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1  | INTRODUC TION

The growth rate of a population is determined by the survival and 
reproduction of its individuals. To understand how individual-level 
demographic processes translate to population growth, varia-
tion in demographic rates among individuals must be considered. 
Although trivial, only reproductively mature individuals contribute 
directly to immediate population growth. Survival rates also vary 
by life stages (Pinder, Wiener, & Smith, 1978). For example, in the 
loggerhead sea turtle Caretta caretta, the annual survival rate varies 
among life stages: eggs, juveniles, and adults (Crouse, Crowder, & 
Caswell, 1987). Ignoring the stage structure of a population can lead 

to misleading predictions of population growth. Matrix population 
models are one of the commonly used tools to build stage-structured 
models that account for variation in demographic rates among life 
stages (Caswell, 2001). By explicitly considering distinct life stages, 
matrix models can identify key demographic parameters that influ-
ence population growth, which is highly valuable in applied fields 
and others (e.g., Crouse et al., 1987; Parker, 2000; Shyu & Caswell, 
2016). To establish the relationship between population growth and 
demographic parameters, proper identification and characterization 
of life stages are essential.

Unless a stage is defined by a fixed duration (e.g., age), stage du-
ration will vary among individuals within the stage. For example, in 
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an egg stage, some eggs hatch (e.g., become larvae in some insects) 
before other eggs, even when they were laid at the same time (e.g., 
Fang, Okuyama, Wu, Feng, & Hsu, 2011; King, Brewer, & Martin, 
1975). The distribution of stage duration is another important detail 
that affects population growth (de Valpine, Scranton, Knape, Ram, & 
Mills, 2014). However, in matrix models, it is uncommon to explicitly 
think of a probability distribution and instead use a method that cap-
tures some components (e.g., mean and variance) of a distribution. 
One difficulty in building matrix models is that even when we know 
the true distribution of stage duration, incorporating the distribu-
tion precisely might not be possible. Although matrix models can 
describe accurate dynamics when within-stage age distributions are 
stable (Caswell, 2001), this assumption is not necessarily satisfied 
(Runge & Roff, 2000). More importantly, the effects of the distribu-
tions on population growth rate cannot be examined when specific 
distributions of interest cannot be expressed.

To illustrate the difficulty in modeling stage duration, a species 
consisting of two stages (juvenile and adult) is considered in which 
we are interested in modeling the distribution of juvenile duration. 
A standard method for describing stage duration assumes that a 
juvenile either leaves the juvenile stage (i.e., becomes an adult) with 
probability γ or remains as a juvenile with probability 1 − γ for a 
given time step if it survives (Figure 1a). In other words, the stage 
transition (per time step) is a Bernoulli process with success proba-
bility γ, with the stage duration of a juvenile realized by the number 
of Bernoulli trials required to have one success, which is known as 
a geometric distribution. A geometric distribution might be appro-
priate in some cases, but is highly restrictive. For example, the ex-
pected duration of juvenile stage in the whitefly Bemisia argentifolii 
is similar when they are raised on eggplant (17.31 days) and on to-
mato (17.96 days), but the associated variances are different: 44.47 
on eggplant and 77.00 on tomato (Tsai & Wang, 1996). A geometric 
distribution whose mean is 17.5 must have its variance as 288.75, 
which suggests that it is inappropriate for both cases. Furthermore, 
as shown in the example, distributions can have the same mean 
while having different variances. Geometric distributions cannot 
have different variances when they have the same mean. As such, 
cases in which the use of a geometric distribution is appropriate 
are limited.

Extensions of the geometric distribution are used to describe 
stage duration more flexibly. A natural extension is the sum of geo-
metric distributions known as the negative binomial distribution 
(Caswell, 2001). A negative binomial distribution can be interpreted 
as the number of Bernoulli trials required to have k successes. 
Figure 1b shows an example with k = 3. To become an adult, a newly 
born juvenile must go through identical Bernoulli trials until three 
successes are achieved. In this example, the juvenile stage contains 
three stages known as pseudostages. Pseudostages are created for 
convenience (e.g., simply to make k > 1) and typically do not repre-
sent biologically meaningful stages such as age. Ages are implicit in 
the models considered in this study, but matrix models that consider 
both age and stage explicitly have also been developed (Caswell, 
2012; Roth & Caswell, 2016, 2018).

