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a b s t r a c t

Ever since the outbreak of COVID-19, the entire world is grappling with panic over its rapid spread.
Consequently, it is of utmost importance to detect its presence. Timely diagnostic testing leads
to the quick identification, treatment and isolation of infected people. A number of deep learning
classifiers have been proved to provide encouraging results with higher accuracy as compared to the
conventional method of RT-PCR testing. Chest radiography, particularly for using X-ray images, is a
prime imaging modality for detecting the suspected COVID-19 patients. However, the performance
of these approaches still needs to be improved. In this paper, we propose a capsule network called
COVID-WideNet for diagnosing COVID-19 cases using Chest X-ray (CXR) images. Experimental results
have demonstrated that a discriminative trained, multi-layer capsule network achieves state-of-the-
art performance on the COVIDx dataset. In particular, COVID-WideNet performs better than any other
CNN based approaches for the diagnosis of COVID-19 infected patients. Further, the proposed COVID-
WideNet has the number of trainable parameters that is 20 times less than that of other CNN based
models. This results in a fast and efficient diagnosing COVID-19 symptoms, and with achieving the
0.95 of Area Under Curve (AUC), 91% of accuracy, sensitivity and specificity, respectively. This may
also assist radiologists to detect COVID and its variant like delta.

© 2022 Published by Elsevier B.V.
1. Introduction

The upsurge of the infectious coronavirus disease 2019
COVID-19) has caused a state of a global health crisis. Being a
ew strain, which has not been previously recognized by humans,
t is necessary to detect the disease in order to prevent its spread.
imely diagnosis of infected and suspected people on the onset
f symptoms related to COVID-19, can help in their immediate
solation.

Presently, intensive research is being done for the fast detec-
ion of the SARS-CoV-2 virus, which is responsible for the spread
f COVID-19 disease. There exist a very popular test known as
olymerase Chain Reaction (PCR) which is widely used for easy
etection of respiratory viruses. Therefore, RT-PCR is being con-
idered as one of the front-line testing methods for detection
f COVID-19 symptoms [1]. Additionally, scientists all around
he world are working meticulously on potential treatments,
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vaccines, and many other technological advancements, Artificial
Intelligence (AI), and Deep Learning-based methods for the fast
detection and protection from COVID-19.

At present, deep learning techniques like Convolutional Neural
Networks (CNNs) are being used widely to extract the various
features from image-based datasets. However, the presence of
adversarial examples in real-time can be hard to predict by using
a CNN approach as it fails to identify the same [2]. These examples
are images that contains a small amount of added noise which
can cause a neural network to incorrectly classify the images. This
is because CNN uses a large amount of augmented training data
that enables to use modified versions of original input images. In
comparison to CNN, a much finer approach of capsules [3,4] has
been used which employs dynamic routing to mutually agree on
different orientations of the same object, thus making it performs
well on adversarial examples as well. In this work, we have used
Capsule Networks to overcome the various disadvantages of CNN.
Capsule networks provide a strong mechanism for an improved
detection of features in images. Capsule Networks, consisting of
Capsules, introduce the concept of inverse rendering to solve the
problem of providing spatial information, and make up for the
shortcomings of CNN model. Initially, capsules were introduced
by Hinton et al. [4]. They condense all the relevant information
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bout the state of the feature which they aim to detect, and
tore it in a vector form. The probability of the presence of a
eature is encoded as the length of their output vector, while
he state of the feature is encoded as the direction of the vector.
n a survey by [5], a comprehensive survey of the architecture
nd performance of Capsule Networks has been done. After a
omparison with the existing robust architectures of CNN, it is
uggested that Capsule Networks can prove to be a boon in the
ield of Computer Vision. [6] have experimentally showed the
ffectiveness of using Capsule Networks on Medical images as
ompared to CNNs. Its applications have been significantly seen
n real-world scenarios such as its use on Medical Images. For
nstance, classification of brain tumor using capsule networks
ave been explained by [7].
The benchmark CNNs have a major drawback, which is the loss

f spatial information. The inefficient process of max pooling in
NNs results in a loss of valuable spatial information as only the
ost active neurons are chosen to be moved to the next layer
uring max pooling [3,4]. Some of the major drawbacks of CNNs
re given below:

