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Transcutaneous spinal cord electrical stimulation (tSCS) is an emerging technology that

targets to restore functionally integrated neuromuscular control of gait. The purpose of

this study was to demonstrate a novel filtering method, Artifact Component Specific

Rejection (ACSR), for removing artifacts induced by tSCS from surface electromyogram

(sEMG) data for investigation of muscle response during walking when applying spinal

stimulation. Both simulated and real tSCS contaminated sEMG data from six stroke

survivors were processed using ACSR and notch filtering, respectively. The performance

of the filters was evaluated with data collected in various conditions (e.g., simulated

artifacts contaminating sEMG in multiple degrees, various tSCS intensities in five

lower-limb muscles of six participants). In the simulation test, after applying the ACSR

filter, the contaminated-signal was well matched with the original signal, showing a high

correlation (r = 0.959) and low amplitude difference (normalized root means square error

= 0.266) between them. In the real tSCS contaminated data, the ACSR filter showed

superior performance on reducing the artifacts (96% decrease) over the notch filter (25%

decrease). These results indicate that ACSR filtering is capable of eliminating artifacts

from sEMG collected during tSCS application, improving the precision of quantitative

analysis of muscle activity.

Keywords: neurorehabilitation, electrical stimulation, surface electromyography, artifact removal, signal

assessment

1. INTRODUCTION

Several studies have demonstrated that spinal stimulation has helped restore functionally integrated
neuromuscular control of gait in individuals with spinal cord injury (Carhart et al., 2004;
Hofstoetter et al., 2015; Minassian et al., 2016; Angeli et al., 2018; Gill et al., 2018; Wagner
et al., 2018). Based on these notable results, it has been suggested that transcutaneous spinal cord
stimulation (tSCS) can potentially be a simple, safe and noninvasive application in a wide range
of neurological diseases with gait disorders. Spinal stimulation operates on the principle that the
stimulation exploits spared and silent descending pathways within the spinal circuitry to enable

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.660583
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.660583&domain=pdf&date_stamp=2021-06-03
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:a-jayaraman@northwestern.edu
https://doi.org/10.3389/fnhum.2021.660583
https://www.frontiersin.org/articles/10.3389/fnhum.2021.660583/full


Kim et al. ACSR Filter for EMG Signals

activation of the lower-limb muscles, thus restoring voluntary
control of walking (Taccola et al., 2018). Previous investigations
primarily highlighted functional recoveries (e.g., restored ability
to walk overground, reduced amount of physical support)
as the effect of spinal stimulation, but did not investigate
detailed changes in neuromuscular control during walking
(Angeli et al., 2018; Gill et al., 2018; Wagner et al., 2018).
Therefore, it is important to establish sensitive measurement
tools to further understand whether recovery or remodeling of
neurophysiological factors occur as underlying mechanisms of
tSCS effects on functional recoveries.

Currently, one way to test and evaluate the neuromuscular
effects of spinal stimulation is with the acquisition of surface
electromyograms (sEMG) (Harkema et al., 2011; Grahn et al.,
2017; Angeli et al., 2018; Gill et al., 2018;Wagner et al., 2018). One
key technical challenge of using sEMG to evaluate stimulation
effects is dissociating the net muscle activity from signal artifacts.
Specifically, the electrical current from tSCS propagates along
skin tissues and contaminates sEMG signals (Mandrile et al.,
2003; Qiu et al., 2015). The characteristics of stimulation-induced
artifacts depend on the stimulation setting such as stimulation
intensity, frequency, and the distance between stimulation
location and sEMG electrodes (Qiu et al., 2015). Additionally,
there are several intrinsic and extrinsic sources of baseline
noise including the amount of fatty tissue between the skin
and the muscle tissue, skin-electrode interface, thermal noise,
and power line noise (De Luca et al., 2010). Together, these
noise sources generate various forms of sEMG artifacts, which
might lead to erroneous interpretations of sEMG concerning the
neuromuscular effects of tSCS.

Previous tSCS studies filtered the stimulation-induced
artifact using reference sEMG electrodes placed over paraspinal
muscles to record the artifacts from tSCS (Harkema et al.,
2011; Angeli et al., 2018; Gill et al., 2018). However, the
frequency characteristics of the signal artifacts can be different
between electrodes placed at different muscle locations, so the
effectiveness of the performance of this filtering method is
uncertain. One study used a notch filter rejecting all signals
at a stimulation frequency (Grahn et al., 2017), which might
also eliminate the intended sEMG signal originated in muscle
activity. Due to these limitations, a more delicate filtering tool
that allows precise quantitative analysis of the muscle activity has
been needed.

Other electrical stimulation applications (e.g., functional
electrical stimulation, direct current brain stimulation) also
proposed filtering methods to remove artifacts including signal
decomposition methods (e.g., wavelet transform, empirical mode
decomposition) (Yochum and Binczak, 2015; Pilkar et al., 2016).
These methods are highly effective at removing the artifacts
when sophisticated selections are made for filter specifications,
such as threshold or mother wavelet. However, determining
filter specification is a time-consuming process since there are
many factors thatmust be taken into consideration. Alternatively,
hardware-assisted artifact removals have been suggested (Tracey
andKrishnamachari, 2006;Wichmann andDevergnas, 2011), but
it requires modification of hardware settings and is less flexible
than software based approaches.

