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Simple Summary: Pivotal factors that contribute to tumorigenesis were subjected to analysis by
molecular modeling. In particular, the FAM72A-UNG2 protein–protein interaction was modeled to
predict a potential solution for the treatment of cancer. We screened chemical libraries to identify
withaferin B as a lead molecule capable of interfering with the FAM72A-UNG2 interaction, thus
opening new therapeutic avenues for cancer.

Abstract: Family with sequence similarity 72 A (FAM72A) is a pivotal mitosis-promoting factor that
is highly expressed in various types of cancer. FAM72A interacts with the uracil-DNA glycosylase
UNG2 to prevent mutagenesis by eliminating uracil from DNA molecules through cleaving the
N-glycosylic bond and initiating the base excision repair pathway, thus maintaining genome integrity.
In the present study, we determined a specific FAM72A-UNG2 heterodimer protein interaction using
molecular docking and dynamics. In addition, through in silico screening, we identified withaferin
B as a molecule that can specifically prevent the FAM72A-UNG2 interaction by blocking its cell
signaling pathways. Our results provide an excellent basis for possible therapeutic approaches in the
clinical treatment of cancer.

Keywords: cell cycle; centromere; DNA repair; proliferation

1. Introduction

Genomic uracil bases may occur from cytosine deamination or the misincorporation
of dUMP residues during DNA replication [1]. The uracil-DNA glycosylase UNG phys-
iologically functions in the base excision repair (BER) mechanism of the cell in order to
replace uracil from U/G mispairs with cytosine, thus preventing genomic mutations [2–6].
It excises unwanted genomic uracil bases using an extrahelical base recognition mechanism,
thus preventing possible C-to-T transition mutations that eventually arise from cytosine
deamination [7–9]. The resulting apurinic/apyrimidinic site (AP-site) is considered one
of the most common DNA lesions in the genome, and a persistent AP-site can have ad-
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verse consequences, as the lesion disrupts many DNA and RNA transactions and leads to
cytotoxic strand breaks, mutations, and other forms of genomic instability [1,10,11].

Human UNG exists in two different isoforms, mitochondrial UNG1 and nuclear
UNG2, that are both encoded from the same single 13.5-kb nuclear UNG gene as a result
of two separate promoters and alternative splicing [12–14]. While UNG1 and UNG2
share a common conserved catalytic domain, they contain differing N-termini sequences
responsible for differential subcellular localization. Amino acid (AA) residues 1–92 make
up the N-terminus of UNG2; they contain a nuclear localization signal of positively charged
residue clusters (K and R residues), rendering UNG2 as the primary uracil-DNA glycosylase
enzyme in the nucleus [14,15]. Interestingly, in the absence of binding partners, the N-
terminal region is, for the most part, without a fixed structure [2,16–18]. UNG2 is rapidly
recruited to sites of DNA damage where its N-terminus can interact with its catalytic site
(which binds to uracil) and with chromatin. UNG2 colocalizes with CENP-A at centromeres
and other sites of DNA damage in proliferating cells, thus implying that it is also required
for chromosome segregation during mitosis [19].

Family with sequence similarity 72 A (FAM72A) is a novel gene expressed in the
brain hippocampus area in proliferating neural stem cells, particularly during the G2/M-
phase of the cell cycle [20,21]. Most strikingly, humans have four paralogs (FAM72 A-D),
whereas all other species express just one ortholog [22,23]. Under pathophysiological
conditions, FAM72A is also expressed in various proliferating cancer cells [24,25]. Notably,
FAM72A interacts with UNG2 [26,27]. This denotes that the cellular role of FAM72A
is as a cooperative partner for genomic BER in order to ensure genome integrity and
impede the formation of cancer. Recent data show that decreased levels of FAM72A lead
to hyperphysiological UNG2 levels, an increased uracil correction, and, thus, error-free
DNA repair. In contrast, the binding of FAM72A with UNG2 antagonizes UNG2 activity
and causes UNG2 degradation in B cells, leading to increased levels of genome-wide
deoxyuracils and, therefore, mediating increased levels of U•G mispairs that engage in
mutagenic mismatch repair, promoting the error-prone processing of activation-induced
cytidine deaminase (AID)-induced deoxyuracils [27,28]. Thus, FAM72A bridges BER
and mismatch repair in order to modulate antibody diversification during B cell and
antibody maturation [27,28]. Overall, an increased FAM72A level could lead to reduced
UNG2 levels and could thus shift the balance of appropriate mutagenic DNA repair,
therefore making the cells more susceptible to mutations, with possible effects on tumor
development [24,25,27–29].

