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Abstract
Graph-based algorithms are known to be effective approaches to semi-supervised learning. However, there has been rela-
tively little work on extending these algorithms to the multi-label classification case. We derive an extension of the Manifold
Regularization algorithm to multi-label classification, which is significantly simpler than the general Vector Manifold Reg-
ularization approach. We then augment our algorithm with a weighting strategy to allow differential influence on a model
between instances having ground-truth vs. induced labels. Experiments on four benchmark multi-label data sets show that
the resulting algorithm performs better overall compared to the existing semi-supervised multi-label classification algorithms
at various levels of label sparsity. Comparisons with state-of-the-art supervised multi-label approaches (which of course are
fully labeled) also show that our algorithm outperforms all of them even with a substantial number of unlabeled examples.

Keywords Manifold regularization · Multi-label classification · Semi-supervised learning · Graph-based learning

Introduction

In many real-world applications, such as bioinformatics and
video annotation, obtaining labeled data is sometimes very
difficult, expensive and time-consuming. On the other hand,
it may be simple and inexpensive to obtain unlabeled data.
For instance, vast numbers of videos and images are available
on the web. The large amount of unlabeled data can reveal
useful information about the phenomena we are studying,
e.g., estimating the distribution of the data as well as the
data structure [68]. As a result, Semi-Supervised Learning
(SSL) is drawing increasing interest in the machine-learning
community [10].

Studies on SSL are extensive (e.g. [2,4,12,13,32,45,51,
62,66]); detailed reviews may be found in [65] and [42].
The common purpose of semi-supervised algorithms is to
exploit both labeled data and unlabeled data to create supe-
rior classifiers compared to labeled data alone. According
to [10], self-training (also known as self-learning or self-
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labeling) is among the earliest approaches that use unlabeled
data in classification. The idea of the self-training first
appeared in [41]. In self-training, a classifier is first trained
only with the labeled data, and then used to predict labels
for some unlabeled data. Then, the classifier is re-trained
with both the ground-truth and predicted labels, and used
to predict additional labels. The process repeats until all
examples are labeled. The authors in [42] use the expectation-
maximization (EM) algorithm [14] for SSL. Co-Training [6]
is a learning paradigm to address problems with strong struc-
tural prior knowledge available, and is regarded as a variant
of EMon the probabilisticmodel [10,42]. It assumes that fea-
tures can be split into two complementary and independent
feature subsets and each feature subset is enough to train a
classifier for the data. Then, each classifier uses its most con-
fidently predicted points and their labels to teach the other
classifier. The process of using the other classifier’s most
confidently predicted labels to teach itself is iterated until
some criteria is achieved. Transductive learning is another
approach, based on the idea of performing predictions only
for test samples [10]; Transductive Support Vector Machines
(TSVM) are one example [54]. Various extensions to the
TSVM have been proposed [9,11,16,60]; the common point
is that the algorithms try to learn a hyperplane over the labeled
data and the unlabeled data by optimizing a tradeoff between
maximizing the margin over the labeled data and regular-
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izing the decision boundary over low-density regions of all
data samples.

Graph-based algorithms are an important sub-class of SSL
that have recently attracted considerable attention [10,48,49].
Various graph-based SSL algorithms have been developed
[3,5,25,28,53,55,56,59,64,67] and a number of successful
applications can be found in recent publications [1,29,30,61].
Some popular graph-based algorithms include Local and
Global Consistency [64], Gaussian Random Fields and Har-
monic Functions [67], mincuts [5], greedy max-cut [55], and
spectral graph transducers [28]. All the graph-based algo-
rithms begin by constructing a graphwith nodes representing
data points, and edges representing similarity between the
connected nodes. The labeled data points are then used to per-
form graph clustering or propagate labels from labeled points
to unlabeled points, by minimizing the empirical cost over
labeled data and regularizing the smoothness over the graph
using all the data. Another representative SSL approach is
manifold regularization [3], which assumes data points lie on
a low-dimensional manifold in the input space [20,35,50].

At the same time, most above semi-supervised classi-
fication algorithms implicitly assume that class labels are
mutually exclusive. However, in many application domains,
such as image classification, bioinformatics and news catego-
rization, each instance can represent more than one concept
simultaneously; this is best represented as a vector of labels.
In addition, human emotions and sentiments are sometimes
regarded as a multi-label classification problem nowadays,
e.g., multiple fine-grained emotions may coexist in a single
tweet of a microblog [21]. In addition, multi-label classifiers
have recently been utilized for recognizing crop diseases in
agriculture [27]. The learning algorithms for these problems
are the “multi-label classifiers” as reviewed in [47,58]. For
instance, a well-known multi-label classifier is the Multi-
Label k Nearest Neighbors (MLkNN) [57], which is an
extension of the classical kNN method. References [31,37],
and [39] study a variety of supervised multi-label algorithms
and present extensive experiments to compare their perfor-
mances.

Our focus in the current paper is the intersection of these
two problems, to wit, the design of semi-supervised multi-
label classifiers. There is relatively less work in the literature
on this sub-problem, and a particular dearth of graph-based
semi-supervised algorithms for the multi-label case. Some
existing studies on semi-supervised algorithms include the
Multi-Label Gaussian Fields and Harmonic Functions (ML-
GFHF) [56], the Multi-Label Local and Global Consistency
(ML-LGC) [56], the Fixed-Size Multi-Label Regularized
Kernel Spectral Clustering (ML-FSKSC) [33], and the Semi-
Supervised Weak-Label approach (SSWL) [18]. In spite of
these results, the opportunities in this area are extensive.
Better methods are needed for semi-supervised multi-label
classification in many tasks.

In our previous work [29], we found that a multi-label
extension of the Manifold Regularization algorithm [3] was
quite effective for non-intrusive load monitoring. In the
current paper, we seek to improve upon that algorithm,
and determine how well our results generalize beyond that
domain. We investigate a multi-label extension of the Man-
ifold Regularization (MR) algorithm, augmented with a
reliance weighting strategy to further improve classification
performance. Reliance weights allow learning algorithms
to differentiate between ground-truth and induced labels in
constructing a classifier for a given data set. They take the
form of an additional matrix term in the kernel expansion of
the Laplacian Regularized Least Squares model learned in
MR [3]. We evaluate our proposed algorithm in comparison
with five other multi-label algorithms (four semi-supervised
algorithms plus MLkNN), on a set of four benchmark data
sets.

The key contributions of this work are:

– The manifold regularization algorithm is extended to
learn multi-label classifiers.

– A weighting strategy is proposed to vary the trust placed
in labeled and unlabeled instances when forecasting
labels for unseen points.

– The proposed approach is compared against four semi-
supervised, and one fully supervised, multi-label algo-
rithms, and performs as well as or better than all of them.

The advantages of the proposed method are threefold: (1) the
proposed method performs as well or better than the existing
semi-supervised multi-label algorithms on the four data sets
in the fifth section. It furthermore outperforms the state-of-
the art supervisedmulti-label algorithms (which of course are
trained on fully labeled data), even when a substantial por-
tion of the training set is unlabeled. (2) The proposed method
has a low model complexity as the Manifold Regularization
[3] assumes data points lie on a low-dimensional manifold in
the input space. (3) The proposed reliance weighting strategy
allows an analyst to specify different trust levels for ground-
truth and induced labels. The disadvantage of the method
mainly lies in the computational time required for the con-
struction of the graph structure; this is a common problem in
this class of algorithms.