• In CNNs, there is a chance of losing the information about
the composition and position of the components present in
an image due to max-pooling layers which throws away
information about the precise position. This limitation is
reduced by data augmentation which increases the number
of training dataset images that are required to train the
neural network. Thus, it increases the computational cost
significantly.
• CNNs may fail when they are encountered with adversarial

examples like noisy images to learning models. Thus, when
CNNs take images containing noise, they recognize the im-
age as a completely different image, whereas, human visual
systems can easily identify it as the same original image.
• CNNs do not have coordinate frames, which are considered

as the fundamental part of human vision.
• CNNs are Invariant of Translation, since they fail to identify

spatial information, whereas capsule networks are able to
identify the position of the object as well.
• CNNs may consist of several layers which result in an in-

creased time for training the network on a large dataset and
also increased computation cost in a real-time scenario.

o overcome these major challenges in CNNs, Sabour et al. [3]
roposed a robust method known as Dynamic Routing which
ncodes this spatial information present in images into features.
hile CNNs use replicas of learned feature detectors, the process
f dynamic routing use vector-output capsules. Max-pooling of
NN is replaced with a routing-by-agreement mechanism, such
hat information about the precise position of an entity within
region of the image is preserved. Using dynamic routing as
backbone, Capsule Networks are implemented to provide im-
roved results in the field of Computer Vision and overcome the
hort-comings of CNNs.
In the present work, we have proposed COVID-WideNet, a

apsule network based model for the detection of COVID-19 posi-
ive patients in Chest X-rays(CXR). Proposed model eliminates the
hortcoming of CNN based approach while diagnosing of COVID-
9 symptoms from CXR images. The main contributions of this
esearch work can be summarized as follows:

1. We propose COVID-WideNet which is based on capsule
network and deep-learning based model and comprises of
2 Convolutional layers and 3 Capsule layers.

2. We have proposed ‘DiseaseCapsule’, a layer consisting of
‘2 8D’ capsules, here ‘2 8D’ refers to 2 capsules of 8-

dimensions each. a

2

3. A wider ‘PrimaryCapsule’ layer is also introduced consisting
of ‘32 16D’ capsules, where ‘32 16D’ refers to thirty-two
capsules of 16-Dimensions each.

4. COVID-WideNet achieves the state-of-the-art accuracy with
20 times less number of trainable parameters. Thus, it
decreases the execution speed and computation cost in a
real-time COVID-19 detection.

5. Proposed model achieves 91% of sensitivity and specificity.
As a result, the AUC of the model is 0.95 and represents a
good rank of classification.

6. We have presented a discriminative approach towards
COVID-19 X-ray detection which eliminates the various
limitations of CNN based model.

The remaining paper is organized into the following sections.
ection 2 reviews with critical analysis of different deep learn-
ng/AI approaches to detect the COVID-19. Section 3 presents the
roposed model COVID-WideNet and its Algorithm 1 for fast and
fficient detection of COVID-19 positive cases. Section 4 describes
he core experimental steps. Section 5 presents the experimental
esults obtained and the related discussion. Finally, Section 6
oncludes this paper.

. Related work on AI approaches for COVID-19 detection

An Intelligence-based techniques have been widely accepted
n the mainstream of computer vision as they have abilities to
erform many tasks, such as object detection and image classifi-
ation. Similarly, its applications are seen significantly in med-
cal image analysis and disease diagnosis [8–11]. Until now, a
arge number of research articles have been published using
I-based approaches in context to COVID-19 [12]. This section
ummarizes the various techniques used for detection of COVID-
9 using medical images such as CXR and CT-Scan images, and
he application of capsule network while diagnosing COVID-19.

.1. Detection of COVID-19 using chest X-rays (CXR) and CT- scans

Due to the speedy spread of COVID-19, fast and efficient meth-
ds for testing COVID-19 patients is being done. Timely diagnosis
f the disease is crucial for control and treatment. Recent studies
how that Chest CT-scan Imaging may offer a faster and reliable
iagnosis of the novel COVID-19, even better than the RT-PCR
esting [13–16]. Ai et al. [17] have even compared Chest CT to
he RT-PCR evaluation by investigating the diagnostic value on
014 patients in Wuhan, who had gone through both the types
f testing. They concluded that Chest CT could be considered as
he foremost method for detection of COVID-19 due to their high
ensitivity. Similarly in a study done by Caruso et al. [18] on
58 COVID-19 pneumonia participants in Rome, the results were
ensitive (97%) when Chest CT was used but not specific (56%).
s stated by Kim [19], CT scans are recommended to people with
uspicious lung abnormality, and leveraging diagnostic AI models
or CT Scans may help in assuaging the burden of radiologists and
linicians by enhancing rapid testing and treatment. To identify
he changes in lungs during COVID-19, Chest CT-Scans can be
sed intensively. Pan et al. [20] have stated that the abnormalities
n the Chest CT scans are the most severe after 10 days of initial
nset of a COVID-19 infected person. Wang et al. [21] also state
hat CT may play a prime role in the control of coronavirus
isease, especially in patients with COVID-19 pneumonia.
Since CXR and CT scans play a significant role in the detection