To understand the possible disruption of the FAM72A-UNG2 interaction, the current
investigation conducted an in silico prediction of FAM72A-UNG2 heterodimer–protein
interaction and the identification of potential chemicals that interfere with the FAM72A-
UNG2 heterodimer protein activity for the potential treatment of cancer.

2. Materials and Methods
2.1. Data Collection—Sequence and Structure Details

The crystallographic three-dimensional (3D) protein structure of the FAM72A protein
(from Protein Data Bank (PDB) data [30]) and UNG2 protein (Gene ID: 7374, isoform-
2: NP_550433.1, 313 AAs; 1AKZ_A PDB model; DOI: 10.2210/pdb1akz/pdb [31]) were
retrieved from the PDB [32] with a resolution of 1.55 Å. Compound structures were down-
loaded from the PubChem database [33] as described previously [30,34,35].

2.2. Homology Modeling and Protein Structure Validation of UNG2 by Modeller, I-TASSER
and AlphaFold

FAM72A 3D protein structure was used from previously designed PDB data [30].
Unfortunately, no suitable UNG2 3D protein structure was available, and the N-terminal
UNG2 residues were called an intrinsically disordered region. Thus, the UNG2 protein
sequence was checked in the National Center for Biotechnology Information (NCBI) and
PDB, and the closest suggested template for a UNG2 3D protein structure model was
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selected. The UNG2 3D peptide sequence was based on the UNG2 protein sequence
(Gene ID: 7374, isoform-2: NP_550433.1, 313 AAs; Uniprot-ID: P13051) and the 1AKZ_A
PDB model (DOI: 10.2210/pdb1akz/pdb) [31] was selected as the template. The obtained
template for the N-terminal UNG2 3D peptide structure model (AA 1-313) was then
forwarded for UNG2 3D peptide structure modeling with I-TASSER [36,37] and Modeller
v9.20 [38,39] software, and Chimera software was used as a graphical interface as described
previously [34,35,39]. For comparison, we also applied the UNG2 protein sequence to
the state-of-the-art machine learning method, AlphaFold ((https://alphafold.ebi.ac.uk/),
accessed on 3 November 2021) [40,41].

2.3. Intrinsically Disordered Region in UNG2 (AA 1–92)

The N-terminal regulatory region of UNG2 is described as an intrinsically disordered
region by several groups [16,17,42]. In continuation, JPred4 [43] was used for additional
secondary structure prediction. A search algorithm and sequence weighting method against
the given UNG2 protein sequence was applied with default parameters (hidden Markov
model (HMM) and BLOSUM filter). The UNG2 AA composition was calculated to identify
and justify the AA residues promoting structured or unstructured regions in the UNG2
protein. Modeled structures were visualized using Chimera software as the graphical
interface to check the core, rim, and buried regions, as described previously [30,34,35].

2.4. Molecular Docking of FAM72A Protein and UNG2 Peptide (AA 1–45) by HPEPDOCK

Docking interactions for the FAM72A protein with the modeled UNG2 peptide (AA
1–45) as a heterodimer were performed by HPEPDOCK (default parameters were ap-
plied) [44]. The FAM72A monomer was exported as a PDB file, whereas the UNG2 peptide
was submitted as a FASTA-formatted AA sequence (AA 1–45), and MODPEP and MDOCK
were applied for the fine adjustments of FAM72A-UNG2 interactions [44]. Modeled
structures were visualized using Chimera software as a graphical interface, as described
previously [30,34,35].

2.5. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) Calculation

The molecular mechanics/generalized Born surface area (MM/GBSA) free energy de-
composition per AA residue in protein–protein interactions was predicted on the FAM72A
protein and UNG2 (AA 1–45) peptide heterodimer [45]. Hawkdock calculated the free
binding energy for the key AA residues in the protein–protein interfaces based on the
Amber16 force field [46].

2.6. Carbon Distribution (CARd) Analysis

The protein carbon distribution (CARd) analysis was performed to validate the specific
FAM72A-UNG2 interaction sites using our recently described algorithm [35,47].

2.7. Amino Acid-Specific Mutations in FAM72A Protein-UNG2 (AA 1–45) Peptide Heterodimer
(FAM72A F104A, F104R, F104N, F104G, and F104S)

A site-specific mutagenic approach was enabled to check the hot spot residues in the
FAM72A protein and UNG2 (AA 1–45) peptide heterodimer interaction. AA modifications
in FAM72A (F104A, F104R, F104N, F104G, and F104S) and the effect on the conformational
stability of the FAM72A protein and UNG2 (AA 1–45) peptide heterodimer complex were
investigated by the BIOVIA Discovery Studio software (Dassault Systems; Waltham, MA,
USA) as described previously [48,49].