The remainder of this paper is organized as follows: First,
we present the preliminaries, including introducing the basis
and notations, regularization in reproducing Kernel Hilbert
space and manifold regularization. Then, we present the
proposed approach, including graph construction, manifold
regularization with multiple labels and our reliance weight-
ing strategy. After that, we describe the experimental design
including introducing the data sets, experimental setup, per-
formance metrics and statistical significance tests. Last, the
experimental results and discussion are presented, and we
offer a summary and discussion of future work.
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Preliminaries

This section presents the notations and basics that are used
throughout the paper, and reviews themanifold regularization
algorithm.

Basics and notations

In the framework of semi-supervised learning, the data set
D in the training phase consists of two parts, namely D =
Dl ∪ Du , where Dl and Du indicate the labeled and unla-
beled training data sets, respectively. Both Dl and Du are
drawn from the same distribution p(x), where x indicates a
feature variable. In the single label case, the feature space
and label space of a data set D are denoted by X = R

d and
Y = {−1, 1}, respectively. Then, the labeled and unlabeled
training data sets are represented by Dl = {(xi , yi ) : xi ∈
X , yi ∈ Y, i = 1, 2, . . . , l} and Du = {xi : xi ∈ X , i =
l + 1, l + 2, . . . , l + u}, where l and u indicate the numbers
of labeled and unlabeled instances xi = [xi1, xi2, . . . , xid ]T
for i = 1, 2, . . . , n, where d indicates the feature dimension.
The total number of all training instances in D is n = l + u.
The goal of semi-supervised learning with single label is to
infer the labels Ỹ = {ỹi ∈ Y, i = 1, 2, . . . , e} for future
instances De = {x̃i ∈ X , i = 1, 2, . . . , e} given the training
data set D = Dl ∪ Du . [49,68]

In the multi-label case, the label space of D is denoted
by Y = {−1, 1}L , where L indicates the number of labels.
Analogously, the labeled training data set becomes Dl =
{(xi , yi ) : xi ∈ X , yi ∈ Y, i = 1, 2, . . . , l} and the label
vector is yi = [yi1, yi2, . . . , yi L ]T , whereas the other nota-
tions remain the same as the single label case. The goal of
semi-supervised learning with multiple labels is to infer the
labels Ỹ = {ỹi ∈ Y, i = 1, 2, . . . , e} for De = {x̃i ∈ X , i =
1, 2, . . . , e} given D = Dl ∪ Du .

Using the graph-based semi-supervised learning, a cru-
cial step is to construct a graph G = (V , E) representing the
connections between training instances xi ∈ X [49,56,68].
Specifically, G = (V , E) has n vertices Vi and each vertex Vi
represents an instance xi , i = 1, 2, . . . , n. Ei j is an edge con-
necting vertices Vi and Vj . There are three typical methods to
construct such a graph, including the k nearest neighbor algo-
rithm, ε distance measure and full connection. For example,
using the k nearest neighbor algorithm, each edge Ei j con-
nects the vertices Vi and Vj if vertex Vi is among the k nearest
neighbors of vertex Vj , or vertex Vj is among the k nearest
neighbors of vertex Vi . A weight matrix W is defined over
the graph G = (V , E), where Wi j is the weight associates
with edge Ei j representing the similarity between vertices
Vi and Vj (namely the training instances xi and x j ). Then,
the unnormalized graph Laplacian is given by L = D − W,
where D is a diagonal matrix with Dii = ∑N

j=1 Wi j .

The label inference in graph-based SSL is usually based
on two graph assumptions [56,68]: (1) the prediction should
be close to the given labels on labeled vertices; (2) the pre-
diction should be smooth on the whole graph (i.e., vertices
that are close in the graph tend to have the same labels). The
label inference algorithms for graph-based SSL can be cat-
egorized into two major classes: transductive learning (e.g.,
the graph Laplacian regularization [64,67]), and inductive
learning (e.g., the manifold regularization [3]). Transductive
learning infers labels only on the unlabeled training data and
cannot make predictions on out-of-sample data. By contrast,
inductive learning infers labels for the whole domain, i.e., a
function f : X → Y is learned given D = Dl ∪ Du and
then the labels forDe are predicted. The work in this paper is
based on the manifold regularization [3], which is a typical
inductive learning method [63]. The next subsection revisits
regularization in a reproducing kernel Hilbert space, which
is the core of manifold regularization.

Regularization in reproducing kernel Hilbert space

For a Mercer kernel K : X × X → R, there exists an asso-
ciated Reproducing Kernel Hilbert Space (RKHS) HK of
functions X → R with the norm || · ||K [40]. The standard
supervised learning estimates an unknown function f ∈ HK

from the labeled data set Dl as

f ∗ = argmin
f ∈HK

1

l

l∑

i=1

V (xi , yi , f ) + γA|| f ||2K , (1)

where V (xi , yi , f ) is the loss function, such as the squared
error loss (yi − f (xi ))2 for regularized least squares (RLS).
|| f ||2K is a regularization term in the RKHS imposing the
smoothness condition on possible solutions. γA balances the
tradeoff between the empirical cost and the regularization
term. l is the number of labeled instances.

Thedifferencebetween semi-supervised learning to super-
vised learning lies in the utilization of the marginal distribu-
tion of D = Dl ∪ Du to improve the learning performance
in addition to the empirical cost obtained over the labeled
data set Dl . According to the discussions in [3], there is
an identifiable relation between marginal distribution p(x)
and conditional distribution p(y|x), i.e., if two instances
xi , x j ∈ X are close in the intrinsic geometry of p(x), then
their conditional distributions p(y|xi ) and p(y|x j ) are simi-
lar. Thus, another regularization term can be added to ensure
that the solution is smooth with respect to the marginal dis-
tribution p(x). Incorporating the smoothness penalty term
with respect to the graph Laplacian L, we derive the follow-
ing optimization problem [3]:
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f ∗ = argmin
f ∈HK

1

l

l∑

i=1

V (xi , yi , f ) + γA|| f ||2K + γI

n2
fTLf,

(2)

where f = [ f (x1), f (x2), · · · , f (xn)]T , and fTLf is a
penalty term that reflect the intrinsic structure of the prob-
ability distribution p(x). n = u + l is the number of total
instances. The normalizing coefficient 1

n2
is the natural scale

factor for the empirical estimate of the Laplace operator.
Coefficients γA and γI controls the complexity of the func-
tion in the ambient space and the intrinsic geometry of the
p(x) respectively. In real-world data sets, p(x) is unknown,
but an empirical estimate can be obtained from a sufficiently
large amount of unlabeled data Du by assuming the data set
lies on a manifold in Rd and modeling the manifold with the
adjacency graph G = (V , E) from the data set D. Accord-
ing to the classical Representer Theorem [40], the solution
to Eq. (2) inHK is given by Ref. [3]

f ∗(x) =
l+u∑

i=1

θi K (xi , x), (3)

which is an expansion of the Representer Theorem in terms
of labeled data and unlabeled dataD = Dl∪Du . Accordingly,
the problem is essentially an optimization problem over the
space of coefficients θi .