Mixtures of two negative binomial distributions have also been 
suggested to create even more flexible distributions (Birt et al., 
2009). In the example shown in Figure 1c, there are two indepen-
dent negative binomial distributions describing the duration of the 
juvenile stage, and each juvenile follows one of the two distributions 
for which the probabilities that a newborn enters the first and sec-
ond negative binomial distributions are p and 1 − p, respectively. 
Each negative binomial distribution is characterized by two param-
eters (k1,γ1) and (k2,γ2). Having five parameters (p, k1, γ1, k2, and γ2
), mixtures of negative binomial distributions are the most flexible 
among the distributions described here. In fact, the geometric dis-
tribution is a special case of the negative binomial distribution (i.e., 
k = 1) and the negative binomial distribution is a special case of the 
mixture distribution (i.e., p = 1 or p = 0). In this study, mixtures of two 
negative binomial distributions are referred to as a mixture distribu-
tion unless otherwise stated.

Although a mixture distribution is more flexible than geometric 
and negative binomial distributions, actual distributions of stage 

F IGURE  1 Diagrams describing stage transitions given that 
individuals survive. Juvenile duration follows a (a) geometric 
distribution, (b) negative binomial distribution, and (c) mixture of 
two negative binomial distributions. Each arrow indicates an event, 
and the associated value (e.g., γ) is the probability that the event 
takes place given that an individual survives
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duration might differ significantly from it. Therefore, it is import-
ant to know how well a mixture distribution can approximate 
other potential duration distributions. A previous study found that 
a mixture distribution cannot approximate common distributions 
such as gamma and lognormal distributions effectively when the 
parameters of the mixture distribution are estimated heuristically 
(Lee & Okuyama, 2017). However, the fact that a mixture distri-
bution does not perform well with heuristic parameter estimation 
(described in Appendix) does not necessarily indicate the failure 
of the mixture distribution when the parameters are estimated 
differently. The heuristic method is similar to the method of mo-
ments, which uses only information contained in moments (e.g., 
the mean and variance), and it might make little sense when the 
assumed distribution is known to be wrong (e.g., using a mixture 
distribution to approximate a gamma distribution), and when infor-
mation not contained in moments influences population dynam-
ics. Maximum-likelihood estimation accounts for other properties 
of distributions through a fuller utilization of data (e.g., not just 
the mean and variance). This study examined the performance 
of a mixture distribution in approximating other target distribu-
tions when model parameters were estimated using a maximum-
likelihood method.

2  | METHODS

2.1 | Matrix population model

A species that experiences two life stages, such as the one shown 
in Figure 1, is considered. The matrix model uses a postbreeding 
census formulation (Case, 2000; Caswell, 2001) to keep track of 
the number of individuals in each stage and assumes that the dura-
tion of juvenile stage TJ follows a mixture distribution. For exam-
ple, Figure 1c describes the stage transitions when k1 = 2 and k2 = 3. 
Additional parameters describing survival and reproduction must be 
specified to complete a full demographic model. σJ and σA are the 
survival probabilities for juvenile and adult, respectively, and m is the 
expected number of female offspring produced by an adult female. 
All parameters describe demographic processes that take place in 
one discrete time step (e.g., day, week, or year), and an appropriate 
time step should depend on organisms (Cull, 1980). The model as-
sumes that males do not limit reproduction and keeps track only of 
females (Caswell, 2001).