2.8. Molecular Dynamics Simulation by GROMACS

The starting coordinates of FAM72A and UNG2 were taken from the modeled struc-
tures, as described in Section 2.2. GROMOS96 43a1 force field was used in this study.
Hydrogens were added to the protein molecules by using the pdb2gmx application in
GROMACS (2019.2). Then, protein molecules were placed in a cubic simulation box (de-
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fault parameters). A simple point charge water model was used for the solvation simulation
box. To neutralize the system, Na+ and Cl− ions were added to the simulation box. The
structure was relaxed through a process called energy minimization (EM). Subsequently,
energy-minimized structures were used for the system equilibration performed under
constant NVT and NPT (number, volume, temperature, and pressure) ensembles. The
production run was carried out using the NPT ensemble for 50 ns with a time step of 2 fs at
a constant temperature of 300 K and 1 bar pressure. Simulation trajectories were visualized
using Visual Molecular Dynamics (VMD) 1.9.4a42. Analysis of features, including root
mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyra-
tion (Rg), were performed using GROMACS (2019) tools [50]. RMSD is the most commonly
used metric, in which, the root mean square distance between corresponding residues
is calculated [51,52]. Since the RMSD can weight the distances between all residue pairs
equally, a small number of local structural deviations can result in high RMSD, even when
the global topologies of compared structures are similar. The average RMSD of randomly
related proteins depends on the length of compared structures, rendering the absolute
magnitude of RMSD meaningless [53]. The RMSD computes the average distance between
the backbone atoms of starting structure (reference structure) with simulated structures
(frame by frame) when superimposed. The RMSF computes fluctuations (standard devia-
tion) of atomic positions of each AA residue in the trajectory. The RMSD and RMSF were
calculated for 50 ns using GROMACS (2019) [50] for the FAM72A-UNG2 heterodimer with
the UNG2 (AA 1–45) peptide and FAM72A protein (wildtype [wt], W125A, W125R, F104A,
F104R, F104G, F104N, and F104S) [50]. The trajectory files resulting from the molecular
dynamics simulation were computed as RMSD, RMSF, and Rg, and were plotted by Grace
(“GRaphing, Advanced Computation and Exploration of data”; a WYSIWYG 2D graph
plotting tool for Unix operating systems).

2.9. Virtual Screening for Lead Molecule Identification against FAM72A Protein and UNG2 (AA
1–45) Peptide Mono/Heterodimer

The MTiOpenScreen [54], along with Autodock vina [55] and iScreen [56] databases,
were applied for chemical library virtual screening and de novo drug design. Additionally,
pharmacophore analysis was performed using the PharmMapper server [57] to detect the
basic pharmacophore group of select chemicals for docking analysis. Further application
of COACH, TM-SITE, S-SITE, COFACTOR, and ConCavity approaches [30,34,35] provided
potential ligand-binding sites of the 3D FAM72A-UNG protein heterodimer or the FAM72A
protein monomer structure model (with refinement by ModRefiner [58]), with potential
molecules based on a BioLiP [59].

2.10. Molecular Docking of FAM72A Protein and UNG2 (AA 1–45) Peptide Heterodimer and
FAM72A Monomer with Small Chemical Molecules

Further molecular docking studies have been undertaken in order to gain further
insights into the possible FAM72A-UNG2 binding interference by molecules newly iden-
tified by protein–ligand binding site prediction and to understand their mechanisms of
interaction. Identified molecules obtained by the virtual screening were docked onto the
FAM72A protein and UNG2 (AA 1–45) peptide heterodimer and/or FAM72A monomer
using Schrödinger to depict binding mode and calculate binding energy [60,61]. FAM72A
and UNG2 3D protein structures were prepared using the protein preparation wizard panel
of the Schrödinger software package (Schrödinger, LLC, New York, NY, USA). The 3D
protein crystal structures of FAM72A and UNG2 were transferred to the workspace and
pre-processed, and missing loops were filled [62]. Water molecules were removed from
the ligand-binding domain. H-bonds were optimized using the hydrogen bond optimizer,
and the FAM72A and UNG2 protein structures were moved to the minimization process to
minimize the energy in order to confirm the lowest energy conformational structure [63].
Default parameters were used for the molecular docking process, applying the Glide 4.0
XP extra precision module of the Schrödinger software package (Schrödinger, LLC). The
binding affinity with FAM72A was calculated for each chemical compound and ranked by
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the scoring function. Modeled structures were visualized using the same Chimera software
as the graphical interface, as described previously [30,34,35,62].