Recently, our research group developed a novel filter, Artifact
Component Specific Rejection (ACSR), that specifically rejects
crosstalk for robust gesture recognition (Kim et al., 2020a,b). The
development of the ACSR filter was led by the insight that sEMG
signals from a specific muscle activation have distinguishable
characteristics in frequency domain compared to those from
other muscles’ activation (i.e., crosstalk). Similarly, we expected
that this novel filter could be an effective and time-efficient
method to automatically distinguish signal features of muscle
activity from those of artifacts originated from diverse sources
(e.g., tSCS artifacts, power line noise, intrinsic noise). In this
study, we tested whether the ACSR filter could optimize the
removal of baseline noise and tSCS artifacts while retaining the
maximum amount of intended sEMG signals from simulation
data as well as real tSCS contaminated data recorded under
diverse tSCS settings and intrinsic and extrinsic conditions.

2. MATERIALS AND METHODS

2.1. Participants
Six stroke survivors with diverse demographic characteristics
and varied gait impairment levels were recruited for this study
(Table 1). Inclusion criteria for all participants included: (1)
18 years of age or older, (2) at least 6-months post-stroke,
(3) hemiparesis/hemiplegia after a single stroke, (4) Functional
Ambulation Category of two or greater, (5) no presence of severe
lower-limb spasticity, (6) no presence of painful musculoskeletal
dysfunction, (7) no history of seizures, and (8) no metal implants
in the spine or back. Each participant provided informed consent.
These procedures were approved by the Northwestern University
Institutional Review Board. Prior to the spinal stimulation
experiment, self-selected walking speed and the lower extremity
motor subscale of the Fugl-Meyer (FMA-LE) assessment (Fugl-
Meyer et al., 1975) were measured for each participant to
characterize the level of gait impairment. An FMA-LE score of
21 out of 34 was reported to be the optimal cutoff score to
differentiate stroke survivors with high or low mobility function
(Kwong andNg, 2019). Additionally, a physical therapist assessed
the Functional Ambulation Category score, which distinguishes
walking ability on the basis of the amount of physical support
required ranging from 0 (unable to walk) to 5 (able to walk
independently anywhere) (Mehrholz et al., 2007).

2.2. Testing Procedures
Varying conditions of tSCS were tested for each participant.
A custom-built constant current spinal stimulator (BioStim-5,
Cosyma, Moscow, Russia) (Grishin et al., 2017) provided tSCS
during the assessment. The tSCS was applied at C5-6, T11-12, L1-
2, and L5-S1 spinous processes (cathode, Figure 1A), following
the tSCS configuration that was used in previous studies for
lower-limb rehabilitation (Minassian et al., 2016; Taccola et al.,
2018). Ground electrodes were placed on the anterior iliac
crests bilaterally (anode). T11 and L1 were stimulated at the
subthreshold intensities of 25 , 50 , and 75% of the resting
motor threshold (RMT). Additionally, we added stimulation at
L5 and C5, which was held constant at 40mA. A continuous,
biphasic waveform with rectangular 1ms pulses at a frequency
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TABLE 1 | Participant characteristics.

Sub # Sex Age (yrs) Time since

stroke (yrs)

Type of stroke Height

(cm)

Weight

(kg)

Paratic side Gait speed

(m/s)

FMA-LE

(Max:34)

FAC

(Max:5)

Stimulation

intensity

range (mA)

1 M 67 5 Hem 172.7 77.9 L 0.37 14 2 65–135

2 F 56 2 Isc 162.6 83.3 L 0.81 22 4 30–85

3 M 59 2 Isc 176.8 80.1 R 0.75 23 4 35–105

4 M 61 9 Hem 163.0 70.0 R 0.84 23 4 80–140

5 M 53 6 Isc 175.3 117.9 L 1.00 27 4 45–105

6 M 64 6 Isc 180.0 92.0 L 0.51 18 3 45–90

AVG – 60.0 5.0 – 171.7 86.9 – 0.71 21.17 3.50 –

SD – 5.1 2.7 – 7.3 16.8 – 0.23 4.54 0.84 –

F, Female; M, Male; Isch, Ischemic; Hemo, Hemorrhagic; FMA-LE, Fugl-Meyer Lower Extremity; FAC, Functional Ambulation Category.

of 30Hz, with each pulse filled with a modulation frequency
of 5 kHz was utilized for all stimulation (Figure 1B). Once a
specific stimulation condition was set, the participant remained
in a standing position for several seconds for a baseline sEMG
recording of each trial (Figure 1C, right). Then, the walking
trial began where a participant walked across a 12m walkway
at a self-selected speed. During the testing, Surface EMG (Delsys
Trigno, Delsys Inc., Boston, MA) was recorded from five muscles
per leg (Figure 1C, left): rectus femoris (RF), vastus lateralis
(VL), medial hamstring (MH), tibialis anterior (TA) and medial
gastrocnemius (MG). All sEMG data was collected at 2.000Hz
with a bandwidth set to 20–450 Hz (EMGworks Acquisition,
Delsys Inc., Boston, MA).