The RKHS has been extended to vector-valued functions
[8] to formulate the vector-valued manifold regularization
[35]. Let F = ( f1(x1), · · · , fn(xn)) ∈ Yn be components
of a vector-valued function where each fi ∈ HK [35]. Here
Y can be R for the single label case or RL for multi-label
case. The optimization problem of the vector-valued mani-
fold regularization is given by Ref. [35]

f ∗ = argmin
f ∈HK

1

l

l∑

i=1

V (xi , yi , f ) + γA|| f ||2K
+γI < F, MF >Yn , (4)

where the matrix M is a symmetric, positive operator, such
that < y, My >Yn for all y ∈ Yn . Yn is the n-direct product
of Y , with the inner product

< (y1, · · · , yn), (w1, . . . , wn) >Yn=
n∑

i=1

< yi , wi >Y .

It has been proved in [35] that the minimization problem
in (4) has a unique solution taking the form f ∗(x) =
∑l+u

i=1 K (xi , x)�i for some vectors �i ∈ Y, 1 ≤ i ≤ n.
The vector-valued manifold regularization is a generalized
form of manifold regularization, and can be used for single
label, multi-label, and multi-view learning [35,36].

The Representer Theorem in the vector-valued RKHS is
given andproved in [35]. LetHK ,x = {∑u+l

i=1 K (xi , x)yi , y ∈
Yu+l}. For f ∈ H⊥

K ,x, the sampling operator Sx satis-

fies < Sx f , y >Yu+l=< f ,
∑u+l

i=1 K (xi , x)yi >HK = 0.
This holds true for all y ∈ Yu+l and yields Sx f =
( f (x1), . . . , f (xu+l)) = 0. Denote the right-hand side of (4)
by I ( f ). Any arbitrary f ∈ HK , can be decomposed orthog-
onally as f = f0 + f1, with f0 ∈ HK ,x and f1 ∈ H⊥

K ,x.
This results in I ( f ) = I ( f0 + f1) ≥ I ( f0) with equal-
ity if and only if || f1||HK = 0, since || f0 + f1||HK =
|| f0||HK + || f1||HK . As a result, the minimizer of (4) must
lie inHK ,x.

The proposedmethod

The work in [3] initially proposed the manifold regulariza-
tion, and showed that theRepresenterTheoremminimizes the
error for LaplacianRLS in univariate cases; further, reference
[35] proved the Representer Theorem for the general cases
of the vector manifold regression. Following the two funda-
mental theoretical works, this work on multi-label manifold
regularization is essentially an important special case of the
theorem in [35]. In the existing literature, there is no study
on such a special case; in particular, no simpler proof has
been advanced that the kernel coefficients in Eq. (3) remain a
solution to the Laplacian RLS minimization. We are follow-
ing a long tradition in mathematics where simpler proofs for
interesting special cases remain valuable, even if the general
case has been proven. For instance, Dirichlet’s theorem was
first proved in [17] in the 19th century. Nonetheless, stud-
ies of special cases of Dirichlet’s theorem, especially those
having elementary proofs (e.g., [24,38,43]), continue to this
day [34]. Analogously, studying themulti-label classification
case of MR also seems an interesting and novel contribution.
We also introduce the reliance weighting strategy, and prove
that our modified algorithm remains a solution to the Lapla-
cian RLS problem. The major challenges include: (1) the
formulation of the optimization problem of manifold regu-
larization with multiple labels given that the data structure
is different from the single-labeled data, (2) the solving of
the optimization problem to guarantee that a unique global
solution exists, (3) the derivation of the solution by including
a reliance weight matrix.

Graph construction

Given the whole data set D = Dl ∪Du , a full n × n distance
matrixU is calculated between each pair of instances xi , x j ∈
X based on a Gaussian kernel K (xi , x j ) as

Ui j = K (xi , x j ) = exp

(

−||xi − x j ||2
2σ 2

)

, (5)
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where σ denotes the bandwidth of the Gaussian kernel.
Equivalently, an alternative distance matrix H can be cal-
culated with each element Hi j given by Refs. [26,55]

Hi j = √
Uii +Uj j − 2Ui j . (6)

The constructed graph G = (V , E) is a fully connected
graph with each edge Ei j weighted by Hi j . According to
[26,55], graph sparsification can improve the efficiency of
label inference. Edges are removed producing an n × n
binary matrix B with 1’s and 0’s representing the presence
and absence of connections, respectively. Three sparsifica-
tion approaches can be used, including the ε-neighbor search,
k-nearest neighbor search, and the b-matching [26,55]:

1. The ε-neighbor search recovers a binary matrix B as

Bi j =
{
1 if 1 − Hi j ≤ ε

0 if 1 − Hi j > ε or i = j
. (7)

2. The k-nearest neighbor search obtains the binary matrix
B by minimizing the following optimization problem:

min
B∈{0,1}n×n

n∑

i=1

n∑

j=1

Bi j Hi j

s.t.
n∑

j=1

Bi j = k, Bii = 0,∀i, j = 1, . . . , n.

(8)

3. Using the b-matching algorithm, the optimization prob-
lem to recover B is

min
B∈{0,1}n×n

n∑

i=1

n∑

j=1

Bi j Hi j

s.t.
N∑

j=1

Bi j = b, Bii = 0, Bi j = Bji ,∀i, j = 1, . . . , n.

(9)

The binarymatrixB obtained using the k-nearest neighbor
search is not symmetric; thus the final B can be calculated as
Bi j = max(Bi j , Bji ). By contrast, the b-matching algorithm
produces a graph with every node having the same number of
neighbors, namelyB = BT .Whichever of the abovemethods
is applied, the weight for edge Ei j is set to 0 if Bi j = 0. For
an edge Ei j with Bi j = 1, the weight Wi j can be calculated
with respect to the distance matrix H and expressed as

Wi j = Hi j Bi j . (10)

The final graph G = (V , E) is then constructed and rep-
resented by a sparse weight matrix W. Proceeding to label

inference, the graph Laplacian is calculated as L = D − W,
where each element of D is Dii = ∑N

j=1 Wi j and Di j = 0.

Manifold regularization withmultiple labels

In this subsection, we extend the manifold regularization
in [3] to solve multi-label learning problems. Let X =
[x1, x2, . . . , xn]T and Y = [y1, y2, . . . , yn]T denote the
matrix of all feature instances and label instance. In Y, yi
for i ≤ l takes 1 or −1 for its elements and yi is an all-zero
vector for l < i ≤ n. In the framework of the Laplacian
Regularized Least Squares (LapRLS) [3], the optimization
problem of manifold regularization with multiple labels is

f ∗ = argmin
f j∈HK , j=1,...,L

1

l
tr

(
(�F − Y)T (�F − Y)

)

+γA|| f ||2K + γI

n2
tr

(
FTLF

)
, (11)

where F = [ f j (xi )]n×L , i = 1, . . . , n, j = 1, . . . , L is a
matrix representing the predicted outputs, tr(·) denotes the
trace of a matrix, and � is a n × n diagonal matrix with the
diagonal elements given by

�i i =
{
1 for i ≤ l,
0 for l < i ≤ n.

. (12)

The second term || f ||2K = ∑L
j=1 || f j ||2K in Eq. (11) mea-

sures the complexity of F in the ambient space. The third
term represents the intrinsic smoothness with respect to the
geometric distribution. L is the graph Laplacian obtained in
the graph construction phase. The optimization problem in
(11) is essentially one natural extension of the LapRLS for
multi-label cases as indicated in [35].

The minimization problem in Eq. (11) is guaranteed to
have a unique global solution. The theorem for the solution
in (11) are given and proved as follows.

Theorem 1 The minimizer of optimization problem in Eq.
(11) admits an expansion

f ∗
j (x) =

n∑

i=1

�i j K (xi , x), j = 1, 2, . . . , L (13)

in terms of the labeled and unlabeled instances; K (·, ·)
represents the kernel function, which must be positive semi-
definite.

