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INTRODUCTION 

 

Endocrine systems are important for the growth and 

development of animals. Understanding the regulation and 

control of hormones secreted from endocrine organs is 

important in animal production. Since the physiological 

functions of the hormones identified have been reported in 

humans and rodents, domestic animals have been examined 

in numerous studies. Ruminants have distinct glucose and 

lipid metabolisms; volatile fatty acids produced by rumen 

fermentation are utilized as substrates (Roh et al., 2006). 

Adipose tissue is synthesized mainly from long-chain fatty 

acids, triglycerides from acetic acid, and endogenous glucose 

by de novo synthesis through gluconeogenesis from 

propionate in the liver. The capacity of lipid synthesis in 

adipocytes of ruminants is high compared to that in other 

species. Excess energy is stored as triglycerol, which is 

broken down into glycerol and fatty acids (Yonekura et al., 

2014; Choi et al., 2015). Fatty acids are consumed as an 

energy source in the peripheral tissues. Energy metabolism 

in ruminants, which mainly use lipid for energy, affects 

economic traits such as milk production and milk quality in 

dairy cattle as well as marbling in beef cattle. Despite the 

importance of adipose tissue in energy homeostasis, excess 

fat depots negatively influence the grading of carcasses, and 

they are therefore trimmed (Belk et al., 1991; Vernon et al., 

2001). In contrast, the presence of intramuscular adipocytes 

is a desirable characteristic (known as marbling). The 

metabolism of adipose tissue plays a critical role in the 

support of reproduction and lactation of ruminants and is 

related to ketosis and fatty liver caused by a negative energy 

balance, described as a metabolic state in which energy is 

lacking (Pethick and Lindsay, 1982; Bell, 1995; Laliotis et 

al., 2010). Thus, the energy metabolism of adipose tissue is 
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a very important target in animal science. Dairy cows exert 

intense energy during parturition because of the onset of 

copious milk synthesis; however, feed intake is reduced 

during this time. Previous studies have mainly examined 

endocrine systems in organs, such as the pituitary and 

pancreas, the gonads, and adrenal gland. However, the 

endocrine characteristics of adipose, liver, and muscle tissues 

as productive organs have not been widely examined in 

ruminants.  

Cytokines were initially found to play a key role in 

immune system balance and the response to infectious 

pathogens. In early 1980, cytokines were found to be 

secreted proteins; they were found to regulate important 

cellular responses such as proliferation and differentiation in 

several tissues (Nicola, 1994). The balance between cytokine 

synthesis and secretion from immune cells has become a 

focus of research characterizing the immune response in 

ruminants. “Cyto” means cells, whereas “kine” means active 

protein. Hormones or cytokines secreted from endocrine 

organs such as epithelial cells and immune cells have been 

reported. 

These cytokines, particularly those secreted from adipose, 

liver, and muscle tissues, regulate glucose, lipid, and protein 

metabolism related to beef and dairy products. Lactation, 

meat production, growth, and pregnancy in ruminants are 

processes with high energy and protein demands. Feed intake 

and nutrient utilization related to animal production in 

ruminants may be strictly controlled by several different 

types of cytokines. In addition, abnormal secretions and the 

functional relationships between these cytokines have been 

observed in many diseases, such as fatty liver, ketosis, 

acidosis (caused an energy and nutrient imbalance), and 

metabolic disorders in ruminant production systems. 

Understanding the physiological roles of adipokines, 

hepatokines, and myokines in ruminants helps to improve 

animal health and the quality and quantity of animal 

production. In this review, we discuss the metabolism of 

ruminants and the important physiological roles of 

adipokines, hepatokines, and myokines. 

 

Adipokines 

Adipokines are proteins that are secreted from the 

adipose tissue as endocrine factors from adipocytes and/or 

non-adipocytes. Several adipokines have been identified by 

numerous different groups. It is thought that many 

adipokines show increased expression and secretion with the 

development of adipose tissues and can sense long-term 

changes in energy balance, regulate feeding and metabolism, 

and maintain homeostasis in the body. Therefore, adipokines 

modulate various biological functions such as energy 

metabolism and immune response with other hormones in 

animal production (Baik et al., 2014; Kang et al., 2015). We 

summarize the novel findings regarding the major adipokines, 

including leptin, adiponectin, tumor necrosis factor (TNF)-α, 

and chemerin. 

 

Leptin 

Leptin was first identified as an adipokine secreted from 

adipocytes in adipose tissues (Zhang et al., 1994). Leptin 

inhibits food intake and increases energy expenditure 

through its receptors in the brain. Several studies have 

examined leptin secretion in ruminants. 

Plasma leptin is positively correlated with muscle lipid 

content for continental crossbred steer of 0% Wagyu, but 

there was almost no correlation in these parameters for 

crossbred cattle of 50% Wagyu (Wegner et al., 2001). Fatter 

cows show higher plasma leptin concentrations prepartum, a 

more pronounced decrease in leptin concentration near 

calving, and higher plasma leptin concentrations after 

calving (Kokkonen et al., 2005). Concentrations of leptin 

with insulin-like growth factor (IGF)-1 and insulin in fed and 

fasted cows were positively correlated with body condition 

score (Lents et al., 2005). Serum concentrations of leptin 

were significantly associated with carcass composition 

(marbling, back fat depth, and kidney, pelvic, and heart fat) 

and quality grade in crossbred Bos taurus steers and heifers 

(Geary et al., 2003). Growth hormone (GH)-transgenic and 

control sheep showed similar leptin secretion, despite 

differences in body condition and basal levels of these 

hormones (Kadokawa et al., 2003). This evidence suggests 

that leptin is related to body fatness in ruminants. 