f COVID-19 patients, numerous deep learning-based approaches
ave been proposed recently. In Huang et al. [22], a deep learn-
ng approach has been proposed for the quantitative Chest CT

ssessment on 126 COVID-19 patients. In another study by Shan
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t al. [23], segmentation network to classify the regions of lungs
btained by CT images. It is claimed to provide the accurate
uantitative information, track the disease progression and lon-
itudinal changes during the treatment process. However, this
ethod is only for the segmentation of the COVID-19 infected

egions in the lungs, and not for the detection of the disease
tself. Li et al. [24] proposed a deep learning method to detect
OVID-19 and further differentiate it from the other chest CT im-
ges of pneumonia and other non-pneumonic lung diseases using
356 images. The deep learning model used by them consists
f a ResNet50 as the backbone that takes Region of Interest of
T images as input and generates features. However, the test set
sed by them to evaluate their model is from the same hospitals
rom which the train set came. Thus, various techniques have
een proposed to detect COVID-19 in images of Chest CT-Scans,
nd our work also focuses on the same.
Using CXR images, Narin et al. [25] have proposed three con-

olutional neural network-based models that are : InceptionRes-
etV2, ResNet50 and InceptionV3,for the detection of coronavirus
neumonia infected patients. They achieved the highest per-
ormance for classification with an accuracy of 98% using the
re-trained ResNet50 model. In a similar study, Apostolopou-
os and Mpesiana [26] have used and highlighted the notion of
OVID-19 detection using CXR images based on transfer learning
pproach from public medical repositories. They used VGG19
nd MobileNetV2 models to implement transfer learning and
chieved a high accuracy of 96.72%.
Thus, recently a number of studies have been done on Chest

-ray and CT Scan images using deep learning based methods for
etection of COVID-19. To overcome the drawbacks of CNN-based
pproaches, a survey of Capsule Networks is also done.

.2. Applications of capsule networks to detect COVID-19

Off late, Capsule Networks have also been applied for the
utomated detection of COVID-19. In Afshar et al. [27], a Cap-
ule Network based framework is proposed which when imple-
ented on X-ray images is able to classify images with COVID-
9. They achieved 0.97 area under the ROC curve, and an ac-
uracy of 95.7%. Similarly, in another study by Toraman et al.
28], a Capsule Network based model was successful in the bi-
ary classification into ‘COVID-19’ and ‘No Findings’ of X-ray
mages with an accuracy of 97.24%, and multi classification into
Pneumonia’, ‘COVID-infected’ and ‘No Findings’ with an accuracy
f 84.22%. Afshar et al. [29] developed an Artificial Intelligence
AI)-based framework using a collected dataset of LDCT/ULDCT
low-dose and ultra-low-dose) scans protocols that reduce the
adiation exposure close to that of a single X-ray. They used a
re-trained U-Net-based lung segmentation model, referred to
s ‘‘U-net (R231CovidWeb)’’, to segment lung regions and dis-
ard irrelevant information. The model uses a two stage capsule
etwork architecture to classify COVID-19, community-acquired
neumonia (CAP), and normal cases, with the sensitivity of 89.5%
or COVID-19, 95% for CAP, 85.7 for normal, and overall accu-
acy is 90%. Tiwari and Jain [30] proposed CNN-CapsNet and
GGCapsNet decision support system based on the X-ray im-
ge to diagnose the presence of the COVID-19 virus. The pro-
osed model presents 97% of accuracy, 92% of sensitivity re-
pectively. Quan et al. [31] proposed DenseCapsNet using CNN
ith capsule network and applied on 750 CXR lung images of
ealthy patients pneumonia with coronavirus, and obtained the
ccuracy of 90.7% and an F1 score of 90.9%, and sensitivity of
6%. Heidarian et al. [32] proposed ‘CT-CAPS’ a fully automated
apsule network-based framework, it extracts distinctive features
f chest CT scans via Capsule Networks to identify COVID19
ases in a coarsely-labeled dataset of COVID-19, CAP, and normal
3