Proof In themulti-label classification problem (11), the norm
of the function f can be represented by the sum of each
function f j in the Reproducing Kernel Hilbert Space HK ,
i.e., || f ||2K = ∑L

j=1 || f j ||2K .
Any function in the RKHS HK can be decomposed into

two orthogonal components; specifically, each f j , can be
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decomposed to a function f 0j in the linear subspace spanned

by {K (xi , ·)}ni=1 and f 1j orthogonal to f 0j [3]. Accordingly,
f j can be represented by

f j = f 0j + f 1j =
n∑

i=1

�i j K (xi , ·) + f 1j ,

Since || f j ||2K = || f 0j ||2K + || f 1j ||2K ≥ || f 0j ||2K , there is

|| f ||2K =
L∑

j=1

|| f j ||2K =
L∑

j=1

|| f 0j ||2K

+
L∑

j=1

|| f 1j ||2K ≥
L∑

j=1

|| f 0j ||2K

The equality is achieved if and only if || f 1j ||2K = 0, j =
1, 2, . . . , L . Therefore the minimizer must be f ∗

j (x) =
∑n

i=1 �i j K (xi , x), j = 1, 2, . . . , L . 
�
Denote the K as a n × n matrix of the kernel estimation

with respect to all the data samples X, and � as a n × L
matrix of the coefficients. The solution can be represented
by

F∗ = K�. (14)

Therefore, the problem in Eq. (11) is reduced to optimiz-
ing over the finite dimensional space of coefficients �.
According to [3], the kernel function K (·, ·) must be pos-
itive semi-definite which gives rise to an RKHS. A choice of
the kernel function is the heat kernel, which can be approxi-
mated using a sharp Gaussian kernel. Thus, U in Eq. (5) can
be taken as the kernel matrix K.

Reliance weighted kernel for performance
improvement

In the framework of manifold regularization, the classifier is
trained using both the labeled training set Dl and the unla-
beled training set Du . Although both Dl and Du contribute
to the classification, the prediction of the label vector ỹ of
an unforeseen future sample x̃ is based on the label informa-
tion provided by the labeled training set Dl . Naturally, this
motivates us to have more trust in the labeled training set
than the unlabeled one for out-of-sample prediction. Thus,
a reliance weighting strategy is proposed to assign different
weights to the training instances allowing samples from Dl

to have greater influence than those from Du . Given a heat
kernel function K (xi , x), the weighted kernel function for x
is

K̃ (xi , x) = K (xi , x) · Ξi , (15)

where Ξi represents the reliance weight of the i th instance.
Denote the K̃ as the matrix of the weighted kernel estimation
with respect to all the data samplesX, and the relianceweight
matrix Ξ as

Ξ =

⎡

⎢
⎢
⎢
⎣

Ξ1 0 · · · 0
0 Ξ2 · · · 0
...

...
. . .

...

0 0 · · · Ξn

⎤

⎥
⎥
⎥
⎦

(16)

Then, the weighted kernel matrix is K̃ = KΞ . To yield to
the minimizer in (13), the kernel function K̃ (·, ·) must be
positive semi-definite.

Proposition 1 Given a heat kernel function K (·, ·), the
weighted kernel K̃ (·, ·) = K (·, ·)·Ξi is positive semi-definite
if and only if Ξi ≥ 0.

Proof Given an arbitrary vector v ∈ R
d , we have

vT K̃v =
d∑

i=1

d∑

j=1

K (xi , x j ) · Ξi · viv j . (17)

where vi and v j are the i th and j th elements of v. The kernel
estimation based on a heat kernel function is always nonneg-
ative, namely K (xi , x j ) ≥ 0. Therefore, K (xi , x j ) · Ξi ≥ 0
if and only if Ξi ≥ 0. Accordingly, vT K̃v ≥ 0 if and
only if Ξi ≥ 0. As a conclusion, the weighted kernel
K̃ (·, ·) = K (·, ·) · Ξi is positive semi-definite if and only
if Ξi ≥ 0. 
�

Using the reliance weighted kernel function instead of the
heat kernel function, the solution in (14) becomes

F∗ = K̃� = KΞ�. (18)

The coefficient matrix �∗ can be estimated by differenti-
ating the right hand side of (11) as

2

l
�KΞ(�KΞ�∗ − Y) + 2γAKΞ�∗

+2γI
n2

(KΞ)TLKΞ�∗ = 0

The coefficient matrix is eventually obtained as

�∗ =
(

�KΞ + lγAI + lγI
n2

LKΞ

)−1

Y. (19)

where I is a n × n identity matrix.
For unforeseen future samples X̃ = [x̃1, x̃2, . . . , x̃e]T in

De, the label matrix F̃ is obtained as follows: first, a e ×
n kernel matrix Ke is calculated using Eq. (5), i.e., K̃i j =
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K (x̃i , x j ) for i = 1, 2, . . . , e and j = 1, 2, . . . , n. Next, the
output F̃ for X̃ can be calculated as

F̃ = KeΞ�∗. (20)

Eventually, the label matrix Ỹ of X̃ is obtained by com-
paring each element of F̃ with 0. We will henceforth refer
to our multi-label extension of MR as Multi-Label Mani-
fold Regularization (ML-MR), and our reliance weighting
augmentation as ML-MR with Reliance Weighting (ML-
MRRW).

There are clearly many strategies for determining reliance
weights. The simplest strategy is to assign uniform weights,
namely Ξi = ν1 ∈ [0, 1], 1 ≤ i ≤ l and Ξi = ν2 ∈
[0, 1], l < i ≤ l + u for all labeled and unlabeled training
instances, respectively. These two parameters then decide the
balance of trust between labeled and unlabeled training data.
The extended manifold regularization is supervised if ν1 = 1
and ν2 = 0 are used, and is unsupervised for the choice of
ν1 = 0 and ν2 = 1. The relation ν1 = ν2 indicates that the
impacts of Dl and Du to label inference are equal, whereas
ν1 > ν2 indicates thatmoreweight is put on labeled instances
Dl than that on unlabeled instances Du . In this work, we are
trying to improve the performance ofmanifold regularization
by trusting labeled instances more, and thus the choices of
ν1 and ν2 must follow two criterions, namely ν1 = 1 and
ν1 > ν2 > 0.

Experimental design

This section designs experiments to validate the effectiveness
of the proposed ML-MR and ML-MRRW methods on some
commonly used benchmark data sets. Other semi-supervised
multi-label classification methods are tested as comparisons,
across a range of performance metrics.

Data sets

Four public data sets from different domains are chosen for
the experimental study. Table 1 presents the basic informa-
tion about these data sets. The first data set “Emotions” [52]
consists of sampled wave forms of sound clips generated
from different genres of musical songs. Each instance is
labeled with 6 emotions: amazed-surprised, happy-pleased,
relaxing-calm, quiet-still, sad-lonely, and angry-aggressive.
The second data set “Scene” [7] is a commonly used image
data set with each image represented by a 294-dimension fea-
ture vector and labeled with six classes: beach, sunset, field,
fall-foliage, mountain, and urban. The third data set “Yeast”
[19] consists ofmicro-array expressiondata andphylogenetic
profiles for 2107 genes. Each gene is associated with a set
of functional classes, which are grouped into 14 functional

Table 1 Basic information of the selected public data sets

Data set Domain # Features # Labels # Instances

Emotions [52] Music 72 6 593

Scene [7] Image 294 6 2409

Yeast [19] Life 103 14 2417

Mediamill [46] Video 120 101 43,907

categories. The last data set “mediamill” [46] consists of dig-
ital video achieves for the TREC Video Retrieval Evaluation
(TRECVID) challenge. This data set contains 120 features
and 101 annotation concepts. These data sets are already for-
matted, so no further pre-processing is needed.