2.3. The ACSR Filter Application
2.3.1. Working Principle of the ACSR Filter
sEMG signals represent a summation of signals induced by
various sources including tSCS, environmental noise sources,
and muscle activations. Importantly, the signals induced by each
source have distinguishable characteristics in power spectrum
density.

Specifically, signals induced by tSCS, which are referred to
as tSCS artifacts in this paper, have specific frequency patterns
depending on the combination of modulation frequencies.
Environmental noise sources include line interference from
power lines, lights, and amplifier circuits. Most environmental
noise is considered as white noise (i.e., power at each frequency
has similar power at a given frequency bandwidth); power line
noise depends on local power-line frequency (50 or 60Hz). sEMG
signals induced by muscle activations are complex and depend
on the characteristics of muscles and electrodes. In general, the
bandwidth of the sEMG signals induced by muscle activations is
considered to be 20–450Hz.

Therefore, ACSR filter was designed upon the principle that
artifact-free sEMG signals can be obtained by first identifying
the frequency distribution of the artifacts, then removing those
artifact components from artifact-contaminated signals in the
frequency domain, and finally reconstructing the artifact-free
signals in the time domain.

To reflect this working principle, the algorithm of the ACSR
filter was designed to automatically identify the frequency
distribution of artifacts (i.e., artifact parameters) from sEMG
signals that were recorded with the presence of the artifact
sources only with a minimum amount of volitional muscle
activation necessary for maintaining standing posture. Although
this signal includes some sEMG signals induced by muscle
activation for maintaining standing posture, signal amplitude
in this portion was considerably smaller (6.7% in average,
see Supplementary Materials S2) when compared to signal
amplitude recorded during walking. Considering that the signals
recorded during standing also include environmental noises,
sEMG signals solely induced by muscle activity for maintaining
standing posture are presumably minor compared to signals
induced by walking. Therefore, we referred to this portion of
the signal as artifact-dominant signal, and used this portion
as reference signals to identify the frequency distribution of
artifacts. Then, the identified magnitudes of the artifacts in the
frequency domain are extracted from that of the sEMG recorded
during walking under the presence of artifacts.

2.3.2. Filtering Steps
The ACSR filter utilizes a sliding window segmentation to obtain
a set of filtered signals. Figure 2 describes the overall filtering
scheme. Each step of the filtering process is described below:

(i): Extraction of artifact-dominant signals for filter training
Artifact-dominant signals are measured (Figure 2, blue lines)

where sEMG signals were recorded during standing. Since all
stimulation was delivered at the subthreshold intensities, there
was no stimulation evokedmuscle activities. Then, the segmented
window and frequency components in each window is extracted
using FFT as follows:

[x1, x2, · · ·, xL] = fseg(xa)

yl = fft(xl), l = 1, 2, · · ·, L (1)

where xa denotes tSCS artifact-dominant signal, and xl ∈ RN

and yl ∈ CN denote a segmented signal in the window of
lengthN and its converted frequency domain signal, respectively.
A relationship between the number of windows, L and the
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FIGURE 1 | Experimental setup. (A) Transcutaneous spinal cord stimulation (tSCS) setup. tSCS was delivered using a surface electrode on the skin between the

C5-6, T11-12, L1-2, and L5-S1 spinous process (cathode) and a surface electrode in each anterior crest of the hip bone (anode). (B) Schematic representation of the

type of current used during tSCS and (C) sEMG data collection procedure during walking when tSCS was applied. sEMG signals were recorded from rectus femoris

(RF), vastus lateralis (VL), medial hamstring (MH), tibialis anterior (TA) and medial gastrocnemius (MG).

overlapping window, t is represented as follows:

L = ⌊
NS− N

N − t
⌋ + 1 (2)

where NS denotes the time length for filter training.
(ii): Identification of artifact parameters
Artifact parameters are extracted by taking the maximum

amplitude of each frequency component among the amplitudes
obtained in all segmented windows, as follows:

Yn
artifact = max

1≤l≤L
|ynl | (3)

where |yn
l
| denotes amplitude of the nth frequency component of

yl, and Y
n
artifact

denotes nth component of the artifact parameters.
(iii): Extraction of a window-segmented signal to apply the

ACSR filter
After the identification of the artifact parameters, artifact-

filtered signal can be extracted from the signal in window length
of N. Here, an arbitrary signal was chosen for demonstration
(Figure 2, red lines).

(iv) and (v): Filter application and reconstruction

Then, frequency components of sEMG signals recorded with
intended movement are analyzed as follows:

y = fft(x)

|yn
′

| =

{

|yn| − Yn
artifact

, if (|yn| − Yn
artifact

) ≥ 0

0, otherwise

6 yn
′

= 6 yn, n = 1, · · · ,N

x′ = ifft(y′) (4)

where x and y denote the sEMG signal in time domain
and frequency domain, respectively, |yn| and 6 yn denote
amplitude and phase of nth frequency component, respectively.
In conclusion, the filtered signal x′ has the same phase as
the original signal x; the only magnitude for each frequency
component is changed.

x is generally represented as windows with an overlap of t. The
artifact-filtered signal, x′ is represented as follows:

x′[t + 1 :N] = h(x,Yartifact)[t + 1 :N] (5)

where (4) is represented as h(·).
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FIGURE 2 | Overall processing scheme of the ACSR filter. (i) First, artifact-dominant signals (blue lines, time length = 3 s) were selected to identify artifact parameters.

