminal units are defined from the airway tree model which are subsequently mapped to the 
ventilation defects obtained from HP 3He MRI with ventilated terminal units depicted in blue and the nonventilated terminal units depicted in 
yellow. b Through a recursive algorithm, the largest airway is determined and designated for closure depicted in red. c Constriction patterns are 
applied to the airway tree model to best match measured RL and EL (reproduced with permission from [15])



Page 9 of 11Lui and Lutchen ﻿Clin Trans Med  (2017) 6:29 

(≥2  mm) due to airway remodeling and inflammation. 
Moreover, computational modeling studies have sug-
gested that there may indeed be some coupling between 
the constriction of larger airways and smaller airways 
leading to heterogeneous clustering of ventilation defects 
[84].

Summary and conclusion
Over the past few decades substantial evidence has 
emerged that heterogeneous constriction, particularly 
in the peripheral airways, are key contributors to meas-
ures of reduced mechanical and ventilation function 
in lung disease [11, 86]. Previously, it was believed that 
due to their extensive parallel nature, these areas in the 
lung represented the silent zone with negligible resistive 
contributions to the total lung resistance. This is true for 
the healthy lung. However, advances in FOT and imag-
ing have illustrated an intrinsic degree of heterogeneity 
that affects both large and small airways. The FOT cap-
tures the impact via the nature of a parallel tree struc-
ture to dramatically amplify the frequency dependent 
behavior of mechanical indices. This is accomplished in 
a fashion that would amplify RL and EL to a much greater 
extent due to network topology than one would predict 
by knowing the average diameter reduction of any sin-
gle airway. Such insights become more prevalent using 
inverse and forward modeling schemes. More recently, 
imaging has evolved to enable visualization of ventila-
tion in the lungs. Unsurprisingly, this same phenom-
enon of heterogeneity present in lung mechanics has also 
been prevalent in the pattern of ventilation and has been 
found to be associated with AHR that occurs in asthma. 
Indeed non-invasive imaging has great potential to assess 
the likelihood and degree of AHR (i.e., if there are base-
line ventilation defects) and for tracking the efficacy of 
therapy to impact reactivity if it can remodel the airways 
to reduce baseline heterogeneity. Through combining 
measurements of mechanics and advances in imaging, we 
now have a powerful tool to explain how these structural 
heterogeneous changes lead to the dysfunction seen in 
asthma.
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