Experiment setup

In each experiment, the data set is first partitioned into two
parts: the training data and out-of-sample testing data occupy
two thirds and one third of the whole data set, respectively.
Then, the labels of a portion of the instances in the train-
ing data are omitted to construct labeled training data and
unlabeled training data. The labeling rate η is drawn from
{5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%}.
For each labeling rate, experiments are conducted 100 times
by randomly resampling the labeled training data, unlabeled
training data, and out-of-sample testing data. The first three
data sets “Emotions”, “Scene”, and “Yeast” are fully used
in the experiments, whereas only a portion (10% randomly
selected) of the “Mediamill” data is used in view of the com-
putational complexity of MR.

In the experiments, seven algorithms are carried out
for comparisons: (1) the Multi-Label k Nearest Neighbors
(MLkNN) [57], (2) theMulti-LabelGaussian Fields andHar-
monicFunctions (ML-GFHF) [56], (3) theMulti-LabelLocal
and Global Consistency (ML-LGC) [56], (4) the Fixed-Size
Multi-Label Regularized Kernel Spectral Clustering (ML-
FSKSC) [33], (5) theSemi-SupervisedWeak-Label approach
(SSWL) [18], (6) the Multi-Label Manifold Regularization
(ML-MR), and (7) the ML-MR with the Reliance Weight-
ing strategy (ML-MRRW) in “Reliance weighted kernel for
performance improvement”. It should be noted that all the
seven algorithms are applied in the first three experiments.
In the last experiment, only six algorithms are applied; the
SSWL is not included in the comparison because the used
personal computer failed to run the algorithm owing to the
high computational burden. Among all of the algorithms,
MLkNN is supervised and all the other algorithms are semi-
supervised. Accordingly, the MLkNN algorithm only uses
the labeled training data in the training phase, whereas all
the other algorithms exploit both the labeled training data
and unlabeled training data. The parameters in each algo-
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rithm are determined by parameter exploration using a small
portion of the data. For the ML-MRRW algorithm, the two
parameters for the reliance weighting strategy are fixed at
[ν1, ν2] = [1, 0.1].

Performancemetrics

Many performancemetrics or criteria for multi-label classifi-
cation have been proposed; reviewsmay be found in [47] and
[58]. In this work, three popular metrics are used to evaluate
the performances of the algorithms in learning multi-label
problems.

The average precision calculates the average fraction of
labels ranked above a particular label that are truly predicted.
The larger the value of it, the better the learning performance:

avgprec( f ) = 1

n

n∑

i=1

1

|yi|
∑

yi j∈yi
|{y′

i j |rank f (xi , y′
i j ) ≤ rank f (xi , yi j ), y′

i j ∈ yi }|
rank f (xi , yi j )

(21)

where y′
i is the chosen particular label. yi j is the j th label of

instance i .
F1 is a popular measure for single label. It is the harmonic

mean of precision and recall:

F1 = 2 × tp

2 × tp + f p + f n
(22)

where tp is the number of true positives, tn is the number of
true negatives, f p is the number of false positives, and f n
is the number of false negatives. Macro-F1 and Micro-F1
are multi-label classifier metrics derived by computing the
F1 measure across the label set; either after summing true
and false positives and false negatives across all labels, or by
averaging the F1 measure for each label:

F1micro = F1

(
L∑

λ=1

tpλ,

L∑

λ=1

f pλ,

L∑

λ=1

f nλ

)

(23)

F1macro = 1

L

L∑

λ=1

F1 (tpλ, f pλ, f nλ) (24)

where tpλ is the number of true positives, f pλ is the number
of false positives, and f nλ is the number of false negatives
of label λ after being evaluated by binary evaluation of F1.
Larger values of F1micro and F1macro denote better perfor-
mance.

Significance test

Statistical tests are commonly used to ensure that differ-
ences between machine-learning algorithms are meaningful
[15,23,44]. In this paper, the Friedman test and a post hoc test
are utilized. Friedman’s Test is a simple and robust nonpara-
metric method for testing the differences between multiple
algorithms over multiple data sets. It ranks the algorithms
from the smallest rank to the largest rank based on their per-
formance scores for each data set separately, and average
ranks are assigned to ties. For instance, the best perform-
ing algorithm is assigned rank 1, the second best performing
algorithm is assigned rank 2, . . .. Denote Ri as the sum of
ranks for the i th algorithm (i = 1, 2, 3, . . . , K ) over N dif-
ferent data sets. Then, the Friedman’s statistic FR [22,44] is
given by

FR = 12

NK (K + 1)

K∑

i=1

R2
i − 3N (K + 1). (25)

The null hypothesis H0 is that there are no significant dif-
ferences between the algorithms, the alternative hypothesis
H1 is that there are significant differences between the algo-
rithms. FR tests the null hypothesis H0 against the alternative
hypothesis H1. For K larger than 5, the distribution of FR

can be approximated by a Chi-square distribution with K −1
degree of freedom. Thus, for any pre-chosen α level of sig-
nificance, the null hypothesis H0 is rejected if FR > χ2

α .
In this paper, there are 7 algorithms applied to the first three
data sets, so K −1 = 6. Thus, the critical Chi-square value is
χ2

α = 12.592 given α = 0.05. There are six algorithms car-
ried out to the last data set, namelyMediamill, so K −1 = 5.
Thus, the critical Chi-square value is χ2

α = 11.070 given
α = 0.05.

When the null hypothesis is rejected, the analysis contin-
ues with a post hoc test [44]. Denote the difference Di j =
Ri − R j between the rank sums of algorithms i and j . The
performance of two algorithms is significantly different if
the difference |Di j | between their corresponding rank sums
is no less than the critical difference

CD = z

√
NK (K + 1)

6
, (26)

where z is the z-score from the standard normal curve corre-
sponding to α

K (K−1) , and α is the level of significance. It can
be concluded that the performance of the algorithm i is sig-
nificantly better than that of the algorithm j , if |Di j | ≥ CD
and Di j < 0; otherwise, worse, if |Di j | ≥ CD and Di j > 0.
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Fig. 1 Performance metrics vs. labeling rates for seven classification algorithms applied to the “Emotions” data

Experimental results and discussion

We compare the proposed ML-MR and ML-MRRW against
fourwell-known semi-supervised, andone supervised,multi-
label algorithms on the chosen data sets. When calculating
the Friedman’s statistic test and post hoc statistic test for each
data set, the ten sampled data sets under each labeling rate
(from 5 to 50%) are considered as different data sets.

Case I: Emotions

The experimental results for the “Emotions” data are shown
in Fig. 1. The sub-figures from left to right present the A-
precision (A-precision stands for average precision), Micro-
F1, and Macro-F1 for all the algorithms under different
labeling rates, respectively. The error bars indicate one stan-
dard deviation of the metrics. Table 2 presents the calculated
Friedman’s statistics FR based on ranking scores for the three
different performance metrics; all of them are greater than
the critical Chi-square value χ2

α = 12.592. Thus, the null
hypothesis is rejected, and it can be concluded that there are
significant differences between the performances of the seven
algorithms.