Matrix population models can be described as 

where N(t) is a vector that consists of the number of individuals in 
each stage at time t. For example, for Figure 1c, N(t) is a vector length 
of six (i.e., five pseudostages and one adult stage). A completely sum-
marizes the demographic processes. Using the postbreeding census 
method, a mixture distribution-based model corresponding with 
Figure 1c is, 

where Pi = σJ(1−γi) is the probability that a juvenile survives and 
remains in the same pseudostage, with i∈{1,2} representing one 
of the two negative binomial distributions. Gi = σJγi is the proba-
bility that a juvenile in a pseudostage survives and advances to the 
next stage (another pseudostage or the adult stage). The model 
assumes that the stage duration TJ is a latent trait (i.e., determined 
at the birth), and an observed distribution can significantly differ 
from the distribution of TJ because some individuals die before be-
coming adults (further discussed below, also see Ergon, Yoccoz, & 
Nichols, 2009). The distribution of latent stage duration coincides 
with the observed distribution only when all individuals survive till 
adults (i.e., σJ = 1).

2.2 | Model parameters and analysis

Maximum-likelihood estimates (MLEs) of (p, k1, γ1, k2, and γ2) were 
used to create matrix models. When f is the true distribution of 
stage durations (i.e., TJ ~ f), a matrix model uses a mixture distri-
bution to approximate f. For a given true (or target) distribution of 
juvenile duration f (specific distributions will be described below), 
the maximum-likelihood parameters of a mixture distribution were 
estimated from 1,000 random samples generated from f.

Once the MLEs are determined, a population matrix (e.g., 
Equation 2) can be fully specified with the three additional parame-
ters σJ, σA, and m. Specific parameter values are discussed below. In 
this study, A is an irreducible primitive matrix that makes the popu-
lation ergodic according to the Perron-Frobenius theorem (Caswell, 
2001). In other words, the population growth rate eventually con-
verges to a fixed value regardless for any positive initial condition, 
and the asymptotic population growth rate (i.e., the finite rate of in-
crease) is represented by the dominant eigenvalue of A. In one sim-
ulation run, random samples from f are used to parametrize A, and 
the finite rate of increase is estimated from A. Because the finite rate 
of increase fluctuates as a result of random sampling from f, the av-
erage from 100 simulation runs was used to represent the expected 
value of the finite rate of increase.

2.3 | Individual-based models (IBMs)

The matrix model described above assumes that juvenile duration 
follows a mixture distribution. When the true distribution, f, is not a 
mixture distribution, the matrix model is an approximation. Examining 
the performance of matrix models when f is not a mixture distribu-
tion requires knowing the true population growth under f. An IBM 
was created to obtain population growth for various instances of f. 
Because matrix models describe simple demographic processes that 

(1)
N(t+1) = AN(t)

(2)
A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 pG1b 0 0 pG2m pσAm

G1 P1 0 0 0 0

0 (1−p)G1m P2 0 (1−p)G2m (1−p)σAm

0 0 G2 P2 0 0

0 0 0 G2 P2 0

0 G1 0 0 G2 σA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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occur in discrete time steps, corresponding IBMs can be created by 
simulating the demographic processes. For example, the survival of 
individuals is simulated as a Bernoulli trial with the survival probabili-
ties σJ (for juveniles) and σA (for adults). For each newly born individual, 
the duration of its juvenile stage is simulated from f. If the stage dura-
tion of a juvenile is x, the juvenile becomes an adult if it survives x time 
steps. Each adult reproduces m offspring on average, and the number 
of offspring was simulated from a Poisson distribution with mean m.

The finite rate of increase of a population can be estimated by 
simulating the IBM for many time steps. In particular, N(t + 1)/N(t) 
converges to the finite rate of increase, where N(t) is the number of 
individuals at time t (the sum of all individuals at time t). N(t + 1)/N(t) 
will fluctuate some even after convergence as a result of the sto-
chastic nature of the model. The geometric mean of N(t + 1)/N(t) 
from the last 1,000 time steps of 2,000 total time steps was used to 
represent the finite rate of increase. It was confirmed that a burn-in 
period of 1,000 was sufficient to obtain convergence.

2.4 | Comparison of the matrix model and 
IBM results

Estimates of the finite rate of increase from the matrix model and 
the IBM were compared under various choices of f in TJ ~ f. The IBM 
describes true (target) dynamics, and thus, a difference in prediction 
between an IBM and the corresponding matrix model indicates an 
inaccuracy in the matrix model. Four parametric distributions were 
considered for f: (a) zero-truncated Poisson distributions, (b) zero-
truncated over-dispersed Poisson distributions [explained below], (c) 
(discrete) gamma distributions, and (d) (discrete) lognormal distribu-
tions. The zero-truncated distributions were used because a juvenile 
duration of zero indicates that adults are directly producing adults, 
which was assumed to be impossible in this study.