Uncoordinated increases in plasma IGF-1 during 

growing periods and plasma leptin during fattening periods 

indicate i) the indirect involvement of endogenous IGF-1 on 

leptin secretion and ii) that IGF-1 level may signify lean and 

bone accretion, while plasma leptin may mirror body fatness 

in the monthly ages of Holstein steers (Vega et al., 2002). 

Changes in plasma IGF-1 levels with increased live weight 

may be related to changes in plasma IGF binding protein 

(IGFBP)-3 levels, and IGFBP-2 may have an important role 

in the anabolic action of IGF-1 with body growth during 

calfhood in Holstein steers (Lee et al., 2005b). 

In sheep, body fatness or body condition score and 

plasma leptin levels and concentrations of leptin over time 

were found to be significantly positively correlated, with 

underfed ewes exhibiting a dramatic reduction in plasma 

leptin levels (Delavaud et al., 2000). In diet-restricted lambs 

treated with leptin or saline, the mean GH did not differ on 

day 0, but increased in response to leptin treatment (Morrison 

et al., 2001). Treatment of fed lambs with leptin did not affect 

serum GH. Leptin also regulates the secretion of GH in sheep 

and cattle (Roh et al., 1998; Roh et al., 2001; Zieba et al., 

2003). Roh et al. (2001) reported observed a negative effect 

of leptin on GH-releasing hormone (GHRH)-stimulated GH 
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secretion with reduced GHRH receptor synthesis in 

somatotrophs from ovine primary cell cultures. Furthermore, 

leptin inhibited the dose-dependent increase in GHRH-

mediated GH release in the tissues of normal-fed cows 

(Zieba et al., 2003). However, in explants harvested from 

fasted cows, leptin did not affect GHRH-mediated GH 

release (Zieba et al., 2003). This suggests that leptin can act 

directly at the anterior pituitary level to modulate GH release 

depending upon nutritional status. 

 

Adiponectin 

Adiponectin is involved in improving insulin sensitivity 

(Berg et al., 2001; Yamauchi et al., 2001), regulating fatty 

acid metabolism (Fruebis et al., 2001), cell proliferation 

(Brakenhielm et al., 2004; Bub et al., 2006), and 

differentiation (Luo et al., 2005) in various cells. In particular, 

its expression is markedly increased during adipocyte 

differentiation in mice and ruminants (Scherer et al., 1995; 

Roh et al., 2006). Adiponectin regulates various 

physiological functions by activating adenosine 

monophosphate (AMP)-activated protein kinase (AMPK), 

which is mediated by two subtypes of adiponectin receptors 

(AdipoRs), including AdipoR1 and AdipoR2. In cattle, 

adiponectin mRNA is highly expressed in adipose tissues and 

is upregulated during adipocyte differentiation of 

preadipocytes derived from bovine stromal-vascular cells 

(Feuermann et al., 2006; Soliman et al., 2007). Moreover, 

adiponectin mRNA expression in adipose tissue is lower in 

lactating cows than in non-lactating cows (Komatsu et al., 

2003; Komatsu et al., 2007). Our group previously reported 

that bovine adiponectin and its receptor genes were 

expressed in various tissues, particularly in mammary tissues, 

and expression levels were changed during the lactation 

cycle (Ohtani et al., 2011). Increased serum adiponectin may 

be involved in energy metabolism near parturition, and it 

may exert its action by regulating receptor expression levels 

in target tissues during each lactational stage in Holstein 

dairy cows (Ohtani et al., 2012). 

 

Tumor necrosis factor-α 

TNF-α, a major pro-inflammatory cytokine produced in 

macrophages, mast cells, and other immune cells, induces the 

production of inflammatory cytokines, chemokines, and 

angiogenic factors by activating mitogen-activated protein 

kinases (MAPK) and the nuclear factor (NF)-κB pathway 

(Aggarwal, 2003). In humans, TNF-α inhibits leptin release 

from cultured subcutaneous and omental adipocytes 

(Fawcett et al., 2000). TNF-α decreased leptin production 

and gene expression during incubation of abdominal 

subcutaneous adipose tissue in vitro (Bruun et al., 2002). The 

production and secretion of TNF-α in adipose tissue is 

unclear in ruminants. TNF-α upregulated chemerin and 

chemerin receptor gene expression in bovine cultured 

adipocytes (Song et al., 2010). Administration of TNF-α also 

promoted insulin resistance in steers (Kushibiki et al., 

2001a;b). In cattle, TNF-α administration was followed by 

an initial increase in circulating concentrations of glucose 

followed by prolonged hypoglycemia (Kenison et al., 1991; 

Kushibiki et al., 2000). TNF-α administration also caused an 

initial increase in triglycerides, followed by decreased 

circulating concentrations of triglycerides in heifers 

(Kushibiki et al., 2000). Others, however, have observed that 

triglycerides and nonesterified fatty acids were not affected 

by TNF-α treatment of bull calves (Kenison et al., 1991). 