cases. The experimental results indicate the capability of the CT-
CAPS to automatically analyze volumetric chest CT scans and
distinguish different cases with the accuracy of 90.8%, sensitivity
of 94.5%, and specificity of 86.0%. Aksoy and Salman [33] analyzed
chest X-ray images of 1019 patients using Capsule Networks
(CapsNet) model, designed can detect COVID-19 disease with an
accuracy rate of 98.02%. Saha et al. [34] proposed GraphCovidNet
model to detect COVID-19 from CT-scans and CXRs of the affected
patients & evaluated this model on four standard datasets: SARS-
COV-2 Ct-Scan dataset, COVID-CT dataset, combination of covid-
chestxray-dataset, Chest X-ray Images (Pneumonia) dataset and
CMSC-678-MLProject dataset. The model shows an impressive
accuracy of 99% for all the datasets and its prediction capability
becomes 100% accurate for the binary classification problem of
detecting COVID-19 scans.

3. COVID-WideNet

3.1. Capsule network

In this section, we present COVID-WideNET by starting with
introduction of capsule network. A capsule is an activation vec-
tor that basically executes on its inputs some complex internal
computations. Length of these activation vectors signifies the
probability of availability of a feature. Furthermore, the condition
of the recognized element is encoded as the direction in which
the vector is pointing. In traditional, CNN uses Max pooling for
invariance activities of neurons, which is nothing except a minor
change in input and the neurons of output signal will remains
same. The Max pooling loses all the significant data and fur-
thermore does not encode relative spatial connections between
features and capsules. It encapsulate all the significant data about
the condition of the features that can be recognized with the
help of a vector as presented in Fig. 1. It consist of three layers,
input activation vector defined by ui. Wij is a weight matrix
between input activation vector and matrix multiplied output.Wij
is also known as prediction vector. Matrix multiplied output is
ûj|i. The predictions, however, are taken into account based on
a coefficient, through the ‘‘Routing by Agreement’’ process, that
determine the actual output of the Capsule j, denoted by sj. The
utput vector is uj refers the classification of class values like
OVID and non-COVID.
In the capsule, input weights are computed using ‘‘dynamic

outing’’, which is a new technique to decide where each cap-
ule’s output goes Sabour et al. [3] and Hinton et al. [4]. The
ssence of the dynamic routing algorithm is that the lower level
apsule needs to ‘‘choose’’ the capsule at a more significant
evel where it will send the output. Lower level capsules have
method of estimating which upper level capsule better fits its
utcomes and will consequently alter its weight that will multiply
his capsule’s output before sending it to higher level capsules.
apsule network introduces a new nonlinear activation func-
ion called Squash function that takes a vector, and afterwards
‘squashes’’ it to have length close 1, however it does not change
ts course Sabour et al. [3] and Hinton et al. [4].

j =
∥sj∥2

1+ ∥sj∥2
sj
∥sj∥

(1)

Here, the total number of inputs is indicated by sj, and vj refers
o the capsule’s vector output, j calculated from Eq. (1). For every
apsule except the lower level capsules i.e., ûj|i it denotes the
rediction of i for capsule j.
As shown in Eq. (2), ûj|i is produced by multiplying a weight

atrix Wij with the output ui of lower level capsule.

=

∑
c û , û = W u (2)
j ij j|i j|i ij i



P.K. Gupta, M.K. Siddiqui, X. Huang et al. Applied Soft Computing 122 (2022) 108780

c

Fig. 1. A schematic diagram of internal working of capsule network.
Fig. 2. Architecture of the proposed COVID-WideNet.
ij =
exp(bij)∑
k exp(bik)

(3)

where the cij are score of the predictions calculated using Eq. (3)
that are decided by the repetitive dynamic routing process.

Capsule network uses a separate loss function called Margin
loss. The length of the instantiating vector shows the probability
of the detected objects present in an image. A top-level capsule
has a long vector if and only if its closely associate with the
object present in an image. To consider multiple objects in an
image, a separate margin loss is calculated for each capsule. Down
weighting the loss for missing objects stops the learning from
shrinking the vector lengths for all objects. The total marginal loss
is the sum of the losses of all entities. The Margin loss function is
calculated from Eq. (4), where Lk is associated with Capsule k,

Lk = Tk max(0,m+ − ∥sk∥)2 + λ(1− Tk) max(0, ∥sk∥ −m−)2 (4)

Eq. (4) explains the final loss that considers the value of Tk = 1,
whenever the object k is present, otherwise Tk = 0. The hyper
parameters m+, m−, and λ are set before the process initiates
so the length does not collapse. Here, the main function of λ

is down-weighting for absent digit classes that stops the initial
learning process from shrinking the lengths of the activity vectors
of all the digit capsules (see Fig. 3).