Negative binomial distributions can be defined in multiple man-
ners. One form of negative binomial distribution was already de-
scribed above (e.g., Figure 1b; also see Appendix). Another formulation 
uses two parameters μ and k, where the mean is μ and the variance is 
μ + μ2/k (Bolker, 2008). This form of negative binomial distributions is 
referred as over-dispersed Poisson distributions in this study to avoid 
confusion between the two negative binomial distributions.

For gamma and lognormal distributions, random samples were 
rounded up to the nearest integer (i.e. ceiling). Taking the ceiling 
eliminates zero and results in discrete random samples. Because ma-
trix models are discrete time models, the realized stage durations 
must be discrete. As discussed above, a previous study found that 
mixture distributions (based on the heuristic method) fail to approx-
imate gamma and lognormal distributions, and thus, these distribu-
tions present good tests for the current study. Furthermore, these 
distributions are among the most commonly used distributions for 
describing nonnegative random variables.

To examine the performance a mixture model in approximating 
f (i.e., TJ ~ f), the mean and variance of f were varied systematically 
when possible. To obtain a target distribution with specified mean 
E(TJ) and variance Var(TJ), the method of moment estimates was used 
(e.g., the shape and scale parameters of a gamma distribution, re-
spectively, are E(TJ)

2/Var(TJ) and Var(TJ)/E(TJ)). For gamma and log-
normal distributions, E(TJ) and Var(TJ) are the mean and variance 
without the ceiling, and thus, the actual mean and variance differ 
slightly from E(TJ) and Var(TJ). For zero-truncated Poisson distri-
butions, only the mean was set to a desired value. Zero-truncated 
Poisson distributions have one parameter λ with E(TJ) = λ∕(1−e−λ), 
and Var(TJ) = E(TJ)(1 +  λ − E(TJ)). Therefore, setting the expected du-
ration E(TJ) automatically determines the associated variance.

For this study, producing meaningful comparisons requires that 
the IBM and the matrix model must be defined consistently. In other 

F IGURE  2 Relationship between the distribution of juvenile duration and the finite rate of increase. The true distribution used in the IBM 
is a mixture distribution whose parameters were determined using the heuristic method. E(TJ) and Var(TJ) were systematically varied. For 
example, when Var(TJ)/E(TJ) = 2 and E(TJ) = 3, Var(TJ) = 6. In each E(TJ) figure, it appears that there are three lines corresponding with sJ = 0.95 
(top line), sJ = 0.5 (middle line), and sJ = 0.05 (bottom line) where σE(TJ)

J
= sJ, but each of the three lines consists of three additional overlapping 

lines, because the three models show identical results. σA = 0.95, m = 10
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words, if a mixture distribution is used as f in an IBM, then the IBM 
and the corresponding matrix model must produce the same finite 
rate of increase. This check is shown in Results. In addition, the per-
formance of matrix models with the heuristic method is also included 
as a reference. For convenience, matrix models parametrized by the 
heuristic and likelihood methods, respectively, are referred to as the 
heuristic and likelihood models.

Parameters associated with a true scenario are the parameters of 
f (e.g., mean and variance of juvenile duration), σJ, σA, and m. Because 
the theoretically possible parameter space is infinitely large, a specific 
parameter space must be specified. Parameter values were informed 
from the life cycle of the oriental fruit fly (Bactrocera dorsalis) (Fang 
et al., 2011). The matrix A in Equation 1 describes demographic pro-
cesses that take place in one day. The sum of the average durations of 
juvenile stages is approximately 30 days, and the associated variance 

is approximately three at 25°C. To reflect this, the average juvenile 
duration E(TJ) was varied from three to 35 days in this study, and the 
ratio of variance to mean Var(TJ)/E(TJ) was varied from 0.1 to 2.0. The 
probability that a newly born juvenile survives to become an adult 
sJ was varied from 0.05 to 0.95 to consider as nearly full a param-
eter range as possible. The daily juvenile survival probability σJ was 
computed from the relationship, σE(TJ)