3. Results and Discussion
3.1. Homology Modeling and Protein Structure Validation of UNG2 by Modeller, I-TASSER
and AlphaFold

The UNG2 protein can be functionally divided into two domains: an N-terminal
regulatory region (AA 1–92) and a C-terminal catalytic region (AA 93–313). The disor-
dered N-terminal region has been identified as interacting with several proteins, including
proliferating cell nuclear antigen (PCNA) and replication protein A (RPA) (both found at
DNA replication forks), as well as with FAM72A [2,16–18,26,27]. To further enlighten the
FAM72A-UNG2 interaction, we investigated the N-terminus of UNG2 (AA 1–92), applying
the Modeller, I-TASSER, and AlphaFold protein structure prediction analysis programs.
Our predicted comparative structure analysis revealed a long protruding thread-like disor-
dered N-terminal loop (AA 1–92) required to gather and catch more targets for molecular
crowding (Figure 1).
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Figure 1. Predicted comparative 3D protein structure analysis of full-length UNG2 protein, including N-terminal UNG2
(AA 1–92) (Left): Modeler modeled full-length UNG2 3D protein structure output (using human UNG2 sequence from
UniProtKB (P13051) and PDB template 1AKZ) implying a conformation suitable for N-terminal UNG2 protein binding to
chromatin; (Center): I-TASSER modeled full-length UNG2 3D protein structure output implying a conformation suitable
for the binding of the N-terminal UNG2 protein to its catalytic site; (Right): AlphaFold output of full length UNG2 (using
human UNG2 sequence from UniProtKB (P13051). All three protein structure prediction approaches revealed the N-terminal
loop as a protruding thread-like disordered region suitable for interactions with multiple protein binding partners and for
molecular crowding. Secondary structure color code: α-helix in blue, β-sheet in green, and loop in red.

3.2. Intrinsically Disordered Region in N-Terminal UNG2 (AA 1–92)

Intrinsically disordered proteins (IDPs) execute various functions in all kinds of
cellular processes [64–66]. The N-terminal regulatory domain of UNG2 possesses such an
unstructured regional IDP motif (AA 1–92). In general, the absence of a hydrophobic core
is probably the reason for an unstructured region, whereby hydrophilic AAs may dominate
in number. AAs have been classified as order-promoting (Asn, Cys, Ile, Leu, Phe, Trp,
Tyr, and Val) and disorder-promoting (Ala, Arg, Gln, Glu, Gly, Lys, Pro, and Ser) [65,67].
The calculated AA composition revealed an abundance of disorder-promoting Ala, Pro,
Ser, and Gly in the N-terminal regulatory region, which is very flexible in moving and
orienting the N-terminus of UNG2. In contrast, the catalytic region is full of hydrophobic
order-promoting AA residues, including Leu, Val, Ile, and Trp. Evidently, Cys and Trp are
not available for a foldable secondary structure formation, as linker residues form in the N-
terminus of the UNG2. The plot shows the biases in AA composition at N-terminal residues
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and explains the importance of sulfur-containing AAs and tryptophan at hydrophobic
cores for protein rigidity. The absence of AAs, such as Cys and Trp, has been recognized by
evolutionary studies about protein plasticity and disordered protein regions in previous
studies (Figure 2) [66,68–70].
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is circled. Left-hand side: I-TASSER output; right-hand side: Modeler output. A similar N-terminal IDP was obtained
with AlphaFold (Figure 1). (Right): AA composition was calculated for AA residue enrichment in promoting ordered or
disordered regions in UNG2. The AA composition of UNG2 analysis clearly shows the abundance of disorder-promoting
AAs Ala, Pro, Ser, and Gly within the N-terminal regulatory region, while the catalytic region is enriched by hydrophobic
order-promoting AA residues, including Leu, Val, Ile, and Trp. Evidently, Cys and Trp are not available for a foldable
secondary structure formation as linker residues form in the N-terminus of UNG2. The plot shows biases in AA composition
at N-terminal residues and explains the importance of sulfur-containing AAs and tryptophan at hydrophobic cores for
protein rigidity. The absence of AAs, such as Cys and Trp, has been recognized by evolutionary studies of protein plasticity
and disordered protein regions in previous studies.