At each segmented window (200ms), a fast Fourier transform (FFT) was conducted to extract frequency components of the signals within the window. (ii) Then,

(Continued)
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FIGURE 2 | maximum amplitude at each frequency index was obtained. The set of maximum amplitudes at each frequency index indicates the artifact parameters.

(iii) To identify frequency components of signals recorded during walking (red lines), a FFT was conducted with the signals within segmented windows. (iv) Then, the

overlapped amplitudes between artifact-dominant signals (blue line) and walking signals (red line) in the frequency domain were subtracted from the amplitudes of the

walking signals. The remaining amplitude at each frequency index indicates the frequency of uncontaminated muscle-induced signals. (v) Finally, using an inverse FFT,

the sEMG signal within the window was reconstructed.

2.3.3. Parameter Selection
There are three parameters for the ACSR filter: (1) window
length when segmentally analyzing the artifact-dominant signal
to extract artifact features (i.e., window length, N); (2) size of the
overlap between the windows (i.e., overlapping window, t), and
(3) total time length of artifact-dominant signals that is used for
filter training (i.e., time length for training, NS). In this paper,
window length (N), overlapping window (t) and time length for
training (NS) were set as 200ms, 100ms, and 3 s, respectively.
The selection of the window length (N) and the overlapping
window (t) was based on an empirical ground explored in our
previous study (Kim et al., 2020a,b) which observed that these
parameters yielded decent filtering performance.

2.4. Performance Evaluation
The effectiveness of the ACSR filter was examined on simulated
and real-tSCS artifact contaminated sEMG signals from the six
participants.

2.4.1. Evaluation With Simulated Artifact
The performance of the ACSR filter was evaluated with an
assumption that the filter is capable of restoring sEMG signals
contaminated by simulated artifacts to the signals prior to
contamination.

The simulated artifact-contaminated signals were generated
with linear combination between an original sEMG (i.e., actual
sEMG signal collected during walking without tSCS application)
and simulated artifacts following actual tSCS specification
described in section 2.2. The level of contamination was
manipulated by varying ratios between amplitudes of simulated
artifacts and that of the original sEMG signals. The simulated
artifact-contaminated sEMG signal was generated as follows:

X = S+ rA (6)

where X denotes simulated artifact-contaminated signals, S
denotes original sEMG signals, r denotes artifact to signal ratio,
and A denotes the simulated artifact with the same power of the
original sEMG signals; power of the signal was represented by
the average of the top 100 signal amplitudes of the signal. The
artifact-contaminated signals were simulated in ratios from 0.25
to 4 in increments of 0.25.

Then, the ACSR filter was applied to the original sEMG (S)
and simulated artifact-contaminated signals (X), respectively, as
follows:

S′ = ACSR(S)

X′ = ACSR(X) (7)

where X′ and S′ denote simulated artifact-contaminated and
original sEMG signals, after applying ACSR filter, respectively.

It was assumed that X′ and S′ would be identical, if the ACSR
filter selectively rejects the signal-specific artifact. To measure
this conformity between the signals, correlation coefficient
(time domain conformity) and normalized root mean squared
error (NRMSE, amplitude conformity) between the signals were
calculated. The correlation coefficient was calculated using the
cross-correlation function in MATLAB 2015a (MathWorks, Inc.,
Natick, MA, USA). NRMSE was computed as follows:

NRMSE =

√

(
∑

i X
′
i − S′i)

2/NX′

σX′

(8)

where NX′ denotes the number of samples of X′; σX′ denotes
standard deviation of X′; and X′

i and S′i denote ith sample of
artifact-filtered and original-filtered signals, respectively. Higher
values of correlation coefficient and lower values of NRMSE
indicate superior performance of the filter.

2.4.2. Evaluation With Real tSCS-Contaminated

Signals
Since the genuine sEMG signals are unknown once the signal
is contaminated by tSCS artifacts, it is impossible to directly
evaluate filtering performance with real tSCS-contaminated
signals. Alternatively, the performance evaluation of these signals
was investigated with an assumption that the amplitude of the
baseline noise (i.e., signal noise recorded prior to voluntarily
activating muscles) should be minimized to reflect the minimum
level of muscle activity.

To compare the filtering performance of ACSR with a
conventional notch filter, sEMG signals recorded under various
tSCS conditions were filtered separately by notch filter and ACSR
filter. For the notch filter, the third-order Butterworth filter was
used which band stop frequencies were manually selected by
visual inspection of frequency-domain signals: 62, 94, 125, 156,
188, 219, 250, 282, 313, 345, 376, 407, 439, 470, 501, 533, 564, 595,
627, 658, 690, 721, 752, 784, 815, 846, 878, and 909Hz. Baseline
noise amplitudes were computed by RMS envelopes of the raw,
notch-filtered, and ACSR-filtered signals. Lower baseline noise
amplitudes were considered to indicate better performance of the
filter.