J
= sJ. The daily adult survival 

probability σA was varied from 0.5 to 0.98, corresponding to the aver-
age adult duration (i.e., adult longevity) from two to 50 days, whereas 
an adult B. dorsalis survives approximately 40 days under laboratory 
conditions. The median of daily fecundity is approximately 15 eggs. 
Assuming a 1:1 sex ratio, the number of female eggs is approximately 
seven. To reflect this, m was varied from five to 15. Thus, the param-
eter space was set liberally to reflect a much greater parameter space 
than might be realized by B. dorsalis. Furthermore, as will be explained 

F IGURE  3 Relationship between the distribution of juvenile duration and the finite rate of increase. The true distribution used in the IBM 
is a zero-truncated Poisson distribution with mean E(TJ). m = 10
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below, although σJ, σA, and m influence the finite rate of increase, they 
do not qualitatively influence how the distribution of duration influ-
ences the finite rate of increase. Therefore, the survival and fecundity 
parameters are not crucial factors in this study. The source code in R 
used in the analysis is provided as Supporting Information.

3  | RESULTS

When the distribution of juvenile duration in an IBM, f, is a mix-
ture distribution whose parameters are determined by the heu-
ristic method (Appendix), the IBM and matrix models result in 
identical population growth rates for all parameter combinations 
(Figure 2), showing that the IBM and the matrix models are de-
fined consistently such that comparisons based on other distribu-
tions of f are meaningful. In addition, the parameters of mixture 
distributions in the matrix models were estimated from random 
samples of f rather than through using the known parameters of 

f, indicating that the parameter estimation methods performed 
sufficiently well.

Both the heuristic and likelihood models performed gener-
ally well when f is a zero-truncated Poisson distribution (Figure 3). 
Figure 3 focuses on short juvenile durations (E(TJ) ≤ 10), because the 
difference among the models becomes smaller as E(TJ) becomes lon-
ger, as can also be inferred from the figure. When E(TJ) is greater than 
3 days, the likelihood model overestimates population growth rates, 
whereas the heuristic model underestimates them.

Among offspring that are born at the same time, those with short 
juvenile durations contribute to the population growth dispropor-
tionately more than those with longer juvenile durations. For exam-
ple, if we compare a juvenile with a duration of 1 day and another 
with a duration of 5 days, the former juvenile will start producing 
offspring at the next breeding event, and there will already be grand-
children in the following time step even when the latter individual 
is still juvenile. Consequently, producing two offspring whose juve-
nile durations are 1 and 5 days, respectively, can result in a greater 

F IGURE  4 Relationship between the distribution of juvenile duration and the finite rate of increase. The true distribution used in the IBM 
is a zero-truncated over-dispersed Poisson distribution with mean E(TJ) and variance Var(TJ). m = 10, σA = 0.95, sJ = 0.5
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population growth rate than producing two offspring whose juvenile 
durations are both 3 days, even though the average juvenile duration 
is the same for both cases when not considering survival. This is a 
positive effect of Var(TJ). Depending on the strength of the positive 
effect of Var(TJ) and the negative effect of E(TJ), the relationship be-
tween the population growth rate and E(TJ) is not monotonic (e.g., 
when sJ = 0.05 and E(TJ) < 3). The likelihood model closely captured 
this pattern, but the heuristic model failed. In addition, there are no 
estimates from the heuristic model when E(TJ) = 1.5 because it pro-
duces infeasible parameters.

When the true distribution f is a zero-truncated over-dispersed 
Poisson distribution, the likelihood model overestimates and 
the heuristic model underestimates the population growth rate 
(Figure 4). In Figure 4, results only from Var(TJ)/E(TJ) > 1.1 are 
shown because the variance of an over-dispersed Poisson distri-
bution must be greater than its mean. For a given mean duration 
E(TJ), the variance does not have a strong effect on the bias, but 
the mean duration strongly influences the bias. For example, the 

likelihood model performs relatively poorly when E(TJ) takes on 
some intermediate values, but when E(TJ) is very low or high, the 
bias becomes negligible. On the other hand, estimates from the 
heuristic model are significantly lower than the true values regard-
less of E(TJ).