3.3. FAM72A-UNG2 Interaction and Molecular Docking Study of FAM72A Protein and UNG2
(AA 1–45) Peptide by HPEPDOCK

Our molecular docking study evaluated the molecular forces responsible for specific
biomolecular FAM72A-UNG2 interactions. The FAM72A monomer was exported as a PDB
file (FAM72A 3D protein structure was used from previously designed PDB data [30]),
whereas the UNG2 (AA 1–45) peptide was submitted as a FASTA-formatted AA sequence
(AA 1–45). The UNG2 (AA 1–45) peptide was used because these AAs appeared to be the
pivotal interacting AAs [2,16–18,26]. The docked structure was analyzed for specific AAs
contributing to the FAM72A protein and UNG2 peptide interactions. Mostly, electrostatic
forces dominate other forces. Hydrogen bonding is less preferred for the FAM72A-UNG2
association because the side chain (UNG2; chain-B) moves along the diagonal portion of
the other FAM72A protein (chain-A). Due to the lack of a proper quaternary structure in
the N-terminal UNG2 region, the UNG2 peptide prefers surface AA residues (such as AAs
5, 7, 8, 10, 11, 12, 13, and 15) in order to make connections and to increase the prevalence
rate of interactions (Figure 3).
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Figure 3. FAM72A-UNG2 (AA 1–45) interactions. FAM72A = chain-A is shown in green and UNG2 (AA 1–45) = chain-B is
shown in blue. The image on the right-hand side is a y-axis 180◦ of the FAM72A-UNG2 interaction to illustrate the interaction
clearly. Key interacting AA residues are labeled in red. The prevalence rate of interface residues on the FAM72A-UNG2
interaction has been depicted by molecular rendering (cartoon model). Hydrophobicity is the major phenomenon of the
FAM72A protein and UNG2 peptide interaction.

3.4. Free Binding Energy Prediction on FAM72A Protein and UNG2 (AA 1–45)
Peptide Heterodimer

An MM/GBSA prediction is imposed on the free binding energy calculation in the
FAM72A protein and UNG2 (AA 1–45) peptide heterodimer. The MM/GBSA analysis of-
fered a breakthrough regarding catalytic AAs in the FAM72A protein and UNG2 (AA 1–45)
peptide heterodimer. AA residue–residue contacts in the FAM72A-UNG2 heterodimer
were calculated in terms of free binding energy, considering van der Waals forces, electro-
static energy, solvent accessible surface areas, and polar and non-polar energies. Binding
affinity values were plotted as a scatter plot indicating key AA residues in FAM72A (2,
37–40, 61, 83, 101–104, 123–126, and 131, respectively), while AA F104 was identified as
pivotal AA. In proportion, the UNG2 (AA 1–45) peptide has been verified with only a few
AAs accountable for binding contribution (AAs 2, 5, 8, 11, and 15, respectively) (Figure 4).
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Figure 4. Free binding energy was calculated for the FAM72A protein and UNG2 (AA 1–45) peptide heterodimer interaction.
Specific AA residue–residue contact energy calculated the FAM72A-UNG2 (AA 1–45) interaction. Key AA residues were
identified in FAM72A (2, 37–40, 61, 83, 101–104, 123–126, and 131, respectively), while AA F104 was identified as a pivotal
AA with the highest binding energy contacting the Ser12 and Pro13 AAs of UNG. The UNG2 (AA 1–45) peptide has been
verified with only a few AAs accountable for binding contribution (AAs 2, 5, 8, 11, and 15, respectively).

3.5. AA-Specific Mutations in the FWMF Motif (AA 101–104) of FAM72A Affecting the FAM72A
Protein and UNG2 (AA 1–45) Peptide Heterodimer Binding

Site-directed specific mutations in the FWMF motif (AA 101–104) of FAM72A were
used (F104A, F104R, F104N, F104G, and F104S) to evaluate the rigidity and flexibility of
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the interface in the FAM72A protein and UNG2 (AA 1–45) peptide heterodimer binding
(Figures 5 and 6).
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Figure 5. FWMF motif (AA 101–104)-specific mutation-dependent FAM72A protein and UNG2
(AA 1–45) peptide heterodimer free binding energy (energy in [kcal/mol]). FAM72A mutations at
AA F104 phenylalanine (F104→ 104A, F104R, F104N, F104G, and F104S). A difference in total free
binding energy was observed individually at the FWMF motif (AA 101–104)-specific mutations, with
F104R mutation showing the highest effect on energy-dependent conformational change affecting
FAM72A-UNG2 binding. The FAM72A protein and UNG2 (AA 1–45) peptide heterodimer free
binding energy was calculated by the MM/GBSA approach. ELE, electrostatic; GB, polar accessible
(a grid-based surface GB model is used for estimating the polar component of solvation free energy,
coupled with water and atomic radii); SA, solvent area; total, sum of total energy; vdW, van der
Waals; MM/GBSA, molecular mechanics/generalized Born surface area.

We modeled the FAM72A and UNG2 (AA 1–45) peptide and the interaction of
FAM72A with the UNG2 (AA 1–45) peptide. The FWMF motif (AA 101–104) appears
to be key for the FAM72A protein structure and its binding to UNG2 (Figure 6). A mutation
in the FWMF motif from wt F104 to F104R had the largest effect, turning the binding
energy from negative (strong binding/hydrophobic core) to positive (strong binding/
hydrogen bonding).