3.2. Proposed model - COVID-WideNet

The proposed architecture of COVID-WideNet is shown in
Fig. 2. It is a shallow architecture with only 3 Convolution layers
and a fully connected layer. The first convolution layer Conv1
is a simple convolution layer with a filter size of 256, 3 × 3
4

Fig. 3. Model description of the proposed COVID-WideNet with 2 Convolutional
layers, 3 Capsule Layers and 438,272 parameters.

convolution kernels, and ReLU activation [35]. Whereas, Conv2
layer has a filter size of 512, 3 × 3 convolution kernels with a
stride of 2 and RelU activation. The first two convolution layers
are used to extract the basic features from the pixel intensities
and are then used as input to the primary capsules. There are two
Primary Capsule layers each having 32 ‘16D’ capsules. Here ‘32’
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ignifies the number of capsules in each layer and ‘16D’ represent
he dimension of each capsule. Each dimension corresponds to a
nique feature. The last layer is the Disease Capsule which has
‘8D’ capsules. Here, ‘2’ signifies the number of capsules in the

ayer and 8D represent the dimension of each capsule.

Algorithm 1: Pseudo code of the proposed COVID-WideNet
odel
Input : α −→ array consisting of the training dataset

µ −→ learning rate
ϵ −→ total number of epochs
β −→ number of images in each batch

Output: ω∗, COVID-WideNet weights
begin;
for i = 1 to ϵ do

for step(batch_size = β) in
enumerate(train_dataset = α) do

1. initialize the CNN and capsule layers
2. forward propagation on CNNConv1, CNNConv2
3. routing by agreement←− ‘PrimaryCapsule’
4. routing by agreement←− ‘DiseaseCapsule’
5. compute the margin_loss
6. Back-propagation and update ω∗ with Adam
optimization

end
end
7. Output COVID-WideNet weights for real-time detection

The working of proposed Algorithm 1, COVID-WideNet is ex-
lained in the following steps:

1. Generate the array α using the training images from the
COVIDx dataset having the shape (None, 128, 128, 3) where
‘None’ refers to the number of images in α and is replaced
depending on α. The input image dimension is changed
into 128 × 128 × 3 for every image in α.

2. Initialize the hyperparameters – µ, ϵ and β . For our study
we have used µ = 1e−4, ϵ = 200, and β = 64. Here, µ

is the learning rate using Adam optimizer, ϵ is the epoch
length, and β is the batch size Afshar et al. [27].

3. The outer for loop corresponds to iteration over ϵ. Here,
one epoch is equal to one iteration of the model over
the COVIDx dataset training array α. The inner for loop
corresponds to iteration over the COVIDx dataset training
array α with a regular step of batch size β . For example, if
i = 1 and β = 64, then the first iteration of training over
the first 64 samples from α will occur and the weights ω∗

will be updated. Once each sample Chest X-ray in α is at
least iterated over once, inner outloop ends and the second
iteration (ϵ = 2) is started.

4. Initialize the two Convolution layers CNNConv1 and CNNConv2
which input a tensor of rank 4 with shape (number of
samples, height, width, filters). As seen in Fig. 2, CNNConv1
has shape (None, 126, 126, 128) while CNNConv2 has shape
(None, 62, 62, 256) where ‘None’ can be replaced by the
number of images in the training set.

5. The input batch propagates through the architecture where
the Convolution operation is applied in the first two lay-
ers, then the output of CNNConv2 is reshaped to the target
shape reducing the 4D tensor into a 3D tensor as per the
requirement of the capsule layers.

6. ‘PrimaryCapsule’ can be compared to inverting the ren-
dering process. Thus, forming and inverse a graphics per-
spective. The primary capsule has ‘32 16D’ capsules with 3
routing iterations. In total there are two primary capsules
which perform routing-by-agreement process.
5

7. ‘DiseaseCapsule’ consists of complex entities and thus each
capsule in this layer has eight dimensions. In total, ‘Dis-
easeCapsule’ layer has ‘2 8D’ capsules. Each capsule in this
layer represents the type of disease i.e., COVID-19 or Non-
COVID-19 with each dimension representing a separate
and unique feature.

8. The model is trained by calculating the margin loss and
optimized by using the Adam optimization technique. The
weight matrix is then updated using back propagation.

9. Once the model is trained on ϵ iterations the final weights
are saved and now can be used to detect COVID-19 in
real-time.