Circulating plasma concentrations of TNF-α are greater in fat 

ewes, suggesting that an additional mechanism exists for fat 

cell signaling of the body condition (Daniel et al., 2003). 

The p38-inhibitor SB203580 suppresses TNF-α-induced 

interleukin (IL)-6 and IL-8 production in Sertoli cells and 

bronchial epithelial cells, respectively, highlighting the role 

of this pathway in inflammatory cytokine production (De 

Cesaris et al., 1998; Matsumoto et al., 1998). In addition to 

MAPKs, the NF-κB pathway is widely known to be another 

potent signaling pathway leading to cytokine production and 

has been reported to interact with MAPK pathways 

(Aggarwal, 2003; Starace et al., 2008).  

The role of TNF-α is not limited to the induction of 

cytokine production. It also has a large influence on 

adipocyte metabolism. The lipolytic effect of TNF-α is a 

potent property in adipocytes. TNF-α induces the activation 

of extracellular signal-regulated kinase (ERK) 1/2, JNK (c-

jun N-terminal kinase), AMPK, and PKA (cyclic AMP-

dependent protein kinase), which are involved in the 

mechanism of TNF-α-induced lipolysis (Cawthorn and Sethi, 

2008). Not only does TNF-α induce lipolysis, but also 

inhibits fatty acid uptake and lipogenesis in adipocytes. TNF-

α downregulates the expression of fatty acid transport protein 

(FATP), FAT, and lipoprotein lipase (LPL) to decrease 

adipocyte uptake of free fatty acids (Memon et al., 1998; 

Ruan et al., 2002; Ruan et al., 2003). Downregulation of 

lipogenic enzymes, including acetyl CoA synthetase (ACC), 

fatty acid synthetase (FASN), and fatty acid binding protein 

4 (FABP4), by TNF-α causes decreased lipogenesis in 

adipocytes (Cawthorn and Sethi, 2008). In addition, TNF-α 

impairs adipogenesis. Adipogenesis is driven by a 

transcriptional cascade which is characterized by early 

transient expression of CCAAT/enhancer binding protein β 

(C/EBPβ) or C/EBPδ followed by C/EBP and peroxisome 

proliferator-activated receptor α (PPARα). TNF-α prevents 

C/EBPα and PPARγ activation via ERK or JNK, resulting in 

the inhibition of adipogenesis (Cawthorn and Sethi, 2008). 

 

Chemerin 

Chemerin was first identified as a gene expressed in non-
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lesional skin in psoriasis. Chemerin’s role as a natural ligand 

for chemokine receptor-like 1 (CMKLR1) and the effect of 

promoting the migration of leukocytes was later reported 

(Wittamer et al., 2003; Wittamer et al., 2004; Wittamer et al., 

2005). Our group reported that chemerin is an adipokine 

expressed and secreted in fat cells (Roh et al., 2007). Two 

other groups reported that chemerin is an adipokine 

(Bozaoglu et al., 2007; Goralski et al., 2007). Chemerin is 

secreted as the inactive 18-kDa precursor prochemerin, 

processed by serine proteases (elastase, tryptase, cathepsin G) 

in the blood, and converted into several forms of active 

chemerin. Chemerin has been reported to be associated with 

inflammation and metabolic syndrome in mouse and human 

studies (Bozaoglu et al., 2009; Hu and Feng, 2011). 

Chemerin mRNA and protein expression was increased by 

adipocyte differentiation, and up-regulated in the adipose 

tissue of mice fed a high-fat diet. Additionally, chemerin 

levels are increased by insulin resistance and glucose 

intolerance in the skeletal muscle and liver. Chemerin also 

functions as a chemotactic factor and shows increased 

concentrations in inflammatory situations. TNF-α, IL-6, and 

C-reactive protein have been correlated with the blood 

concentration of chemerin. Therefore, chemerin is associated 

with metabolic syndrome and chronic inflammation in the 

adipose tissue in obesity and type 2 diabetes. Because of the 

differences in glucose and lipid metabolism of ruminants 

compared with in monogastric animals, chemerin was also 

suggested to have a role as an endocrine factor.  

We first reported the endocrine and metabolic changes in 

response to chemerin in sheep (Suzuki et al., 2012b). Our 

previous results suggested that a chemerin analog (NH2-

yFLPsQFa(Tic)S-COOH) regulated insulin secretion related 

to glucose metabolism and the release of triglycerides in 

sheep in vivo. In addition, chemerin analog treatment was 

shown to upregulate chemerin gene expression levels 

regardless of the dose in bovine cultured adipocytes in vitro 

(Suzuki et al., 2012a). Our data clearly showed that TNF-α–

induced activation of the MAPK pathway is a potent pathway 

regulating chemerin expression in bovine differentiated 

adipocytes. (Figure 1A). Treatment of TNF-α (10 ng/mL) 

clearly induced phosphorylation of ERK1/2 after 5 min 

stimulation, which was later attenuated. Low JNK 

phosphorylation was observed at 5 min, but phosphorylation 

levels were high at 15 min after TNF-α treatment. p38 

MAPK was phosphorylated at 5 and 15 min. Furthermore, 

the MAPK inhibitors PD98059, SP600125, and SB203580 

were used to attenuate the phosphorylation of their target 

MAPK protein (Figure 1B). PD98059 and SP600125 

suppressed the phosphorylation of ERK1/2 and JNK, 

respectively. SB203580 did not suppress the activation of 

p38 MAPK induced by TNF-α. In addition, MAPK inhibitors 

blocked TNF-α-induced up-regulation of chemerin and 

CMKLR1 expression. Three hours after TNF-α treatment, 

the gene expression of chemerin was upregulated, and this 

up-regulation was attenuated by SB203580 (Figure 2A). 

