
EDITORIAL
published: 05 March 2015

doi: 10.3389/fgene.2015.00088

Frontiers in Genetics | www.frontiersin.org 1 March 2015 | Volume 6 | Article 88

Edited and reviewed by:
Richard D. Emes,

University of Nottingham, UK

*Correspondence:
Mattia Pelizzola,

mattia.pelizzola@iit.it

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology, a section of the journal

Frontiers in Genetics

Received: 18 February 2015
Accepted: 18 February 2015
Published: 05 March 2015

Citation:
Robinson MD and Pelizzola M (2015)

Computational epigenomics:
challenges and opportunities.

Front. Genet. 6:88.
doi: 10.3389/fgene.2015.00088

Computational epigenomics:
challenges and opportunities
Mark D. Robinson1, 2 and Mattia Pelizzola 3*

1 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 2 SIB Swiss Institute of Bioinformatics,
University of Zurich, Zurich, Switzerland, 3 Computational Epigenomics, Center for Genomic Science of IIT@SEMM, Istituto
Italiano di Tecnologia, Milano, Italy

Keywords: epigenomics, histone mark, DNA methylation, ChIP-seq, epigenetic code

The field of epigenetics is undoubtedly attracting immense interest with countless studies in vari-
ous areas of investigation; (see Rivera and Ren, 2013) for a review on the state of the art for human
epigenomics. From the computational point of view and the characteristics of the generated data,
epigenomics is a very complex field, for two main reasons. First, epigenetics encompasses a multi-
layered set of regulatory cues that act coordinately and possibly in a combinatorial way to control
fundamental biological processes, such as the output of gene expression programs. Second, profil-
ing techniques based on high-throughput sequencing are widely adopted in this field, generating
comprehensive yet complex and massive genome-wide datasets. As a result, the contribution of sci-
entists with computational skills (computer scientists, statisticians, physicists and computational
biologists) is considered an essential component of research institutes investing in this research
field (Bock and Lengauer, 2008).

In this Research Topic, we collected a number of contributions in the field of computational
epigenomics covering three main research areas: (i) computational analyses tackling important
issues closely related to the experimental method used to generate epigenetic data (Flensburg et al.,
2014; Ji et al., 2014; Mensaert et al., 2015), (ii) computational approaches useful to overcome pit-
falls associated to the analysis of a given epigenetic layer (Barozzi et al., 2014; Cairns et al., 2014;
Robinson et al., 2014), and (iii) studies on the integration of multiple epigenetic layers (de Pretis
and Pelizzola, 2014; Fejes et al., 2014; Osella et al., 2014).

Computational tools developed for the analysis of specific epigenetic data types, including DNA
methylation and ChIP-seq of histone post-translational modifications (so-called “marks”), have to
deal with the biases originated directly from the experimental methodology. In the case of profiling
DNAmethylation, various approaches based on sequencing are available, depending on the desired
tradeoff between cost, coverage and data resolution. In some cases, a non-trivial subset of the DNA
fragments sequenced in MBD-seq experiments, based on affinity purification through a methyl-
CpG binding protein, could not be assigned to the expected reference genome. It was then shown
how it is possible to assess this unanticipated proportion of unmapped reads to profile methylated
viral sequences, which can be particularly relevant in certain studies (e.g., oncoviruses; Mensaert
et al., 2015). On the other hand, reads from methylated DNA were shown to be over-represented
in data from whole-genome bisulfite sequencing experiments. The technical reasons for this bias
and the necessity of developing computational methods for correcting this issue, especially when
interested in allelic methylation, were explored (Ji et al., 2014). Finally, regarding the analysis of
ChIP-seq data, computational methods were shown to be helpful in clarifying how to generate ref-
erence samples necessary for the identification of enriched genomic regions. Specifically, the effect
of using pull-down of the whole histone H3 or the more common input sample (whole-cell extract)
were compared, showing how this choice had negligible impact on the resulting computational
results (Flensburg et al., 2014).

Various computational methods have been developed for the analysis of different epigenetic
data types, yet it remains difficult to understand the relative merits and performance of all the
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available approaches. Trying to guide on the identification of the
best-suited method, a number of contributions in this Research
Topic focused on the comparison between computational meth-
ods and discussion to contrast the available analysis strate-
gies. Regarding DNA methylation data, a number of methods
developed for the identification of differentially methylated bases
or regions were compared, while discussing the importance of
experimental design, and confounders such as batch effects and
cell type composition (Robinson et al., 2014); this is a very
active field, evidenced by new tools emerging, such as DMR-
cate (Peters et al., 2015) and M3D (Mayo et al., 2014) and also
highlighting the need to constantly update performance compar-
isons. Touching on a different data type, chromatin accessibility,
various methods for the identification of footprints in DNase-
seq were discussed and compared using ENCODE data (Barozzi
et al., 2014). Accessibility only reveals information about pre-
sumed activity, but is commonly chosen since it is complimentary
to the analysis of specific epigenetic marks and provides a list of
putative regulatory proteins that bind open chromatin regions.
Finally, tackling the issue of the statistical modeling of read
counts for ChIP-seq data, various alternatives were discussed and
a method based on double Negative Binomial (i.e., Poisson dis-
tributed counts with a mixture of two gamma-distributed rates)
was proposed (Cairns et al., 2014).

While the experimental methods and the computational anal-
ysis of individual data types are compared and perfected, sci-
entists are investigating how to make connections between the
various epigenetic layers that are surveyed. It is now clear that
patterns of DNA methylation and histone marks are estab-
lished, maintained and have effect through a machinery that
is influenced by the crosstalk between these layers, and their
interplay with binding of regulatory proteins, chromatin acces-
sibility and 3D conformation. In other words, the joint analysis
of multiple epigenetic layers through data integration methods
(Ritchie et al., 2015) is considered the key to comprehend how

epigenetic information contributes controlling complex regula-
tory processes. In this series of articles, computational and exper-
imental methods for the integrative analysis of epigenetic marks
are discussed and proposed. Double-negative feedback loops,
where a microRNA is inhibited by an epigenetic regulator while
being epigenetically controlled by the same regulator, are con-
sidered and shown to exhibit properties that are well suited
for circuits involved in cell fate transitions (Osella et al., 2014).
In the context of data integration and visualization, an online
platform (DaVIE) was developed based on a database of DNA
methylation experiments. This tool allows navigating through
multiple DNAmethylation experiments and integrating different
data types, including ChIP-seq data (Fejes et al., 2014). Finally,
recent and past evidence in favor of the notion of epigenetic
code are discussed, and computational and experimental strate-
gies are proposed that can be instrumental to further investigat-
ing how different epigenetic layers and marks are interconnected
(de Pretis and Pelizzola, 2014).

Altogether, this series of articles provides a comprehensive
glance at the emerging field of computational epigenomics. This
research area brings to the field of epigenetics a set of tools that
were initially developed in the field of genomics. At the same
time, computational epigenetics is showing its maturity toward
closing the circle between the genome and the epigenome, reveal-
ing how regulatory layers are interconnected and highlighting
the need to jointly consider epigenetic phenomenon to explain
complex transcriptional responses.
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