Table 2 The Friedman’s statistics FR for different performancemetrics
in Case I

A-precision Micro-F1 Macro-F1

FR 49.9714 46.2857 47.9143

Table 3 The differences between the rank sums of theML-MRRW and
the other algorithms in Case I (MLkNN, ML-GFHF, ML-LGC, ML-
FSKSC, SSWL, ML-MR, and ML-MRRW are denoted by algorithms
1, 2, 3, 4, 5, 6, and 7)

A-precision Micro-F1 Macro-F1

D71 –39 –46 –49

D72 –9 –25 –30

D73 –13 –1 –5

D74 –46 –29 –22

D75 –51 –47 –49

D76 –24 –20 –20

Further, post hoc test is carried out. The differences
between the rank sums of the ML-MRRW and the other
algorithms are calculated and presented in Table 3. Denote
MLkNN, ML-GFHF, ML-LGC, ML-FSKSC, SSWL, ML-
MR, and ML-MRRW by algorithms 1, 2, 3, 4, 5, 6, and 7,
respectively. Then, D7i , i = 1, 2, . . . , 6 represents the dif-
ference between rank sums of the ML-MRRW and the i th
algorithm. The critical difference for K = 7 and α = 0.05
is CD = 9.2815. For each performance metric, any differ-
ence value |D7i | ≥ CD indicates a significant difference
between ML-MRRW and the algorithm i with respect to this
metric. Further, |D7i | ≥ CD and D7i < 0 indicate ML-
MRRW outperforms the algorithm i . From Table 3, D71,
D73, D74, D75 and D76 are less than 0 and their abso-
lute values are larger than the critical value CD = 9.2815
with respect to A-precision; thus, ML-MRRW outperforms
MLkNN, ML-LGC, ML-FSKSC, SSWL, and ML-MR in
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Table 4 Comparison with the state-of-the-art literature [31] on the “Emotions” data

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-
KNN

RAKEL ECC RFML-
C4.5

RF-PCT ML-
MRRW
(50%)

ML-
MRRW
(70%)

A-precision 0.721 0.724 0.718 0.679 0.698 0.759 0.713 0.649 0.713 0.687 0.812 0.812 0.796 0.855

Micro-F1 0.509 0.503 0.512 0.528 0.588 0.655 0.571 0.457 0.533 0.554 0.647 0.672 0.650 0.727

Macro-F1 0.440 0.420 0.443 0.458 0.570 0.630 0.568 0.385 0.488 0.500 0.620 0.650 0.628 0.695

The values in the brackets denote the labeling rates of the data used by ML-MRRW

Table 5 Comparison with supervised multi-label ensemble algorithms in [37] on the “Emotions” data

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLCCDE RF-PCT CBMLC ML-
MRRW
(50%)

ML-
MRRW
(70%)

Micro-F1 0.653 0.666 0.599 0.572 0.105 0.660 0.654 0.648 0.628 0.652 0.671 0.557 0.650 0.727

Macro-F1 0.633 0.650 0.592 0.564 0.059 0.642 0.637 0.633 0.616 0.637 0.653 0.547 0.628 0.695

terms of A-precision. Moreover, D71, D72, D74, D75 and
D76 are less than 0 and their absolute values are larger than
the critical value CD = 9.2815 with respect to Micro-F1
and Macro-F1; thus, it outperforms MLkNN, ML-GFHF,
ML-FSKSC, SSWL, and ML-MR in terms of Micro-F1 and
Macro-F1.

In general, the following conclusions can be drawn from
the plots and tables:

1. SSWL does not work well under low labeling rates, how-
ever, it improves the performance very much as labeling
rate increases. It works almost the same as MLkNN
as labeling rate higher than 30%. The other five semi-
supervised multi-label learning algorithms show much
better overall performances compared to theMLkNN and
SSWL methods, except that ML-FSKSC has lower A-
precision for large labeling rates.

2. The ML-MRRW algorithm has the highest A-precision,
Micro-F1, and Macro-F1 among all the multi-label learn-
ing algorithms for most of the labeling rates. Specifically,
it defeats all the other approaches except ML-GFHF
in terms of A-precision, and it outperforms all the
other methods except ML-LGC regarding Micro-F1 and
Macro-F1.

3. Overall, ML-MRRW outperforms all the other algo-
rithms.

Moreover, ML-MRRW is also compared with supervised
multi-label algorithms from the state-of-the-art literature
[31], and supervised multi-label ensemble algorithms in
[37] on the “Emotions” data in Tables 4 and 5, respec-
tively. The performance metrics include the mean values
of A-precision, Micro-F1, and Macro-F1. The second last
column presents the three metrics achieved by ML-MRRW

under the labeling rate of 50% (also shown in Fig. 1). It can
be found that ML-MRRW under this labeling rate outper-
forms most algorithms in terms of A-precision, Micro-F1,
and Macro-F1. It also outperforms some ensemble algo-
rithms, includingMLStrain, HOMER,AdaB.MH,TREMLC,
and CBMLC, and it does almost as well as the other
ensemble methods in Table 5 under the 50% labeling rate.
The last column presents the metrics as the labeling rate
increases to 70%; at this labeling rate, ML-MRRW is
found to outperform all of the baselines in both Tables 4
and 5.

Case II: Scene

The experimental results for the “Scene” data are shown in
Fig. 2. Table 6 presents the calculated Friedman’s statistics
FR according to ranking scores for the three different perfor-
mance metrics. It can be found that all of them are greater
than the critical Chi-square value χ2

α = 12.592. Thus, the
null hypothesis is rejected, and it can be concluded that there
are significant differences between the performances of the
seven algorithms. Further, the differences between the rank
sums of the ML-MRRW and the other algorithms are calcu-
lated and presented in Table 7. From Table 7, D71, D72, D73,
D74, D75 and D76 are less than 0 and their absolute values are
larger than the critical value CD = 9.2815 with respect to
A-precision; thus, ML-MRRW outperforms MLkNN, ML-
GFHF, ML-LGC, ML-FSKSC, SSWL andML-MR in terms
of A-precision. Moreover, D71, D72, D73, D75 and D76 are
less than 0 and their absolute values are larger than the critical
valueCD = 9.2815with respect toMicro-F1 andMacro-F1;
thus, it outperforms MLkNN, ML-GFHF, ML-LGC, SSWL
and ML-MR in terms of Micro-F1 and Macro-F1.

123



Complex & Intelligent Systems (2022) 8:1561–1577 1571

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Labeling rate

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Av

er
ag

e 
pr

ec
is

io
n

(a)

MLkNN
ML-GFHF
ML-LGC
ML-FSKSC
SSWL
ML-MR
ML-MRRW

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Labeling rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ic

ro
 F

1

(b)

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Labeling rate

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ac

ro
 F

1

(c)

Fig. 2 Performance metrics vs. labeling rates for seven classification algorithms applied to the “Scene” data

Generally, the following conclusions can be drawn from
the plots and tables:

1. SSWL works worse than the other approaches. It does
not work well under low labeling rates, but it improves
the performance a lot as labeling rate increases.

2. The A-precision of ML-LGC, ML-GFHF, ML-FSKSC,
and MLkNN, are quite close, whereas the ML-MR and
ML-MRRWhave significantly larger values on thismetric
under different labeling rates.

3. ML-MRRW defeats all the other algorithms in terms of
A-precision, and it outperforms all the other approaches
except ML-FSKSC regarding Micro-F1 and Macro-F1.