Statistical analysis: Additional statistical analyses were
conducted to compare the performance of removing tSCS
artifacts (SPSS 26.0, IBM, Inc., Chicago, IL). We compare the
baseline noise amplitude among different filtering methods
(raw signal, notch-filtered signal, and ACSR-filtered signal) and
recording conditions (muscles and tSCS intensity) as factors to
assess their influence on the effect of the artifact removal. Two-
factor split-plot Analysis of Variance (ANOVA) was computed
with filtering methods as a main effect and muscles where sEMG
signals were recorded (RF, VL, MH, TA, and MG) as a subplot
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FIGURE 3 | Performance evaluation of the ACSR filter using simulated artifact-contaminated signals (A,B) an exemplary original sEMG signal (paretic side RF of

subject 6) recorded during walking without tSCS (A) and its filtered signal (B). (C,E,G) A contaminated sEMG signal generated with linear combination of the original

signal and simulated artifacts with artifact-to-signal ratio of 1 (C), ratio of 2 (E) and ratio of 4 (G). Their corresponding filtered signals were displayed on the right

column (D,F,H). (I) Overlaid Root Mean Squared (RMS) enveloped signals of the filtered signals. Note that filtered original signal (black line) and all filtered

contaminated signals (red, blue, green lines) are generally well matching with respect to timing and amplitude. This result indicates that the proposed filter selectively

rejected the simulated artifacts without degrading or distorting the muscle-induced signals.
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FIGURE 4 | Results of performance evaluation of ACSR filter using simulated artifact-contaminated signals of six participants. (A) Results of correlation coefficients

between an original signal and simulation artifact-contaminated signal after applying the filter. Higher correlation coefficient indicates better filtering performance. (B)

Results of normalized root-mean-square error (NRMSE) between the signals. Lower NRMSE indicates better filtering performance. As the artifact to signal ratio

increases, there is a decrease in correlation coefficient and increase in NRMSE. This result indicates that the performance of ACSR filter is influenced by the severity of

contamination level.

effect. Similarly, two-factor split-plot ANOVA was computed
with filtering methods as a main effect and tSCS intensities (no
stimulation, 25% RMT, 50% RMT, and 75% RMT) as a subplot
effect. When a significant effect was observed, post-hoc paired
comparisons were conducted with Fisher’s LSD test. All tests
were performed as a two-sided test. P-values equal to or less than
0.05 were considered statistically significant.

2.5. Evaluation on Influence of Filter
Parameters on the ACSR Filter
Performance
Although the filter parameters were selected based on the
empirical evidence in this study (see section 2.3.3), the influence
of the three filter parameters (window length, N; overlapping
window, t; time length for training, NS) on the ACSR filter
performance was further evaluated in two ways: (1) with a real
tSCS-contaminated signal, and (2) with simulated signals. First,
we evaluated each parameter’s influence on the filter performance
with an exemplary signal that was contaminated by real tSCS
artifacts (subject 3, VL muscle, tSCS intensity: 75% RMT).
For this analysis, we systematically adjusted the value of one
parameter at a time, while keeping a constant value for the other
two parameters. Specifically, to examine the influence of the
window length (N) on the filter performance, the window length
was changed from 100ms to 800ms in increments of 50ms, while
keeping the other two parameters constant (t = 100ms, NS =

3 s). Similarly, the overlapping window (t) was changed from
0ms to 199ms in increments of 1ms, while unchanging the other
two parameters (N = 200ms, NS = 3 s). Lastly, time length for
training (NS) was explored from 0.5 s to 6 s in increments of 0.5 s,
while keeping the other two parameters constant (N = 200ms,
t = 100ms).

Additionally, we performed a similar evaluation with
simulated signals. For simplicity of the manuscript, the detailed
methods and results with the simulated signals were described in
Supplementary Materials S1.

2.6. Code Availability
Matlab script implementing the ACSR filter is available online
from https://github.com/mjkim0927/kim-frontiers-2021.

3. RESULTS

3.1. Performance Evaluation Using
Simulated Artifact-Contaminated Signal
Figure 3 shows an exemplary outcome of ACSR filter by
comparing the original-signal (paretic side RF of subject
6, Figure 3B) with simulated artifact-contaminated signals
(Figures 3D,F,H), after applying the filter to each signal. In this
example, the ACSR filter recovered the contaminated signals
to be matched with the original signal with respect to timing
(correlation coefficients r = 0.949 to 0.992) and amplitude
(NRMSE = 0.130 to 0.349). The result reflects that the algorithm
was able to extract the sEMG signal induced by muscle activity
with minimal loss of data in all signals contaminated with various
artifact-to-signal ratios.