3.6. Molecular Dynamic Simulation by GROMACS Validates AA-specific Mutations in the
FWMF Motif (AA 101–104) of FAM72A Affecting FAM72A-UNG2 Heterodimer Binding

Since phenylalanine F104 appeared to be the key AA within the FWMF motif (AA
101–104) at the interface of the FAM72A-UNG2 interaction, we further investigated the
effect of FAM72A mutations at wt AA F104 phenylalanine (F104→ F104A, F104R, F104N,
F104G, and F104S) within the FWMF motif (AA 101–104) on the dynamic nature of FAM72A-
UNG2 binding. Dynamic conformation changes in FAM72A-UNG2 (AA 1–45) binding
were simulated by GROMACS and plotted by Grace (Figures 7–9).
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We modeled the FAM72A and UNG2 (AA1–45) peptide and the interaction of 
FAM72A with the UNG2 (AA1–45) peptide. The FWMF motif (AA101–104) appears to be 
key for the FAM72A protein structure and its binding to UNG2 (Figure 6). A mutation in 
the FWMF motif from wt F104 to F104R had the largest effect, turning the binding energy 
from negative (strong binding/hydrophobic core) to positive (strong binding/hydrogen 
bonding). 

Figure 6. (A–H) FWMF motif (AA 101–104)-specific mutation-dependent FAM72A protein and UNG2 (AA 1–45) peptide
heterodimer free binding energy. FAM72A mutations at AA F104 phenylalanine (F104→ F104A, F104R, F104N, F104G, and
F104S). The essential AA residues in FAM72A-wt and UNG2 interaction are the 2, 37–40, 61, 83, 104, 123–126, and 131 AAs of
FAM72A. The highest binding energy (kcal/mol) goes to FAM72A’s AA F104 within the FWMF motif (AA 101–104). Positive
values indicate low binding energies and weak interactions, whereas more negative values indicate stronger interactions.
Values around 0 indicate moderate interactions between FAM72A and UNG2. A change in the FWMF motif from wt F104
to F104R shows the largest effect, turning the binding energy from negative (−2.7; strong binding/hydrophobic core) to
positive (+2.04; strong binding/hydrogen bonding).
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Figure 9. Rg plot showing the effect of FAM72A mutations at AA F104 phenylalanine (F104→ F104A,
F104R, F104N, F104G, and F104S) within the FWMF motif (AA 101–104) on the dynamic nature of
the FAM72A protein and UNG2 (AA 1–45) peptide heterodimer binding.
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We assessed the effect of F104 mutations in FAM72A on the dynamic confirmation
changes, stability, and rigidity of core and buried regions. Trajectories recorded up to 50 ns
were plotted as RMSD, RMSF, and Rg, respectively. Figures 7–9 show the effect of these
mutations on protein backbone changes in mutated FAM72A and signifies the pivotal role
of this FWMF motif (AA 101–104) for the FAM72A-UNG2 interaction. These data confirm
the FWMF motif as a suitable target to interfere with FAM72A-UNG2 signaling pathways.

3.7. CARd Analysis

Knowing that AAs Trp/W125 and F104 in FAM72A are important for the FAM72A-
UNG2 interaction, we changed wt FAM72A-W125 (FAM72A-wt) to FAM72A-W125A or
W125R, and wt FAM72A-F104 to F104A, F104R, F104N, F104G, and F104S, respectively,
and performed CARd analysis (Figure 10).
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Figure 10. CARd analysis showing the effect of FAM72A mutations at the AA tryptophan Trp W125 (W125→W125A and
W125R) and F104 phenylalanine (F104→ F104A, F104R, F104N, F104G, and F104S; within the FWMF motif (AA 101–104)) on
the dynamic nature of the FAM72A protein and UNG2 (AA 1–45) peptide heterodimer binding. CARd analysis confirmed
the FAM72A-UNG2 interaction and the effect of the various FAM72A mutations on it, as carbon governs cohesiveness at
the active site in proteins. Accordingly, internal carbon optimized domains (ICODs) of FAM72Awt and UNG2 (AA 1–45)
interaction validate a strong overlap of FAM72A-UNG2 binding. In particular, mutations in FAM72A turn the ICODs
of FAM72A at AAs 100–104 and 125–135 into non-ICODs, encouraging a less favorable and weaker FAM72Amut-UNG2
induced-fit-binding than that of FAM72Awt-UNG2. F104A, F104G: change from hydrophobic (W) and carbon-rich (W) to
hydrophobic and carbon-low; F104R: change from hydrophobic (F) and carbon-rich (F) to hydrophilic, carbon-rich, and
basic AA); F104S, F104N: change from hydrophobic (F) and carbon-rich (F) to hydrophilic, carbon-low, and polar AA. CARd
reveals that F104 tends to switch to F104R > F104S > F104N > F104G > F104A. Code information: F104: uuu, A104: gcu,
G104: ggu, S104: ucu, N104: aau, R104: cgu.