4. Overall, ML-MRRW performs better than ML-FSKSC
in terms of A-precision. ML-FSKSC and ML-MRRW
achieve the best performances in terms of Micro-F1 and
Macro-F1. ML-MRRWperforms better thanML-FSKSC
in terms of Micro-F1 and Macro-F1 under high labeling
rates and worse under low labeling rates.

Moreover, ML-MRRW is also compared with supervised
multi-label algorithms from the state-of-the-art literature [31]
and supervised multi-label ensemble algorithms in [37] on
the “Scene” data in Tables 8 and 9, respectively. The second
last column presents the mean values of A-precision, Micro-
F1, and Macro-F1 for ML-MRRW under the labeling rate
50% (also shown in Fig. 2). FromTable 8,ML-MRRWunder
this labeling rate outperforms HOMER, ML-C4.5, PCT, and
ML-KNN in terms of A-precision, outperforms ML-C4.5,
PCT,ML-KNN, and RF-PCT in terms ofMacro-F1, and out-
performs ML-C4.5, PCT, RFML-C4.5 and RF-PCT in terms
of Micro-F1. It also outperforms some ensemble algorithms,

Table 6 The Friedman’s statistics FR for different performancemetrics
in Case II

A-precision Micro-F1 Macro-F1

FR 54 50.9143 53.3143

Table 7 The differences between the rank sums of theML-MRRW and
the other algorithms in Case II (MLkNN, ML-GFHF, ML-LGC, ML-
FSKSC, SSWL, ML-MR, and ML-MRRW are denoted by algorithms
1, 2, 3, 4, 5, 6, and 7)

A-precision Micro-F1 Macro-F1

D71 –45 –21 –18

D72 –39 –46 –41

D73 –15 –21 –17

D74 –27 2 8

D75 –58 –49 –49

D76 –12 –26 –23

includingMLStrain , HOMER,AdaB.MH, andCBMLC, and
it does almost as well as the other ensemble methods in
Table 9. The last column presents the metrics as the labeling
rate increases to 90%; at this level, ML-MRRW is found to
outperform all the baselines in both Tables 8 and 9.

Case III: Yeast

The experimental results for the “Yeast” data are shown in
Fig. 3. Table 10 presents the calculated Friedman’s statis-
tics FR for the three different performance metrics. It can
be found that all of them are greater than the critical Chi-
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Fig. 3 Performance metrics vs. labeling rates for seven classification algorithms applied to the “Yeast” data

Table 8 Comparison with the state-of-the-art literature [31] on the “Scene” data

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-
KNN

RAKEL ECC RFML-
C4.5

RF-PCT ML-
MRRW
(50%)

ML-
MRRW
(90%)

A-precision 0.893 0.881 0.886 0.864 0.848 0.751 0.745 0.851 0.862 0.856 0.862 0.874 0.856 0.899

Micro-F1 0.761 0.757 0.758 0.756 0.764 0.593 0.516 0.661 0.772 0.762 0.717 0.669 0.697 0.775

Macro-F1 0.765 0.762 0.762 0.759 0.768 0.596 0.593 0.692 0.777 0.770 0.514 0.658 0.692 0.778

Table 9 Comparison with supervised multi-label ensemble algorithms in [37] on “Scene” data

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLCCDE RF-PCT CBMLC ML-
MRRW
(50%)

ML-
MRRW
(90%)

Micro-F1 0.702 0.722 0.638 0.576 0.000 0.697 0.696 0.693 0.692 0.714 0.702 0.591 0.697 0.775

Macro-F1 0.706 0.729 0.647 0.586 0.000 0.704 0.703 0.701 0.700 0.720 0.711 0.598 0.692 0.778

square value χ2
α = 12.592. Thus, the null hypothesis is

rejected, and it can be concluded that there are significant
differences between the performances of the 7 algorithms.
Further, the differences between the rank sums of the ML-
MRRWand the other algorithms are calculated and presented
in Table 11. From Table 11, D71, D72, D73, D74, D75 and
D76 are less than 0 and their absolute values are larger than
the critical value CD = 9.2815 with respect to A-precision
andMicro-F1; thus,ML-MRRWoutperformsMLkNN,ML-
GFHF, ML-LGC, ML-FSKSC, SSWL andML-MR in terms
of A-precision and Micro-F1. Moreover, D71, D72 and D76

are less than 0 and their absolute values are larger than the
critical value CD = 9.2815 with respect to Macro-F1; thus,
it outperforms MLkNN, ML-GFHF and ML-MR in terms of
Macro-F1.

Table 10 The Friedman’s statistics FR for different performance met-
rics in Case III

A-precision Micro-F1 Macro-F1

FR 57.1714 41.2286 40.8429

In general, the following conclusions can be drawn from
the plots and tables:

1. SSWL does not work well under low labeling rates, but it
improves the performance a lot as labeling rate increases.
Furthermore, it outperforms the other methods with label-
ing rate higher than 15% in terms of Macro-F1.
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Table 11 Thedifferences between the rank sumsof theML-MRRWand
the other algorithms in Case III (MLkNN, ML-GFHF, ML-LGC, ML-
FSKSC, SSWL, ML-MR, and ML-MRRW are denoted by algorithms
1, 2, 3, 4, 5, 6, and 7)

A-precision Micro-F1 Macro-F1

D71 –35 –35 –28

D72 –16 –35 –32

D73 –33 –27 –5

D74 –58 –52 14

D75 –50 –46 10

D76 –11 –15 –15

2. The ML-MRRW and ML-MR algorithms have the best
performances in terms of the A-precision and Micro-F1
for all the labeling rates.

3. ML-MRRW has the superior performance among all the
algorithms in terms of Micro-F1 and A-precision, but it
performs worse than ML-FSKSC under all labeling rates
consideringMacro-F1. It performs worse than SSWL and
ML-LGC with high labeling rates and low labeling rates,
respectively.

Moreover, ML-MRRW is also compared with supervised
multi-label algorithms from the state-of-the-art literature [31]
and supervised multi-label ensemble algorithms in [37] on
the “Yeast” data in Tables 12 and 13, respectively. The
second last column presents the mean values of the A-
precision, Micro-F1, and Macro-F1 for ML-MRRW under
the labeling rate 50% (also shown in Fig. 3). From Table 12,
ML-MRRWunder this labeling rate outperforms all the algo-
rithms in terms of A-precision, outperforms ML-C4.5, PCT,
ML-KNN, RFML-C4.5, and RF-PCT in terms of Micro-F1,
and it outperforms all the algorithms except for HOMER

in terms of Micro-F1. It also outperforms some ensemble
algorithms, including EBR, MLStrain, AdaB.MH, ELP, EPS,
TREMLC, RF-PCT, and CBMLC, and it does almost as well
as the other ensemble methods in Table 13. The last column
presents the metrics as the labeling rate increases to 75%; at
this level, ML-MRRW is found to outperform all the base-
lines in both Tables 12 and 13.

Case IV: Mediamill

The experimental results for the “Mediamill” data are shown
in Fig. 4. Table 14 presents the calculated Friedman’s statis-
tics FR for the three different performance metrics. It can be
found that all of them are greater than the critical Chi-square
value χ2

α = 11.070. Thus, the null hypothesis is rejected,
and it can be concluded that there are significant differences
between the performances of the six algorithms.