Similarly, the TNF-α-induced up-regulation of CMKLR1 

expression was suppressed by SB203580 at 3 h after 

treatment (Figure 2B).  

Chemerin has a significant influence on carcass traits. 

Regarding the single nucleotide polymorphism (SNP) of 

chemerin, c.276C>T, we found that cattle with genotype CC 

had a higher beef marbling score than that of cattle with 

genotype CT, whereas cattle with genotype CT had a higher 

body condition score (p<0.10) (Yamauchi et al., 2015). 

 
Figure 1. Effect of each inhibitor on TNF-α-induced MAPK 

activation in bovine differentiated adipocytes. (A) Differentiated 

bovine adipocytes were incubated in serum-free DMEM/HAMF12 

for 3 h before treatment with TNF-α (10 ng/mL) for the indicated 

times. (B) Differentiated bovine adipocytes were pre-incubated 

with each MAPK inhibitor for 1 h followed by treatment with TNF-

α (10 ng/mL). Whole soluble protein was extracted and used for 

western blot analysis of total and phosphorylated ERK, JNK, or 

p38. TNF-α, tumor necrosis factor-α; MAPK, mitogen-activated 

protein kinase; ERK, extracellular signal-regulated kinase; JNK, c-

jun N-terminal kinase. 
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Further, cattle with genotype CC had significantly higher 

C18:0 content in their intramuscular fat tissue than cattle 

with genotype CT (p<0.05). In contrast, cattle with genotype 

CT had significantly higher C14:0 and C16:0 content in their 

intramuscular fat tissue. Moreover, the number of individuals 

carrying the minor allele of c.276C>T SNP is small. This 

suggests that the c.276C>T SNP of the chemerin gene could 

be used for cattle breeding using modern methods, such as 

marker-assisted selection. Thus, further functional and 

physiological studies examining the impact of the chemerin 

gene on bovine lipid metabolism including fatty acid 

synthesis improve our understanding of these traits. 

 

HEPATOKINES 

 

Hepatokines were first introduced as the protein 

selenoprotein P, which contributes to the development of 

insulin resistance in the liver and skeletal muscle (Misu et al., 

2010). Before this report, several studies showed that hepatic 

secretory factors, including the angiopoietin-like protein 

family (Oike et al., 2005; Xu et al., 2005), fetuin-A (Auberger 

et al., 1989; Srinivas et al., 1993), and angiopoietin-like 

protein 8 (ANGPTL8)/betatrophin (Yi et al., 2013), are 

hepatokines involved in insulin sensitivity. 

The livers of ruminants play very important roles in 

glucose and lipid metabolism and contribute to body 

maintenance and production (Stefan and Haring, 2013). In 

addition, the liver is a passive organ that is altered by nutrient 

availability such as feeding and fasting. Mobilization of 

nonesterified fatty acids from white adipose tissue is both 

intensive and extensive, with rates peaking as high as 3,712 

g/d after parturition; these rates are sustained over the first 

month of lactation to cover 30% of the total energy 

requirement (Drackley et al., 2001; Vernon, 2005; 

Schoenberg et al., 2011). Glucose is mainly synthesized in 

the liver via gluconeogenesis from propionate absorbed from 

the rumen. The negative energy balance induced by 

parturition induced fatty liver via increased lipolysis in 

adipocytes, resulting in the accumulation of FFA in the livers 

of lactating cow (Goff and Stabel, 1990; Bobe et al., 2004). 

Some dairy cows are susceptible to pathologies such as fatty 

liver in early lactation (Goff and Stabel, 1990; Bobe et al., 

2004). Dysregulation of nutrient signals among adipose, liver, 

and muscle tissues can result in chronic metabolic diseases. 

However, the identification of hepatokines redefined the 

liver as an endocrine organ that regulates the metabolism of 

other tissues. Several peptides have been shown to be 

secreted from the liver tissue and hepatocytes.  

 

Insulin-like growth factors 

Many scientists first identified IGF-1 as a hepatokine, 

because injected radiolabeled GH rapidly localizes to the 

liver and produces growth factors with insulin-like properties. 

IGFs were given a name that reflects the structural 

relationship with proinsulin and show some affinity for 

insulin receptors. IGF-1 secretion in liver tissue is stimulated 

by GH secreted from the pituitary gland. In addition, IGF-I 

is expressed in many tissues; however, most IGF-1 in the 

blood is secreted from the liver. The biological effects of 

IGFs are induced by IGF binding proteins (IGFBPs).  