The same analysis was applied to all six participants. Overall,
the filtered signal matched well with the original signal (i.e., signal
before being contaminated with simulated artifacts) with respect
to the timing and amplitude reflected by correlation coefficients
(AVG = 0.959) and NRMSE (AVG = 0.266). Notably,
the performance of the ACSR filter decreased with increased
degree of contamination (Figure 4). In all six participants,
as artifact-to-signal ratio increased, conformity of timing and
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FIGURE 5 | Performance evaluation with real tSCS contaminated sEMG signals. The signals from subject 2 (tSCS intensity: 75% RMT) were represented as

exemplary signals. Raw (upper figures) and filtered (lower figures) signals from RF, VL, MH, TA, and MG are represented in (A–E), respectively. Note that the amplitude

of the baseline noise (3–7 s) varied between the muscles in raw signals. (F) RMS envelops of the signals before (upper figure) and after (lower figure) applying the

ACSR filter. The amplitude of the baseline noise reduced close to 0 V for all five muscles while the muscle activation patterns were preserved.

amplitude between the filtered-contaminated signals and filtered-
original signal was decreased, reflected by a gradual decrease
in correlation coefficient and increase in NRMSE. However, it
should be noted that even at an artifact-to-signal ratio of 4,
the correlation coefficient ranged between 0.887 and 0.916 and
NRMSE ranged between 0.419 and 0.484, indicating a decent
level of agreement between filtered-contaminated and filtered-
original signals.

3.2. Performance Evaluation Using Real
tSCS Contaminated Signals
3.2.1. Reducing Baseline Noise of sEMG Recorded

From Various Muscles
Figure 5 describes exemplary results (subject2, tSCS intensity:
75% RMT) of reduction of the baseline noise of the real

tSCS contaminated sEMG signals of the five muscles (RF, VL,
MH, MG, and TA) after applying ACSR filter. The raw data
(upper figures, Figures 5A–E) showed that baseline noise (signals
between 3 and 7 s) existed and the amplitudes of the noise were
significantly different among the muscles. After applying the
ACSR filter (lower figures, Figures 5A–E), the baseline noise was
reduced.

The same analysis was applied to the contaminated sEMG
signals (i.e., raw data) of the paretic side of five muscles of
the six participants, while applying the notch filter and ACSR
separately (Figure 6A). The statistical results showed that there
was significant difference in the baseline noise among the filtering
methods (F(2, 60) = 123.15, p < 0.001). As expected, the baseline
signal noises were significantly reduced after applying either the
notch filter (p < 0.001) or ACSR filter (p < 0.001). Importantly,
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FIGURE 6 | Comparison of baseline noises filtered by notch filter or ACSR. Comparison of baseline noises recorded (A) from five muscles (RF, VL MH, MG and TA)

and (B) from RF muscles in four different tSCS intensities. Overall, the ACSR filter reduced the baseline noise greater than the notch filter. In addition, in the raw data,

the baseline noises were significantly greater in the muscles at the thigh (RF, VL, MH) compared to those at the shank (MG, TA) and also when higher tSCS intensities

were applied. These differences became insignificant after applying either notch or ACSR filters. Data presented as Mean ± Standard Error.

the amount of reduction was greater for the ACSR (AVG = 97%
reduction) compared to the notch filter (AVG = 25% reduction).
Specifically, the ACSR filter significantly reduced baseline noise
for all muscles (p′s < 0.050). On the other hand, the notch
filter significantly reduced the baseline noise only for RF muscles
(p = 0.003), while it did not for other muscles (p′s > 0.050).

Another interesting observation was that there was significant
interaction effect between filtering methods and muscles in the
baseline noise (F(8, 60) = 3.54, p = 0.002). Specifically, a post-hoc
analysis revealed that in the raw data, muscles on the thigh (RF,
VL, MH) had significantly greater noise amplitudes compared
to those of the muscles on the shank (MG and TA) (p′s <

0.050). However, the differences of the baseline noise between the
muscles became insignificant after applying either the notch filter
(p = 0.592) or ACSR filter (p = 0.549).

3.2.2. Reducing Baseline Noise of sEMG Recorded

With Various tSCS Intensities
The notch and ACSR filters were applied separately on the
contaminated sEMG of RF muscle on the paretic-side recorded
with various tSCS intensities (i.e., no stimulation, 25% RMT,
50% RMT, 75% RMT) (Figure 6B).

There was significant difference in the baseline noise among
the filtering methods (F(2, 45) = 286.60, p < 0.001) showing
both the notch and ACSR filters significantly reduced baseline
noise of the raw data (p′s < 0.001). However, the amount
of reduction was greater for the ACSR filter (AVG = 99%
reduction) compared to that of the Notch filter (AVG = 51%
reduction).

Additionally, there was significant interaction effect between
filtering methods and muscles in the baseline noise (F(6, 45) =

15.12, p < 0.001). Specifically, in the raw data, the baseline

noise significantly increased as higher tSCS intensities were
applied (p = 0.001). However, these differences of baseline noise
among the different intensity conditions became insignificant
after applying either the notch filter (p = 0.587) or the ACSR
filter (p = 0.423).