Internal carbon optimized domains (ICODs) of the FAM72Awt-UNG2 (AA 1–45)
heterodimer confirmed the FAM72Awt-UNG2 (AA 1–45) interaction and the effect of the
various FAM72A mutations on it, as carbon governs cohesiveness at the active site in
proteins. Accordingly, ICODs of the FAM72Awt-UNG2 (AA 1–45) interaction validate
a strong overlap of FAM72A-UNG2 binding. Particularly, mutations in FAM72A turn
the ICODs of FAM72A at AAs 100–104 and 125–135 into non-ICODs, encouraging a less
favorable and weaker FAM72Amut-UNG2 induced-fit-binding than that of FAM72Awt-
UNG2. Based on CARd analysis, F104 tends to switch to F104R > F104S > F104N > F104G >
F104A. The likelihood of the F104 (uuu) mutation to S104: ucu appears to be highest, as
only one nucleotide would be changed compared with the others (F104R: cgu, F104N: aau,
F104G: ggu, and F104A: gcu).

3.8. Lead Discovery and Chemical Docking—Interference with FAM72A-UNG2 Interaction
and Activity

We performed a virtual high-throughput screening to detect a potential lead interfer-
ence with the FAM72A-UNG2 interaction [71–73]. Binding scores, along with drug-likeness
and pharmacophore properties, were considered [35,74–78]. The MTiOpen Screen re-
quired Autodock vina to exercise the docking of chemical libraries, scoring, and ensemble
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analysis [54,55]. The virtual screening suggested 100 compounds, and predicted binding
energies (kcal/mol) were considered to filter the hits for the selection of the “best” hit for
optimization in order to identify the promising lead compound. Based on predicted bind-
ing energies, we identified withaferin B (PubChem CID: 11113907) as the “best” hit (binding
energy −0.5 kcal/mol) molecule that could potentially interfere with the FAM72A-UNG2
interaction (Figure 11). In the lead generation, the Glide XP docking analysis showed a
strong binding affinity of −1.868 kcal/mol at the FAM72A-UNG2 interference site. Active
AA residues contributing to the interaction were visualized by LIGPLOT (Figure 11).

Interestingly, withaferin B has structural similarities with withaferin A. Both com-
pounds are withanolide analogues (derived from Withania somnifera (Indian ginseng)) and
contain an oxapentacyclo moiety. Besides, in their central moieties, withaferin B contains
octadecan-5-yl, whereas withaferin A contains octadec-4-en-3-one. Of note, withaferin A
has been reported to be a potential anti-cancer molecule that can inhibit cell proliferation,
cell migration, and cell invasion [79–86]. Similarly, withaferin B, bound to the FAM72A-
UNG2 heterodimer, could possibly block FAM72A-UNG2 signaling pathways in cancer
cells [26,29]; however, thus far, the biological and therapeutic properties of withaferin B
remain unknown.
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Figure 11. Interaction of the FAM72Awt-UNG2 (AA1–45) heterodimer with withaferin B, another withanolide analog. 
(Top left-hand side): Schematic 3D interaction of FAM72A protein and UNG2 (AA1–45) peptide heterodimer (cartoon 
model) with withaferin B (space-fill model) is shown. (Top right-hand side): FAM72A protein monomer (cartoon model) 
with withaferin B (space-fill model) is shown. (Bottom left-hand side): LIGPLOT output showing the interaction between 
the FAM72Awt-UNG2 (AA1–45) heterodimer and withaferin B. Green Asp71 indicates hydrogen bonding. (Bottom right-
hand side): LIGPLOT output showing the interaction of FAM72Awt monomer with withaferin B. The binding affinity 
was calculated as −1.868 kCal/Mol. Withaferin B, PubChem compound ID (CID): 11113907, molecular formula: C34H50O3, 
molecular weight: 506.8g/mol. IUPAC Name: [(1S,2R,5S,7S,9R,11S,12S,15R,16R)-2,16-dimethyl-15-[(2R)-6-methylheptan-
2-yl]-8-oxapentacyclo [9.7.0.02,7.07,9.012,16 ] octadecan-5-yl] benzoate. UNG2′ AAs Tyr(Y)8 and Phe(F)11 are the most im-
portant AAs for the interaction with the FAM72A FWMF (AAs 101–104) motif. Withaferin B binds to the FAM72A-UNG2 
heterodimer’s interface at the FWMF motif and interacts strongly with both FAM72A and UNG2. Our data show that 
withaferin B could probably bind to the FAM72A-UNG2 heterodimer using electrostatic interactions and hydrophobic 
contacts via FAM72A’ AAs Y60, T56, C59, and M103 and hydrogen bonding with FAM72A’ D71. Moreover, withaferin B 
could probably bind to the FAM72A-UNG2 heterodimer using hydrophobic contacts via UNG2′ AA F11 to disrupt the 
stability of FAM72A-UNG2 chain attachment and, thus, to inhibit the formation of active FAM72A-UNG2 protein com-
plexes. As a result, FAM72A-UNG2 cell signaling could be turned off. 