Interestingly, in cattle, administration of IGF-1 increased 

milk production in lactating cows and body weight in beef 

cattle. In ruminants, circulating IGF-1 is positively correlated 

with growth (Roberts et al., 1990) and growth rate (Bishop et 

al., 1989). Studies in ruminants have shown that nutrition and 

the treatment of chronic and acute GH regulate IGF-1 

 

Figure 2. Inhibition of TNF-α-induced upregulation of cheme

rin and CMKLR1 gene expression in differentiated bovine adi

pocytes. Cells were incubated with serum-free DMEM/HAMF

12 for 2 h before treatment. Cells were pretreated with vehic

le (DMSO) or MAPKs inhibitors (PD98059, SP600125, or S

B203580) for 1 h, and then stimulated with TNF-α for 3 h 

(A, B). After treatment for 3 h, the expression levels of che

merin and CMKLR1 gene were analyzed by qRT-PCR. Gene 

expression was normalized with ALAS1 and represented as t

he mean±SEM (n = 6). abc Significant differences (p<0.05) between 

values for each treatment concentration are denoted with letters. 

CMKLR1, chemokine receptor-like 1; TNF-α, tumor necrosis 

factor-α; MAPK, mitogen-activated protein kinase; ALAS1, 

aminolevulinate synthase 1. 
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secretion and positive and negative circulation of IGFBPs 

(Vicini et al., 1991; Stanko et al., 1994; McCann et al., 1997). 

Protein restriction decreased plasma IGF-1 concentrations 

and increased 34-kDa IGFBP-2 levels in low protein (LP; 

crude protein 0.66 kg/d and total digestible nutrients 4.42 

kg/d dry matter intake) steers (Lee et al., 2005a). 

 

Serenoprotein P (SeP) 

SeP (in humans encoded by the SEPP1 gene) is a secreted 

protein primarily produced by the liver (Carlson et al., 2004; 

Burk and Hill, 2005). SeP contains ten selenocysteine 

residues and functions as a selenium-supplying protein (Saito 

et al., 1999). SeP induces insulin resistance and 

hyperglycemia, indicating that this protein is a therapeutic 

target for insulin resistance-associated diseases, including 

type 2 diabetes (Misu et al., 2010). Our unpublished data 

showed that SeP mRNA expression was inhibited by insulin 

treatment for 24 h in bovine cultured hepatocytes.  

 

Chemerin 

Because our data indicate that chemerin is expressed and 

produced by the liver and has a regulatory role in metabolism, 

we suggest that chemerin should be referred to as an 

adipokine.  

Previous studies have investigated the regulation of 

hepatic chemerin expression and secretion mainly in mice. 

High-fat diet feeding significantly elevates chemerin 

transcription but not protein expression in the mouse liver 

(Krautbauer et al., 2013). In the two mice models of fatty 

liver disease, hepatic chemerin expression was also altered. 

Paigen diet feeding, which contains higher cholesterol 

content resulting in non-alcoholic fatty liver disease, 

generally increases hepatic chemerin protein (Krautbauer et 

al., 2013). Methionine choline-deficient (MCD) diet feeding, 

which lacks methionine and choline and induces more severe 

fatty liver (non-alcoholic steatohepatitis), elevates local 

chemerin protein production in the liver but does not increase 

systemic chemerin levels (Krautbauer et al., 2013). 

Accordingly, in human patients with non-alcoholic fatty liver 

disease and non-alcoholic steatohepatitis, hepatic chemerin 

was also increased (Docke et al., 2013). Recent studies using 

cultured hepatocytes revealed the regulatory factors of 

chemerin expression related with lipid and cholesterol 

metabolism, including long-chain fatty acid, cytokines, 

metofolmin, and FXR agonist (Deng et al., 2013; Krautbauer 

et al., 2013). These data suggests that hepatic chemerin is 

involved in lipid metabolism and inflammation in the liver. 

Hepatic chemerin expression in bovine, however, may be 

modulated by other factors than those in mouse and human. 

We found that chemerin protein expression was decreased in 

the liver of post-weaning calves compared to pre-weaning 

calves without transcriptional changes (unpublished data). 

Furthermore, chemerin mRNA and protein are more 

abundant in the liver of growing calves (10 months of age) 

fed a concentrated diet than calves fed only haylage (Suzuki 

et al., 2015). Although insulin and propionate were shown to 

negatively regulate hepatic chemerin transcription in bovine 

hepatocytes, the detailed mechanism remains unclear 

(Suzuki et al., 2014). Thus, the physiological role of 

chemerin in the metabolism in the liver differs between 

ruminants and rodents because of the differences in 

regulatory factors of chemerin expression (lipid metabolism 

vs glucose metabolism). 

 

Angiopoietin-like protein 8/betatrophin 

Angiopoietin-like protein 8 (ANGPTL8) was first 

reported to be involved with pancreatic β cell proliferation in 

a mouse model of insulin resistance and named betatrophin 

based on its function (Yi et al., 2013). However, independent 

groups of researchers that the hormone is not required for β 

cell function or growth (Wang et al., 2013; Gusarova et al., 

2014). Another group also demonstrated that in mice with 

extremely elevated ANGPTL8 expression (26-fold increase), 

beta cell replication was not significantly altered (Cox et al., 

2015). The major physiological role of ANGPTL8 is 

considered lipid metabolism regulation. Experiments using 

mice with ANGPTL8 deletion and ANGPTL8 

overexpression showed that ANGPTL8 controls and 

regulates triglyceride levels with no abnormalities in glucose 

homeostasis (Wang et al., 2013; Gusarova et al., 2014). 