4. Experiments

4.1. Dataset collection

Data acquisition is the first step in developing any diagnostic
tool and AI has been able to significantly contribute in work-
ing with medical data images. We have used COVIDx [36] as
a benchmark dataset in this study, which is a compilation of
five different datasets containing CXR images—COVID-chest X-
ray [37], Fig. 1 COVID-19-chest X-ray [38], ActualMed COVID-19-
chest X-ray [39], COVID-19 Radiography [40], Chest X-ray Images
(Pneumonia) [41]. Their detailed description has been provided
here.

(i) COVID-chest X-ray-dataset- This dataset comprises CXR
images of COVID-19 cases and is publicly available Cohen
et al. [37,42]. It is constantly updated with new images. At
the time of this study, the dataset consists 930 images of
COVID-19 positive patients.

(ii) Fig. 1 COVID-19-chest X-ray-dataset- This is an open source
data set of COVID-19 CXR images. This data set is compiled
by Chung [38].

(iii) ActualMed COVID-19-chest X-ray-dataset- This is a public
data set of CXR images of patients infected by COVID-19.
This data set is compiled by Chung [39] and is collected
by different research groups from Canada and Vision and
Image Processing Research Group, DarwinAI Corp., Canada.
It also comprises COVID-19 CXR images that have both
positive and negative cases.

(iv) COVID-19 Radiography Database- This is a open data set of
X-ray images of chests for COVID-19 positive patients along
with Normal and Viral Pneumonia case images publicly
available on Kaggle [40]. This data set is compiled by a team
of researchers from the University of Dhaka, Bangladesh
and Qatar University, Doha, Qatar with the help of medical
doctors. In their current release, this data set consists of
219 images of COVID-19 positive patients, 1341 images of
normal patients and 1345 images of patients having viral
pneumonia.

(v) Chest X-ray Images (Pneumonia)- This is an open source
data set of chest radiograph (CXR) for diagnosis of pneu-
monia. This data set is compiled by RSN [41] in collabora-
tion with the US National Institutes of Health, The Society
of Thoracic Radiology, and MD.ai and is made publicly
available on Kaggle.

The compiled COVIDx dataset is shown in Figs. 4(a) and 4(b).
Since the main purpose of our study is to detect COVID-19 pa-
tients we have combined the Normal and Pneumonia CXR Images
present in COVIDx as shown in Fig. 5. Thus, for training and test-
ing COVID-WideNet we have used two class values: ‘COVID-19’
and ‘Non-COVID-19’ trained on 13,942 training images including

507 CXR images for ‘COVID-19’ and 13,435 for ‘Non-COVID-19’. As
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Fig. 4. COVIDx dataset consisting of CXR images and compiled from the five
different datasets for (a) Training, and (b) Testing purpose.

shown in Fig. 5 CXR images of COVID-19 positive are significantly
less than the Non-COVID-19 images. This may cause class imbal-
ance problem which is handled by modifying the loss function
inspired by Heidarian et al. [43] and Saif et al. [44] as shown
in Eq. (5).

Here, N+ is the number of positive samples, N− is the number
f negative samples, loss+ denotes the loss associated with posi-
ive samples, and loss− denotes the loss associated with negative
amples.

oss =
N+

N+ + N−
× loss− +

N−

N+ + N−
× loss+ (5)

4.1.1. Data pre-processing
Data compiled for the purpose of this study consists of X-ray

images which are not uniform in size. The images are resized
to a size of 128 × 128 pixels to input uniform images to the
model. The images have 3 channels—RGB(Red, Blue, Green) and
the shape—128× 128× 3. The images are converted into an array
of shape (13,942, 128, 128, 3). Since, capsule networks focus on
the spatial information and orientation of pixels in an image, data
augmentation is not applied in our study, unlike the commonly
adopted method in case of CNNs. A sample from the dataset after
data pre-processing is shown in Fig. 6.

4.1.2. Data leakage
In medical imaging, usually the data used is prone to large

amount of data leakage. It is probable that a single patient has
more than one sample in the dataset, and while splitting the
6

Fig. 5. Training set compiled from the five datasets.

ataset into training and testing the sample images of that patient
an be appended to both training and testing sets thus causing
ata leakage. The direct effect of data leakage is visible on the loss
ssociated with training and testing of the model. If the testing
oss is smaller than the training set we can say that there may
ave been some sort of data leakage. To prevent this problem,
e have considered 75 unique images of X-rays of patients with
OVID-19 in the testing set, resulting into 100 samples (refer to
ig. 4(b)). This can be considered as a benchmark and is referred
o as COVIDx dataset proposed by Wang et al. [36].