3.2.3. Artifact-to-Signal Ratio of Real

tSCS-Contaminated Signals
The artifact-to-signal ratio in real tSCS contaminated data
sets was estimated indirectly using ACSR methods (see
Supplementary Materials S3). The median ratio between the
artifact and muscle activation signal was 1.464 (IQR = 0.573 −
3.425) in the real tSCS-contaminated signals.

3.3. Influence of Filter Parameters on
Performance
Figure 7 describes the influence of each parameter on
performance using an exemplary real tSCS-artifact contaminated
signal (subject 3, VL, tSCS intensity of 75% RMT). Figures 7A,B
show the raw signal and filtered signal using the parameters as
the window length (N) of 200ms, the overlapping window (t) of
100ms, and the time length (NS) of 3 s.

Figure 7C describes the effect of change in the window length
(N) on the filter performance. As the window length increased
(from red to blue line), the filtered signals showed higher RMS
amplitudes at the phase of muscle deactivation (e.g., signals
at 7.5 s) indicating that a greater amount of signal remained
unfiltered. This result implies that longer window lengths
resulted in a higher frequency resolution, and the complicated
frequency distribution of artifacts is likely to be overfitted to the
training signals with non-stationary artifacts.
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FIGURE 7 | Influence of filter parameters on ACSR filter performance using an exemplary real tSCS-artifact contaminated signal (subject 3, VL, tSCS intensity of 75%

RMT). (A) The raw signal, (B) filtered signal using parameters as the window length of 200ms, the overlapping window of 100ms, and the time length of 3 second, (C)

Influence of window length on the filter performance, (D) Influence of overlapping window length on the filter performance. (E) Influence of time length for training on

the filter performance. RMS envelopes of the raw and filtered signals were shown in gray and black lines from (C–E).
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Figure 7D describes the effect of the overlapping window (t)
on the filter performance. While there were minimal differences
among the filtered signals, as size of the overlapping window
increased (from red to blue line), the graphs slightly shifted
toward the right side (i.e., temporal delay). This result indicates
that an elongated overlapping window setting might cause
temporal offset of the filtered signal.

Figure 7E describes the effect of change in the time length
for training (NS). All filtered signals had a similar shape and
amplitude, except for the signal filtered with a time length of
training of 0.5 s (brightest red line), which showed higher RMS
amplitude compared to the other signals. In this exemplary
signal, the filter performed similarly when the time length
of training was set between 1 and 6 s. In general, a longer
time length for training allows to detect more variation of
artifacts in the reference signal, which might lead to improved
filter performance. However, it should also be considered that
extending the time length of training might increase the risk
of rejecting muscle-induced signals because a subject might
unintentionally contract muscles during this period.

4. DISCUSSION

The present study applied the ACSR (i.e., artifact component
specific rejection) filter to remove tSCS artifacts from the
contaminated sEMGs of stroke survivors data. The ACSR filter
was designed to automatically identify components of artifacts
in the artifact-dominant-signal (i.e., signals with miminum
voluntary activation) and eliminate the identified components
from the sEMG signal collected during walking.We evaluated the
performance of the ACSR filter with both simulated and actual
tSCS artifact-contaminated data and observed that the filter is
capable of removing these artifacts.

4.1. Performance Evaluation With
Simulated Signals Contaminated With
Various Artifact-to-Signal Ratios
The performance of the ACSR filter was tested with simulated
artifact-contaminated sEMG, which was generated with a linear
combination of the sEMG without tSCS (i.e., original signal)
and simulated artifacts contaminating sEMG inmultiple degrees.
Overall, the filtered artifact-contaminated signal matched well
with the original signal with respect to the timing and amplitude.
However, the performance of the ACSR filter depended on the
severity of signal contamination, showing better performance
with lower amplitude of simulated-artifacts (i.e., lower artifact-
to-signal ratio). In the real tSCS contaminated data sets, the
artifact to signal ratio ranged from 0.573 to 3.425. The simulated
signals showed that the ACSR filter performed well in this level
of contamination, supporting the use of the ACSR filter in lower-
limb sEMG during walking when tSCS is applied.

4.2. Performance Comparison Between a
Previous Filtering Method and ACSR Filter
We compared the performance of the ACSR filters with that
of a previous method (i.e., notch filter) with the real tSCS
contaminated data by examining the amount of reduction of the

baseline noise after applying each filter. The results demonstrated
superior performance of the ACSR filter (reduced the baseline
noise by 96%) over the notch filter (reduced it by 25%). A
known issue of the notch filter is that it requires prior information
about the stimulation conditions (e.g., frequency) to determine
appropriate filter parameters (Qiu et al., 2015). Additionally,
the notch filter rejects all signals at a target frequency while
frequency components between muscle-induced and artifact-
induced sEMG signals are overlapping (Qiu et al., 2015). In
contrast, the ACSR filter does not have these limitations because
it automatically identifies artifact characteristics and does not
need prior knowledge about stimulation conditions. Also, the
filter only subtracts magnitude of the signal originated from
artifacts while keeping those originated from muscle activity.