Based on these reports, we investigated the regulatory 

expression of ANGPTL8 in ruminants because ruminant 

such as cattle and sheep have shown increasing insulin 

resistance. Our unpublished data showed that ANGPTL8 is 

highly expressed in the liver and adipose tissues, and its 

expression is up-regulated by insulin in cultured hepatocytes 

prepared from pre-weaning Japanese Black cattle. However, 

the expression was unchanged by increasing fat 

accumulation in castrated Korean Native cattle (our 

unpublished data). This suggests that ANGPTL8 is regulated 

by insulin signaling, not by fat accumulation in cattle. 

 

Fibroblast growth factor 21  

Fibroblast growth factor (FGFs) are signaling proteins of 

~150-300 amino acids with diverse biological functions 

mainly related to development and metabolism. FGF21 is 

abundantly expressed in the liver. Hepatic FGF21 expression 

is likely induced during fasting through the activation of 

PPARα by non-esterified fatty acids that are released from 

adipocytes and taken up by hepatocytes (Murata et al., 2011). 

Boisclair’s group at Cornell University first reported the 

physiological roles in FGF21 in dairy cows. Energy 

deficiency during early lactation in dairy cows is associated 

with increased liver FGF21 production and plasma FGF21, 

and lactation affects β-Klotho (co-factor of FGF receptor) 
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and FGF receptor expression in the liver but not in the white 

adipose tissue and that the mammary gland is not an FGF21 

target tissue (Schoenberg et al., 2011). 

 

MYOKINES  

 

Skeletal muscle is the largest organ in the body of 

livestock like cattle, which is closely related to meat quantity 

and quality (Gotoh et al., 1999; Gotoh, 2003). In livestock 

industries, skeletal muscles alter the meat characteristics 

during slaughter. The formation of skeletal muscle was based 

on nutrition. Skeletal muscle has been a focus of animals, 

including humans, for feeding or fattening. However, it was 

recently found that skeletal muscle is also an important 

secretary organ, affecting metabolism in the animal body. 

Understanding the secretary functions of muscle is important 

for feeding systems and nutrition. 

In the field of human medicine, continuous physical 

activity exercises have positive effects on the organs. 

Exercise mainly affects skeletal muscle, which is the largest 

organ in the body and characterized by mechanical activities 

such as posture and movement. Recent epidemiology studies 

have suggested that skeletal muscle can contribute to 

extending the period of life (Samitz et al., 2011). It is thought 

that exercise burns fat and improves obesity, preventing 

metabolic syndrome. However, exercise also affects many 

other diseases, such as by preventing Alzheimer disease, 

controlling melancholy, decreasing stroke, improving liver 

function, increasing liver function, increasing the immune 

system, improving arteriosclerosis, improving of bone 

density, declining the incidence of cancer, and improving and 

preventing cardiovascular disease (Doroudgar and 

Glembotski, 2011; Stefan and Haring, 2013). Exercise of 

muscle not only has the sub-effects of weight loss, but also 

has positive and direct mechanisms in health improvement. 

In recent years, it was reported that muscle secretes several 

hormone-like cytokines. Thus, muscle is a secretory organ. 

These cytokines produced in muscle are collectively referred 

to as “myokines” (Pedersen et al., 2007). However, myokines 

have not yet been internationally defined or have a common 

understanding. Muscle has been recognized as a motive 

organ; however, muscle was recently found to function in 

maintaining homeostasis in the body as a secretary organ.  

Myokines are classified into 4 categories: i) myokines 

secreted by acute contraction stimulus, ii) myokines secreted 

by chronic motion, iii) myokines secreted by other stimulus 

except for muscle contraction, and iv) myokines secreted 

constitutively in muscle. More than 20 myokines have been 

reported. However, there have been few studies of myokines 

in livestock. In this section, we focus myokines that have 

been recently investigated in basic science studies.  

 

Interleukin-6 

Previously, IL-6 was classified as a proinflammatory 

cytokine. Therefore, IL-6 was thought to be induced through 

exercise and was closely related to muscle damage 

(Bruunsgaard, 1997). Recently, however, it was shown that 

IL-6 is produced by muscle cells IL-6 in human myoblasts 

(Bartoccioni et al., 1994; De Rossi et al., 2000) and human 

cultured myotubes (Keller et al., 2006). IL-6 was also 

observed in growing murine myofibers and satellite cells 

(Serrano et al., 2008). The systemic level of IL-6 in the 

circulation increases markedly with systemic exercise. 

Muscle contractions lead to the production and release of IL-

6 into the circulation. The increase in circulating IL-6 with 

exercise has a number of biological effects, including 

increased glucose uptake into muscle and insulin-induced 

glucose accumulation, as well as lipolysis and fat oxidation 

in fat metabolism. In addition, IL-6 has a role in myogenesis 

and mediates anti-inflammatory effects. Interestingly, IL-6 

stimulates intestine L cells and pancreas α cells, and 

increases the secretion of glucagon-like peptide-1 (GLP-1), 

improving insulin secretion in pancreas β cells (Ellingsgaard 

et al., 2011). Muscle-induced IL-6 circulates systemically, 

interacts with the pancreas, and may regulate glucose 

metabolism. Glycogen intake by myocytes and the 

accumulation of glycogen in myocytes induced by insulin in 

animal should be further examined.  