Further, the differences between the rank sums of theML-
MRRWand the other algorithms are calculated and presented
in Table 15. Denote MLkNN, ML-GFHF, ML-LGC, ML-
FSKSC,ML-MR, andML-MRRWbyalgorithms 1, 2, 3, 4, 5,
and 6, respectively. Then, D6i , i = 1, 2, . . . , 5 represents the
difference between rank sums of the ML-NRRW and the i th
algorithm. The critical difference for K = 6 and α = 0.05 is
CD = 7.7658. For each performance metric, any difference
value |D6i | ≥ CD indicates a significant difference between
ML-MRRW and the algorithm i with respect to this metric.
Further, |D6i | ≥ CD and D6i < 0 indicate ML-MRRW
outperforms the algorithm i . FromTable 15, D61 and D63 are
less than 0 and their absolute values are larger than the critical
value CD = 9.2815 with respect to A-precision; thus, ML-
MRRW outperforms MLkNN and ML-LGC in terms of A-
precision. Moreover, D61, D62, D63, D64 and D65 are less
than 0 and their absolute values are larger than the critical
value CD = 9.2815 with respect to Micro-F1 and Macro-

Table 12 Comparison with the state-of-the-art literature [31] on the “Yeast” data

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-
KNN

RAKEL ECC RFML-
C4.5

RF-PCT ML-
MRRW
(50%)

ML-
MRRW
(75%)

A-precision 0.722 0.727 0.719 0.718 0.663 0.620 0.705 0.732 0.715 0.667 0.738 0.744 0.758 0.786

Micro-F1 0.652 0.650 0.655 0.654 0.673 0.610 0.577 0.625 0.656 0.658 0.593 0.617 0.638 0.675

Macro-F1 0.392 0.390 0.392 0.394 0.447 0.370 0.293 0.336 0.359 0.350 0.283 0.322 0.396 0.462

Table 13 Comparison with supervised multi-label ensemble algorithms in [37] on “Yeast” data

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLCCDE RF-PCT CBMLC ML-
MRRW
(50%)

ML-
MRRW
(75%)

Micro-F1 0.626 0.637 0.548 0.585 0.480 0.626 0.625 0.621 0.609 0.631 0.636 0.493 0.638 0.675

Macro-F1 0.387 0.401 0.395 0.403 0.122 0.380 0.375 0.409 0.389 0.410 0.396 0.396 0.396 hl0.462
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Fig. 4 Performance metrics vs. labeling rates for six classification algorithms applied to the “Mediamill” data

F1; thus, it outperforms all the other algorithms in terms of
Micro-F1 and Macro-F1.

Generally, the following conclusions can be drawn from
the plots and tables:

1. From the sub-figure of A-precision, the ML-MRRW and
ML-MR outperform MLkNN and ML-LGC. They per-
form better than ML-GFHF and ML-FSKSC with high
labeling rates but worse than themwith low labeling rates.

2. From the sub-figures ofMicro-F1 andMacro-F1, it can be
seen that the ML-MR and ML-MRRW methods outper-
form all the other methods quite a lot under all labeling
rates. Especially, the ML-MRRW method achieves the
best performances regarding these two metrics.

3. Overall, ML-MRRW shows superior performances over
all the other algorithms with Micro-F1 andMacro-F1 and
it illustrates great potential for high-dimensional data sets
with large number of labels.

Moreover, ML-MRRW is also compared with supervised
multi-label algorithms from the state-of-the-art literature [31]
and supervised multi-label ensemble algorithms in [37] on
the “Mediamill” data in Tables 16 and 17, respectively. Note
that these experiments in the literature consider the whole
Mediamill data set, as opposed to a randomly selected subset
(redrawn for each experimental run) as in our work. The sec-
ond last column presents the mean values of the A-precision,
Micro-F1, and Macro-F1 for ML-MRRW under the labeling
rate 50% (also shown in Fig. 4). From Table 16, ML-MRRW
under this labeling rate outperforms all algorithms in terms of
the threemetrics, except for RF-PCT in terms of A-precision.
It is also superior to all the supervised ensemble algorithms
in [37] fromTable 17. The last column presents themetrics as

Table 14 The Friedman’s statistics FR for different performance met-
rics in Case IV

A-precision Micro-F1 Macro-F1

FR 34.3429 46.0571 47.8857

Table 15 The differences between the rank sums of the ML-MRRW
and the other algorithms in Case IV (MLkNN, ML-GFHF, ML-LGC,
ML-FSKSC, ML-MR, and ML-MRRW are denoted by algorithms 1,
2, 3, 4, 5 and 6)

A-precision Micro-F1 Macro-F1

D61 –24 –44 –39

D62 7 –26 –29

D63 –18 − 25 –15

D64 9 –45 –49

D65 14 –10 –12

the labeling rate increases to 65%; at this level, ML-MRRW
is found to outperform all the baselines in both Tables 16
and 17.

Conclusion

This paper studies the semi-supervised multi-label classi-
fication problem, and extends the graph-based manifold
regularization to the multi-label case. The proposed method
includes three essential components, including thegraph con-
struction, the manifold regularization with multiple labels,
and the exploitation of a reliance weighting strategy. This
last component is intended to improve the learning ability by
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Table 16 Comparison with the state-of-the-art literature [31] on the “Mediamill” data

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-
KNN

RAKEL ECC RFML-
C4.5

RF-PCT ML-
MRRW
(50%)

ML-
MRRW
(65%)

A-precision 0.686 0.672 0.450 0.492 0.583 0.669 0.654 0.703 0.492 0.453 0.728 0.737 0.730 0.771

Micro-F1 0.533 0.509 0.118 0.119 0.553 0.007 0.477 0.545 0.440 0.453 0.546 0.563 0.637 0.655

Macro-F1 0.056 0.052 0.037 0.037 0.073 0.003 0.031 0.113 0.019 0.022 0.088 0.112 0.345 0.432

Table 17 Comparison with supervised multi-label ensemble algorithms in [37] on “Mediamill” data

EBR ECC MLStrain HOMER AdaB.MH ELP EPS RAkEL2 TREMLCCDE RF-PCT CBMLC ML-
MRRW
(50%)

ML-
MRRW
(65%)

Micro-F1 0.617 0.616 0.555 0.549 0.287 DNF 0.600 0.618 0.300 DNF 0.621 0.110 0.637 0.655

Macro-F1 0.187 0.179 0.211 0.175 0.009 DNF 0.164 0.233 0.033 DNF 0.200 0.074 0.345 0.432

assigning higher weights to labeled training set and lower
weights to unlabeled training sets. Extensive experiments
are conducted on four public data sets with different cate-
gories to test the performances of the proposed Multi-Label
Manifold Regularization (ML-MR), both with and without
the Reliance Weighting (RW) strategy. Other well-known
semi-supervised and supervised multi-label algorithms are
tested as comparisons. Generally, the experimental results
show that the proposed ML-MRRW algorithm has overall
better performance than all the other algorithms under dif-
ferent labeling rates. In addition, ML-MRRW shows better
performance than ML-MR, indicating the proposed reliance
weighting strategy is effective in improving the learning per-
formance of the ML-MR method. Further, unlike the other
algorithms, ML-MRRW works consistently well on all the
data sets. Also ML-MRRW is compared with 12 supervised
multi-label algorithms and 12 ensemble approaches from
the literature on the public data sets. As evidenced by the
results, ML-MRRW outperforms all the baselines by super-
vised methods on these data sets. All in all, ML-MRRW is a
promising semi-supervised multi-label algorithm for classi-
fication.
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