Interestingly, withaferin B has structural similarities with withaferin A. Both com-
pounds are withanolide analogues (derived from Withania somnifera (Indian ginseng)) and 
contain an oxapentacyclo moiety. Besides, in their central moieties, withaferin B contains 
octadecan-5-yl, whereas withaferin A contains octadec-4-en-3-one. Of note, withaferin A 
has been reported to be a potential anti-cancer molecule that can inhibit cell proliferation, 
cell migration, and cell invasion [79–86]. Similarly, withaferin B, bound to the FAM72A-
UNG2 heterodimer, could possibly block FAM72A-UNG2 signaling pathways in cancer 
cells [26,29]; however, thus far, the biological and therapeutic properties of withaferin B 
remain unknown. 

4. Conclusions 
Accumulating evidence indicates the involvement of FAM72A in tumorigenesis [24–

26,29,87,88]. Elevated FAM72A causes reduced UNG2 levels, eventually leading to new 
mutations [24,25,27–29]. Our data pave the way for new investigative experimental ap-
proaches to validate the prevention of cancer by interfering with the FAM72A-UNG2 sig-
naling pathways using withaferin B. Withaferin B is a potential candidate for future in-
vestigations in the interference with genome stability, centromere formation, and genome 
editing, and on potential therapeutic strategies for the treatment of cancer. 

Figure 11. Interaction of the FAM72Awt-UNG2 (AA 1–45) heterodimer with withaferin B, another withanolide analog.
(Top left-hand side): Schematic 3D interaction of FAM72A protein and UNG2 (AA 1–45) peptide heterodimer (cartoon
model) with withaferin B (space-fill model) is shown. (Top right-hand side): FAM72A protein monomer (cartoon model)
with withaferin B (space-fill model) is shown. (Bottom left-hand side): LIGPLOT output showing the interaction between
the FAM72Awt-UNG2 (AA 1–45) heterodimer and withaferin B. Green Asp71 indicates hydrogen bonding. (Bottom
right-hand side): LIGPLOT output showing the interaction of FAM72Awt monomer with withaferin B. The binding
affinity was calculated as −1.868 kCal/Mol. Withaferin B, PubChem compound ID (CID): 11113907, molecular formula:
C34H50O3, molecular weight: 506.8 g/mol. IUPAC Name: [(1S,2R,5S,7S,9R,11S,12S,15R,16R)-2,16-dimethyl-15-[(2R)-6-
methylheptan-2-yl]-8-oxapentacyclo [9.7.0.02,7.07,9.012,16] octadecan-5-yl] benzoate. UNG2′ AAs Tyr(Y)8 and Phe(F)11 are
the most important AAs for the interaction with the FAM72A FWMF (AAs 101–104) motif. Withaferin B binds to the
FAM72A-UNG2 heterodimer’s interface at the FWMF motif and interacts strongly with both FAM72A and UNG2. Our
data show that withaferin B could probably bind to the FAM72A-UNG2 heterodimer using electrostatic interactions and
hydrophobic contacts via FAM72A’ AAs Y60, T56, C59, and M103 and hydrogen bonding with FAM72A’ D71. Moreover,
withaferin B could probably bind to the FAM72A-UNG2 heterodimer using hydrophobic contacts via UNG2′ AA F11 to
disrupt the stability of FAM72A-UNG2 chain attachment and, thus, to inhibit the formation of active FAM72A-UNG2
protein complexes. As a result, FAM72A-UNG2 cell signaling could be turned off.

4. Conclusions

Accumulating evidence indicates the involvement of FAM72A in
tumorigenesis [24–26,29,87,88]. Elevated FAM72A causes reduced UNG2 levels, even-
tually leading to new mutations [24,25,27–29]. Our data pave the way for new investiga-
tive experimental approaches to validate the prevention of cancer by interfering with
the FAM72A-UNG2 signaling pathways using withaferin B. Withaferin B is a potential
candidate for future investigations in the interference with genome stability, centromere
formation, and genome editing, and on potential therapeutic strategies for the treatment
of cancer.
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