 

Brain-derived neurotropic factor 

Brain-derived neurotropic factor (BDNF) is a 

neurotrophin that exerts numerous effects on neurons 

primarily through Trk receptor tyrosine kinases. Although 

BNDF was thought to be a neuron-related factor, induction 

of BNDF expression in the muscle was observed following 

both exercise and electrical stimulation (and contraction) of 

skeletal muscle (Seidl et al., 1998; Copray et al., 2000; 

Gómez-Pinilla et al., 2002; Matthews et al., 2009).  

Active muscle contraction modulates BDNF levels in the 

muscle. BDNF appears to play a role in the development and 

differentiation of myoblasts and muscle fibers (Mousavi and 

Jasmin, 2006; Miura et al., 2012). Interestingly, BDNF 

increased the phosphorylation of AMPK and ACC and 

enhanced fat oxidation both in vitro and ex vivo. BDNF is 

increased by contraction to enhance fat oxidation in an 

AMPK-dependent fashion, which is thought to occur in an 

autocrine and/or paracrine manner within skeletal muscle 

(Pedersen, 2009, 2011; Pedersen et al., 2009). Moreover, 

muscle-derived BDNF has an important role in muscle repair, 

regeneration, and differentiation. Thus, though BDNF is 

famous for its role in neurobiology, it can be identified as a 

myokine with a role in peripheral metabolism such as fat 

oxidation, myogenesis, and muscle regeneration. 
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Irisin 

Irisin, a transmembrane protein fibronectin type III 

domain containing 5 (FNDC5), was recently identified as a 

myokine. Irisin was identified when PGC1α was 

overexpressed in the muscles of mice. Irisin stimulates 

brown white adipocytes, contributes to the loss of body 

weight, and improves glucose metabolism. Irisin is regulated 

by exercise and plays a role in driving white fat cells into 

“brite” cells with a brown-fat-like phenotype (Boström et al., 

2012). Recently, bovine FNDC5 was identified and 

compared in mice and humans (Komolka et al., 2014). 

Although similarly organized in the human and murine loci, 

higher variability was observed at the transcript level in the 

bovine locus, and FNDC5 mRNA was abundant in bovine 

skeletal muscle and detected at lower levels in adipose tissue 

and the liver, not in circulation, although FNDC5 was 

observed in both skeletal muscle and circulation in murine. 

They also reported fundamental differences in the regulation 

of FNDC5 and Irisin between rodents and cattle. These 

differences should be further examined in livestock studies. 

 

Hepatocyte growth factor 

Among all growth factors studied, including fibroblast 

growth factors (FGFs), IGF-1, platelet-derived growth factor 

BB (PDGF-BB), transforming growth factor-βs (TGF-β1 and 

2), and epidermal growth factor (EGF), hepatocyte growth 

factor (HGF) is the only mitogen that has been demonstrated 

to stimulate quiescent satellite cells to enter the cell cycle 

early in primary culture assay and in vivo (Allen et al., 1995; 

Tatsumi et al., 1998; Charge and Rudnicki, 2004; Wozniak et 

al., 2005; Martins et al., 2011). HGF is a heparin-binding 

protein localized in the extracellular domain of un-injured 

skeletal muscle fibers through a possible association with the 

glycosaminoglycan chains of proteoglycans, and its 

predominant form is the active disulfide-linked heterodimer 

of a 60-kDa α-chain and a 30-kDa β-chain (Tatsumi and 

Allen, 2004). The intracellular signaling receptor for HGF is 

the c-met proto-oncogene; its message and protein have been 

observed in quiescent and activated satellite cells. Thus, the 

release of HGF from its sequestration in the matrix and 

subsequent presentation to the receptor c-met may be a 

critical aspect of the activation of quiescent satellite cells 

(Tatsumi et al., 2001; Tatsumi et al., 2002; Tatsumi et al., 

2006; Yamada et al., 2006; Tatsumi and Allen, 2008; Yamada 

et al., 2008; Tatsumi et al., 2009; Tatsumi, 2010). Recently, 

Wozniak and Anderson (2005) showed that HGF released 

from the matrix may induce c-met RNA expression as an 

immediate-early gene within 30 min in response to muscle 

fiber stretch, thus enhancing HGF-c-met signaling during the 

satellite-cell activation process (Wozniak and Anderson, 

2007). Yamada et al. (2010) proposed an additional role of 

HGF in quiescence through a negative feedback mechanism 

following satellite cell activation and proliferation; high 

concentrations of HGF (over 10 ng/mL in culture media) 

were shown to stimulate the expression of myostatin (GDF11) 

through a pathway that does not involve c-met (Yamada et 

al., 2010). Considering that HGF is produced by proliferating 

satellite cells and in spleen and liver cells in response to 

muscle damage, local concentrations of HGF bathing 

satellite cells may reach a threshold to induce myostatin 

expression during muscle regeneration. This time-lag may 

delay the action of the quiescence signaling program in 

proliferating satellite cells during initial phases of 

regeneration followed by induction of quiescence in a subset 

of cells during later phases. 