For a given combination of mean and variance, the gamma distri-
bution results in a higher population growth rate than the lognormal 
distribution (Figure 5). The heuristic model could not describe the 
difference between the two distributions because its parameters are 
completely determined by the mean and variance of f. In contrast, 
the likelihood model predicted the difference. Both models gener-
ally overestimate population growth rates, but the biases are much 
greater for the heuristic model than for the likelihood model. When 
E(TJ) ≥ 13, the qualitative relationship between Var(TJ)/E(TJ) and the 
finite rate of increase does not change (i.e., the proportional biases 
do not change), even though the finite rate of increase decreases as 
E(TJ) increases. For this reason, results from E(TJ) > 19 are not shown 
in Figure 5.

F IGURE  5 Relationship between the distribution of juvenile durations and the finite rate of increase. The true juvenile durations are the 
ceilings of numbers from a gamma or lognormal distribution with mean E(TJ) and variance Var(TJ). m = 10, σA = 0.95, sJ = 0.5
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The other parameters (i.e., sJ, σA, and m) positively influence 
the finite rate of increase, but they do not qualitatively affect 
the relationship between Var(TJ)/E(TJ) and the finite rate of in-
crease. To illustrate this point, the effect of sJ (where σE(TJ)

J
= sJ) is 

shown in Figure 6. For a given E(TJ), changing sJ from 0.05 to 0.95 
has little influence on the relationship other than that population 
growth rates generally increase with sJ. The same is true for σA 
and m.

4  | DISCUSSION

Stage-specific characteristics, such as the distribution of stage 
durations, influence the growth rate of a stage-structured popula-
tion. Because a probability distribution cannot be described fully 
in terms of its mean and variance, a heuristic model that depends 
solely on the mean and variance of a distribution will likely produce 
misleading conclusions. On the other hand, a likelihood model can 

track other properties of a distribution and reasonably approxi-
mates population growth rates under commonly used distributions, 
such as lognormal, gamma, and zero-truncated (over-dispersed) 
Poisson distributions.

It should be noted that the distribution of stage durations is 
defined for all individuals including those that do not reach the 
next stage. Suppose that T (the subscript J is omitted to indicate 
an arbitrary stage) follows a gamma distribution. Observed stage 
durations based on surviving individuals do not follow the gamma 
distribution unless the mortality (1-σ) is negligible. In other words, 
when Q is the stage duration of individuals that survive to the next 
stage, Q = T only when σ = 1. Because in a study, we only have 
data from Q, the effect of mortality on stage durations must be ex-
plicitly incorporated into the parameter estimation procedure. The 
probability that an individual survives x time steps and reaches the 
next stage is 

(3)Prob(Q = x) = g(x)σx

F IGURE  6 Relationship between the distribution of juvenile durations and the finite rate of increase. The true juvenile durations are the 
ceilings of numbers from a gamma or lognormal distribution with mean E(TJ) and variance Var(TJ). m = 10 and σA = 0.95
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where g is the probability mass function (e.g., a mixture of two nega-
tive binomial distributions) that is used in a matrix model. Supposing 
that there are N individuals initially, and that S individuals survive to 
the next stage, this process can be described as 

where the second argument of the binomial distribution is the prob-
ability parameter that describes the probability that an individual 
survives the focal stage. The maximum-likelihood parameters of 
both g and σ can be obtained from these relationships. Ergon et al. 
(2009) provide a method for estimating the latent distribution T from 
capture–recapture data. When a matrix model is defined based on 
a latent distribution (e.g., Equation 2), the estimation of the latent 
distribution is essential.