.2. Performance evaluation

The performance of COVID-WideNet has been evaluated using
onfusion matrix, sensitivity, specificity and accuracy. Further, we
lso calculated the Area Under the Curve (AUC) by plotting the
eceiver Operating Characteristics (ROC).

.2.1. Confusion matrix
Typically, confusion matrix is a 2 × 2 matrix, each cell of the

atrix represents the model detection rate which are represented
y—True Positive (TP), True Negative (TN), False Positive(FP), and
alse Negative(FN). These four parameters can be explained with
n example scenario of a hospital [45,46].

1. True Positive (TP): If a person is actually COVID positive
and also predicted/detected as COVID-19.

2. True Negative (TN): If a person is normal, and also cor-
rectly predicted/detected as non-COVID.

3. False Positive (FP): It represents an incorrect prediction/
detection, when a normal person is predicted/detected as
COVID positive.

4. False Negative (FN): It also represents an incorrect detec-
tion, when a COVID positive person predicted/detected as
normal one.

Using these four performance evaluation parameters, Eqs. (4),
(6) and (7) are calculated each representing the accuracy, sensi-
tivity and specificity of the model respectively.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Sensitivity =
TP

(TP + FN)
(7)

Specificity =
TN

(8)

FP + TN
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Fig. 6. Examples of CXR images from COVIDx dataset (first row: COVID-19; second row: Non-COVID-19.
.2.2. Receiver operating characteristic (ROC)
ROC is an evaluation metric used to speculate the performance

f a model at each classification threshold. Initially, it was used
n radar identification during World War II to differentiate the
ignal from noise [47]. Due to its fine evaluation performance,
t is notably used in numerous medical laboratory tests such
s radiology, epidemiology, and endocrinology [48–50]. The task
f data analysis with predictive knowledge on research related
o health informatics can be simplified with the calculation of
OC. Therefore, it is highly recommended in tomography scans
or COVID-19 detection [51,52]. We can also say that, it is the
rade-off between sensitivity and specificity [53].

In this research work, the performance of COVID-19 dataset
as been evaluated using ROC plots. This has been done by
alculating the area under the ROC curve, that is known as Area
nder the curve (AUC). This calculated AUC value of the curve is
n between 0 and 1. An AUC value being close to 1.0 indicates
hat the model has a high sensitivity and specificity [54]. The
UC of the ROC is estimated by the Trapezoidal formula as shown
n Eq. (9).

(p, q, n) =
(
q− p
n

)
×

(
f (p)− f (q)

2

)
×

(
f (p)− f (q− p)

n

)
(9)

Trapezoid (T) is the integration of p to q values from a func-
tional configuration that is further divided into n equal vertical
segments. The summation of forms the trapezium of each vertical
segment, where the upper end is followed by a chord and their
approximate summation provide the promising result of the AUC
in the numerical form. This trapezoidal rule shows a definite
integral function

∫ q
p f (x)dx, and the points of domain subdivision

of the integration (p, q) are labeled as {x0, x1, . . . , xn}; where
{x0 = p, xn = q, xr = x0 + r(q − p)/n}. Further, the function
T (p, q, n) is defined by using Eq. (9) [55]. Thus, AUC is a potent
method to compute the accuracy of ROC obtained from the model.

5. Experimental results and discussion

The proposed COVID-WideNet is trained on the COVID-19
dataset having 200 epochs with the learning rate as 1e−4 and a
batch size of 64. Both training and testing accuracy are shown in
Fig. 8(b), and it can be observed that the best training accuracy is
97.78%, which is obtained at the 192 epoch. Same has also been
observed in Figs. 8(a) and 8(b), that the testing loss is greater
than the training loss while testing accuracy is almost always
lesser than the training accuracy. Since the model has never been
trained on the testing set the same behavior was expected. This
observation removes suspicion of any kind related to data leakage
which might have occurred during splitting the dataset in the
training set and testing set.
7

Fig. 7. ROC and AUC for the proposed COVID-WideNet.

Table 1
Confusion matrix for COVID-WideNet trained on COVIDx dataset with two
classes.