Additionally, we observed that the characteristics of baseline
noise was significantly influenced by sEMG recording conditions.
Specifically, in the raw data, higher baseline noise amplitude
was observed in muscles located closer to the tSCS sites (i.e.,
higher noise at thigh muscles than at shank muscles), and as
higher tSCS intensities were applied. Previous spinal stimulation
studies used reference sEMG electrodes placed over paraspinal
muscles to record tSCS induced artifacts and filtered the recorded
artifacts from the lower-limb sEMG (Harkema et al., 2011; Angeli
et al., 2018; Gill et al., 2018). However, our results indicate
that this previous method might not optimally perform since
artifacts recorded at the paraspinal muscles are likely to have
different characteristics than those recorded at the lower-limb
sEMG. On the contrary, the ACSR filter was designed to identify
components of artifacts and eliminate the identified components
within the same sEMGdata set, minimizing condition differences
between the reference and outcome signals. This observation
supports that the ACSR filter could allow for precise quantitative
comparison of themuscle activity recorded in various conditions.

4.3. Potential Application
Our approach shows the potential to evaluate sEMG signals
induced by neuromuscular activation during tSCS application,
which can provide important information about the effects
of tSCS. The effects enabling motor control when delivering
tSCS and functional improvements are not fully understood
due to the lack of a sensitive tool to dissociate the stimulation
artifacts from the underlying muscle activity. Consequently, the
effect of tSCS on functional performance has been primarily
examined by mechanical output (e.g., gait parameters, joint
kinematics) or clinical measures (Gerasimenko et al., 2015;
Angeli et al., 2018). While these scales showed functional
recovery where participants accomplished walking patterns
typically used by nondisabled individuals, detailed evaluation on
muscle activation would further inform whether the functional
recovery was achieved through neuromuscular recovery or
adaptive/substitutive compensatory strategies (e.g., increase
agonist/antagonist coactivation, altered muscle activation
timing). Therefore, the development of this artifact-filtering
algorithm for tSCS may provide more insight into the impact of
tSCS performance at a physiological level and help to apply these
findings clinically.

Additionally, it is possible to apply this software algorithm
within the sEMG acquisition and/or processing platforms, so that
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this software could instantaneously subtract the artifacts in the
sEMG data, without modifying the data acquisition hardware.
When applying the ACSR filter for such an online processor, the
filter parameters should be carefully re-determined to minimize
time delay on recognition of muscle activation (e.g., minimizing
the size of the overlapping window).

4.4. Limitations and Future Directions
There are a few limitations to be noted. First, the ACSR filter
was designed with the assumption that the artifact characteristics
would be constant throughout a single data set. However, in a
practical situation, artifacts may be continuously changed due
to electrode displacement during recording, and interference
of nearby electrical equipment. In these situations, pre-trained
filtering parameters cannot respond to the changed artifact
condition.

The second limitation is that the reference signals (i.e.,
artifact-dominant signal), in which the artifact component is
trained, include stimulation artifacts as well as sEMG activity
induced by maintaining standing posture. However, as stated in
the method section (section 2.3.1, Supplementary Materials S2),
the signal amplitude solely induced by standing posture was
substantially smaller compared to the signal amplitude induced
by walking. Therefore, we believe that the benefit for applying
the filter to analyze walking data exceeds the risk of losing
a minimal amount of sEMG signals activated to maintain a
standing posture. However, caution is needed when applying
the filter, since this method is only validated for examining
sEMG activity during walking, and might not be adequate when
assessing other activities such as standing.

Another limitation is the small sample size and scarce
diversity of gait impairment levels since it was a pilot study
to determine feasibility of implementing the ACSR filter when
applying tSCS. All six participants included in this study had
mild to moderate gait impairment, classified as community
ambulatory (Functional Ambulation Category ≥ 2). Also,
based on the FMA-LE score, two out of six participants (Subject
1&6) had low mobility function (FMA-LEM< 21), while others
had relatively high mobility function. Given that the filter
performance gets worse as the ratio between artifact and muscle-
induced signal increases, it is possible that the filter does not
work properly for a subject with severe weakness of muscle
activation. Additionally, while the current study only involved
stroke survivors, the performance of the filter could be more
associated with the degree of walking deficits than the type of
pathology. Therefore, to expand on this pilot study, a future
study is warranted to include participants with a broader scope of
gait impairments (mild, moderate and severe) as well as healthy
controls to allow for comparison of filter performance between
the groups. Lastly, it should be noted that the artifact amplitude
increased as distance between the sEMG electrode location and
stimulation site gets closer (Figure 6A). Therefore, while the
current study evaluated muscles on the thigh and shank only,
it would be interesting to evaluate the performance of the filter
closer to the stimulation area, such as the gluteal muscles.

5. CONCLUSION

We observed that the ACSR filter is capable of eliminating
artifacts from sEMG collected during tSCS application in
stroke survivors. The ACSR approach demonstrated decent
accuracy and robustness to recover sEMG at different levels
of contamination. Additionally, the ACSR filter showed
superior performance on reducing the baseline noise over the
conventional notch filter. Overall, the ACSR filter provides an
effective, time-efficient, and easy-to-implement approach to
evaluate sEMG signals during tSCS. Therefore, this approach can
allow precise quantitative analysis of the muscle activity recorded
under diverse tSCS conditions.
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