Relatively poor performance of the likelihood model when E(TJ) 
is short is a valid concern, because none of the parametric distri-
butions considered in this study is unrealistic. Although this study 
combined all sexually immature stages (e.g., egg and larva stages) 
into one stage, stage-structured models may consider these stages 
explicitly (e.g., Bommarco, 2001; Lončarić & Hackenberger, 2013), 
making the duration of each stage short. Even when there are no 
distinct life stages such as larval and pupal stages, size-dependent 
mortality is commonly reported (e.g., Grutter et al., 2017; Remmel & 
Tammaru, 2009). To capture size-dependent mortality rates, a stage 
(e.g., juvenile stage) may be further subdivided into size classes (e.g., 
Crouse, Crowder, & Caswell, 1987), which also makes the duration of 
each class short. One way to improve approximation is to extend the 
mixture distribution. For example, mixtures of more than two distri-
butions can be considered. It is useful to recognize that when there 
are n distinct stage durations (e.g., n = 4 when observed durations 
are always between 5 and 8 days), a multinomial distribution with 
probability parameters matching the proportions of observed dura-
tions can be considered a full model. Because a multinomial distri-
bution with n possible outcomes can be expressed as a mixture of n 
constants (e.g., Figure 1c describes a binomial distribution with two 
possible outcomes (i.e., two or three) when γ1 = γ2 = 1), mixtures of 
sufficiently many distributions will describe any observed data ac-
curately. One can conduct model selection against the full model to 
determine the complexity of the required model.

When modeling a distribution, using a commonly used model (in-
cluding the mixture distribution) for convenience might not be well 
advised. A distribution can be customized when information regard-
ing it is available (e.g., the multinomial distributions discussed above). 
For example, there may be a minimal duration required for some 
stages (e.g., Dzierzbicka-Głowacka, 2004; Oyarzun & Strathmann, 
2011). If a model predicts some individuals stay only 2 days in a stage 
although at least 3 days are needed to develop into the next stage 
due to some biological constraints, this inaccuracy can be a cause of 
important mismatch between model predictions and observations. 
In a situation like this, adding a constant can assure the required 
duration in the stage and may describe the target distribution rea-
sonably well. For example, even though the geometric distribution 

is very restrictive as discussed above, the sum of a constant and a 
geometric distribution is more flexible and can be expressed in ma-
trix models. Although it is currently customary to report only the 
mean and variance of data, more detailed examination of stage du-
ration would assist us in identifying important properties of duration 
distributions beyond the mean and variance, as well as appropriate 
models for approximating target distributions in matrix models.
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APPENDIX 
This section describes the mixture distribution and the heuristic pa-
rameter estimation method discussed in the main text. When T is a 
random variable that follows a mixture distribution, 

where Y1 and Y2 are random variables that follow independent nega-
tive binomial distributions such that Y1 ~ NegBin(k1,γ1) and 
Y2 ~ NegBin(k2,γ2) in which the probability mass function of 
NegBin(k,γ) is 

that can be interpreted as the sum of k geometric distributions with 
parameter γ. p∈ [0,1] is the mixture probability such that T is a single 
negative binomial distribution when p = 0 or p = 1. The mean and 
variance of the mixture distribution (Equation 5), respectively, are 

 

where E(Yi) = ki/γi and Var(Yi) = ki(1-γi)/γ2i  (i∈{1,2}).
The heuristic method determines the parameters as follows. A 

mixture distribution with mean E(T) and Var(T) has 

 

where ⌊x⌋ and ⌈x⌉ are the floor and ceiling of x, respectively. The 
method further assumes that γ = γ1 = γ2, leaving two remaining free 
parameters (p and γ) that can be determined by solving Equations 7 
and 8 (i.e., two equations and two unknowns). When the data are 
available, E(T) and Var(T) are replaced by the sample mean and 
variance.

(5)T = pY1 + (1−p)Y2

(6)P(Y = y) =

(
y−1

k−1

)
γk

(
1−γ

)y−k

(7)E(T) = pE(Y1) + (1−p)E(Y2)

(8)Var(T) = p(E(Y1)
2 + Var(Y1)) + (1−p)(E(Y2)

2 + Var(Y2))−E(T)2

(9)k1 =

⌊
E(T)2

Var(T) + E(T)

⌋

(10)k2 =

⌈
E(T)2

Var(T) + E(T)

⌉
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