Predicted class

COVID-19 Non-COVID-19

Actual class COVID-19 TP = 91 FN = 9
Non-COVID-19 FP = 131 TN = 1348

Further Confusion Matrix shown in Table 1 is used to calculate
the performance metrices—accuracy, sensitivity and specificity of
COVID-WideNet based TP, FP, TN and FN. From the test set, we
obtained both sensitivity and specificity approximately equal 91%
and 91.14% respectively. Here, sensitivity indicates whether the
model is able to accurately detect the COVID-19 positive cases.
On the contrary, specificity indicates the accurate detection of
the COVID-19 negative cases. Since, our model has achieved high
sensitivity and specificity. So, we can confidently say that the
proposed model is both highly sensitive and specific.

The AUC of ROC of propose model is 0.95 and is depicted in
Fig. 7, which is much higher than the threshold level (i.e., 0.5).
This is clear indication of the least trade-off between sensitivity
and specificity of the model and can be considered as a good
grade of classification. This is also considered to be ‘outstanding’
in the domain of medical disease diagnosis [33,58].

We have compared the results of our proposed model with
seven other state-of-the-art models keeping the COVIDx dataset
as a benchmark since it comprises a fixed testing set. As seen in
Table 2, VGG-19 [36], ResNet-50 [36] and COVID-Net [36] having
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Table 2
Results comparisons of the proposed COVID-WideNet to other state-of-the-art models.
Architecture Accuracy Sensitivity Specificity AUC Parameters

(in Millions)
Pre-trained on Data

augmentation

COVID-CAPS [27] 98.3% 80% 98.6% 0.99 0.29M NIH Chest X-ray dataset [56] False
VGG-19 [36] 83.0% 58.7% – – 20.37M ImageNet [57] True
ResNet-50 [36] 90.6% 83.0% – – 24.97M ImageNet [57] True
COVID-Net [36] 93.3% 91% – – 11.75M ImageNet [57] True
VGG-CapsNet [30] 97% – – 0.96 – X rays and CTS –
DenseCapsNet [31] 90.7% – 95.3% 0.93 – CXR images –
CT-Caps [32] 90.8% 94.5% 86% – – COVID-CT-MD –
COVID-WideNet 91% 91% 91.14% 0.95 0.43M No pre-training False
Fig. 8. Training and testing for the proposed COVID-WideNet (a) Loss (b)
Accuracy.

20 times more parameters than our proposed model-COVID-
WideNet and uses data augmentation. Because of the small num-
ber of parameters in our model we can deploy the model in
real-time and reduce the diagnosis time and the computational
cost which is the need of the hour. COVID-CAPS [27] on the other
hand has not used data-augmentation since the model is based on
capsule networks but uses the transfer learning based approach
8

and is trained on 112,120 X-ray images for 14 thorax abnormal-
ities [56]. Due to pre-training on a larger dataset their model
has a lower sensitivity of 80%. Through this study, we establish
a novel approach for the fusion of medical imaging and neural
network models, focusing more on the information provided by
each pixel of a positive and negative sample. Thus, eliminating
the traditional CNN based approach which uses pooling layers,
data augmentation and transfer learning making the model less
sensitive to positive samples.

6. Conclusion

There is a dire need to develop fast methods for diagnosis
of COVID-19, a capsule networks based detection model called
COVID-WideNet has been presented in this paper. The proposed
COVID-WideNet consists of two convolutional layers i.e. ‘Pri-
maryCapsule’ layer with ‘32 16D’ capsules, and ‘DiseaseCapsule’
layer with ‘2 8D’ capsules (here ‘32 16D’ refers to thirty-two
capsules of 16-Dimensions each and ‘2 8D’ refers the two capsules
each of them is 8-dimensions; where each dimension of capsule
represents a unique feature). After replacing the scalar-output
CNN-based approach with the vector-output capsule networks
and substituting max-pooling with a routing-by-agreement
method, we have achieved outstanding performance results that
comprises 0.95 AUC along with sensitivity = 91% and specificity
= 91.14% respectively. Obtained results during performance
evaluations of the proposed model, indicate significant sensitivity
and specificity both while diagnosing the COVID-19 symptoms.
Further, the total number of trainable parameters is decreased to
up to 20 times in comparison to any other CNN-based models.
Therefore, (COVID-WideNet) can act as an alternative testing
approach for faster detection of COVID-19 with the reduced
diagnosis time and computational cost. With the use of capsule
networks, we have overcome the various shortcomings of CNN
based models caused by the use of pooling layers, data aug-
mentation and transfer learning. Overall, this work presents a
discriminative approach towards binary image classification in
COVID-19 diagnosis using medical imaging.

In future, the proposed model will be tuned accordingly and
implement with the help of big data analytic tools on cloud
computing services this will help to monitor and analyze the
patterns of the recent COVID-19 variants like delta, omicron, etc.
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