 

Semaphorin 3A  

Recently Tatsumi et al. found that satellite cells, resident 

myogenic stem cells normally positioned beneath the basal 

lamina of mature muscle fibers, produce and secrete a large 

amount of a multi-functional modulator semaphorin 3A 

(Sema3A) (a class 3 vertebrate-secreted semaphorin 

originally identified as a neural chemorepellent, also referred 

to as Sema3, SemD, and collapsing) exclusively during the 

early-differentiation phase in response to in vivo injury by 

crush or cardiotoxin-injection of the gastrocnemius muscle 

in the adult rat and mouse lower hind-limbs. Subsequent 

experiments also demonstrated that Sema3A up-regulation is 

induced by in vitro HGF/FGF2 treatments of primary 

cultures of satellite cells (Tatsumi et al., 2009; Do et al., 2011; 

Sato et al., 2013; Shono et al., 2013; Sakaguchi et al., 2014; 

Sawano et al., 2014). Additionally, emerging evidence has 

shown that satellite cell cultures prepared from adult rat 

soleus muscle (slow-fiber abundant) secrete more Sema3A 

than those from the fast-twitch extensor digitorum longus 

muscle upon growth factor treatment (Suzuki et al., 2013), 

indicating that the Sema3A secretion burst mediates the early 

myogenic differentiation of satellite cell-derived myoblasts 

and/or fiber-type regulation of the newly-formed myofibers 

during muscle regeneration following injury. The 

physiological significance of the Sema3A burst remains 

unclear, and further studies are needed to examine the 

assumed implication in regenerative myogenesis and moto-

neuritogenesis, including neurite sprouting and re-

attachment of motoneuron terminals onto damaged and 

generated muscle fibers.  

 

Other myokines 

Interleukin-7 is a cytokine that is required for T and B 

cell development related to the immune system. IL-7 

functions as a myokine in nonimmune cells (Haugen et al., 

2010). IL-7 expression may be involved in myogenesis and 

its expression in resting skeletal muscle is increased with 

training adaptation. 

Interleukin-8 belongs to the CXC family of chemokines 

(Baggiolini, 2001). It has been reported that IL-8 and CXCL-
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1 (CXC Ligand 1) are increased in contracting skeletal 

muscle and that IL-8 is released from human muscle cells in 

vitro (Nieman et al., 2003). However, a more likely function 

of muscle-derived IL-8 is the stimulation of angiogenesis in 

skeletal muscle (Pedersen, 2013).  

Interleukin-15 was originally isolated based on its ability 

to support natural killer T-lymphocyte proliferation. The IL-

15 transcript is expressed in a variety of nonlymphoid tissues, 

with particularly high expression in the skeletal muscle and 

placenta (Pedersen, 2013). The regulatory role of IL-15 in 

muscle contraction remains unclear. It is thought that IL-15 

plays a role muscle–fat cross-talk because IL-15 has been 

identified as an anabolic factor that is highly expressed in 

skeletal muscle (Grabstein et al., 1994). Muscle-derived IL-

15 should be classified as a potential myokine.  

Leukemia inhibitory factor (LIF), which was originally 

identified in 1988 as a protein secreted from ascites tumor 

cells (Hilton et al., 1988), was recently found to be a myokine. 

It is thought that LIF is induced in skeletal muscle following 

exercise and affects satellite cells, muscle growth, and 

regeneration (Pedersen, 2013). 

β-aminoisobutyric acid (BAIBA) stimulates white 

adipocytes to promote gene expression, particularly in brown 

adipocytes. BAIBA promotes the expression of PPARα and 

enhances fat oxidation (Roberts et al., 2014).  

In summary, myokines function in the following: i) 

muscle hypertrophy or regeneration (myostatin, LIF, LI-4, 

IL-6, IL-7, IL-15, and Sem3A), ii) adipose tissue oxidation 

(IL-6 and BDNF), iii) insulin sensitivity (IL-6), iv) 

osteogenesis (IGF-I, FGF-2), v) anti-inflammation (IL-6), 

and 6) antitumor defense (unidentified secreted factors) and 

pancreas function (unidentified secreted factor) (Pedersen, 

2013). In the future, myokine studies should be conducted to 

identify the cause of sarcopenia and to develop related 

biomarkers and medicines. Moreover, in the livestock 

science field, myokine research may result in the 

development of novel markers related to growth performance 

as well as muscle development and meat quality. 

  

CONCLUSION 

 

Taken together, hormones and nutrition signals affect 

feed control and the cross-talk between the adipose, liver, and 

muscle tissues in the beef and dairy products of ruminants 

(Figure 3). Determining the molecular mechanism and 

physiological system for feeding and energy metabolism in 

ruminants is essential for improving productivity and animal 

health. In this review, we summarized the current literature 

 

Figure 3. Endocrine crosstalk of adipokines, hepatokines, and myokines in ruminants. TNF-α, tumor necrosis factor-α; IGFs, insulin like 

growth factors; ANGPTL8, angiopoietin-like protein 8; FGF21, fibroblast growth factor 21; IL-6, interleukin-6; BDNF, brain-derived 

neurotropic factor; HGF, hepatocyte growth factor; Sema3A, semaphorin 3A. 
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regarding about several cytokines secreted form adipose 

tissue, liver tissue, and muscle tissues (Table 1). Additional 

studies examining the metabolism and endocrine network 

will contribute to animal production in terms of both quantity 

and quality in ruminant. 
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