
Published online 17 May 2022 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2 1
https://doi.org/10.1093/nargab/lqac036

Pervasive sequence-level variation in the
transcriptome of Plasmodium falciparum
Bruhad Dave, Abhishek Kanyal, D.V. Mamatharani and Krishanpal Karmodiya *

Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune
411008, Maharashtra, India

Received July 01, 2021; Revised March 09, 2022; Editorial Decision April 28, 2022; Accepted May 14, 2022

ABSTRACT

Single-nucleotide variations (SNVs) in RNA, arising
from co- and post-transcriptional phenomena includ-
ing transcription errors and RNA-editing, are well
studied in a range of organisms. In the malaria para-
site Plasmodium falciparum, stage-specific and non-
specific gene-expression variations accompany the
parasite’s array of developmental and morphological
phenotypes over the course of its complex life cy-
cle. However, the extent, rate and effect of sequence-
level variation in the parasite’s transcriptome are un-
known. Here, we report the presence of pervasive,
non-specific SNVs in the P. falciparum transcrip-
tome. SNV rates for a gene were correlated to gene
length (r≈0.65–0.7) but not to the AT-content of that
gene. Global SNV rates for the P. falciparum lines we
used, and for publicly available P. vivax and P. falci-
parum clinical isolate datasets, were of the order of
10–3 per base, ∼10× higher than rates we calculated
for bacterial datasets. These variations may reflect
an intrinsic transcriptional error rate in the parasite,
and RNA editing may be responsible for a subset of
them. This seemingly characteristic property of the
parasite may have implications for clinical outcomes
and the basic biology and evolution of P. falciparum
and parasite biology more broadly. We anticipate that
our study will prompt further investigations into the
exact sources, consequences and possible adaptive
roles of these SNVs.

INTRODUCTION

Fidelity in the transcription of DNA into RNA and the cor-
rect translation of mRNAs into proteins is crucial. Accu-
rately made proteins produce ‘correct’ phenotypes and en-
sure that the cell survives. DNA mutations represent a sig-
nificant source of variation in the flow of genetic informa-
tion, and many affect phenotypes and become established
as single-nucleotide polymorphisms (SNPs) in a given pop-

ulation of cells. For unicellular parasites, these SNPs are a
conceivably essential way to adapt to life in their respective
hosts over many generations. Proteomes are comparatively
more robust to variations, but the transcriptional landscape
provides much scope for diversification.

A previous body of work has shown an inherent hetero-
geneity in the gene-expression levels as well as copy-number
variation (1) in Plasmodium falciparum, a parasite that still
affects over 200 million people worldwide (2). These ob-
servations have been reported across multiple conditions
and levels – in untreated parasite cultures (3) and as a re-
sponse to physiological-like stressors (4); at the population
(5) and the single-cell (6) level, and between clinical isolates
and lab-adapted cultures (1). Antigenic variation in P. fal-
ciparum is well-documented (7), and the parasite exhibits
alternative splicing (8–11); such transcriptional variation in
essentially clonal populations represents another potential
layer of complexity that is likely to affect clinical outcomes
(12,13), and studies have shown that heterogeneity through
gene expression variation serves as a population-level sur-
vival strategy in unicellular organisms (14,15).

Sequence-level variation––single-nucleotide variations
(SNVs) and insertion-deletion events (indels)––is another
potential source of population-level transcriptomic diver-
sity. In the form of transcriptional error rates and RNA
editing, it has been extensively described in systems in-
cluding bacteria (16,17), yeast (18), Caenorhabditis ele-
gans (19), cephalopods (20), rodents (21,22) and humans
(23,24). However, studies on such heterogeneity in the P.
falciparum transcriptome are largely missing and such vari-
ations have the potential to impact downstream sources
of transcriptional heterogeneity, which may facilitate stress
adaptation – these might in turn allow for persistor popu-
lations to survive under drug regimes and eventually evolve
drug-resistance. To investigate the extent and rate of SNVs
in P. falciparum, we analysed transcriptomic data from a
lab-adapted parasite culture (strain 3D7), to obtain three
datasets - an untreated control, a temperature-stressed cul-
ture and a drug-stressed culture. We also analysed RNAseq
data from three drug-resistant P. falciparum lines sourced
from the MR4 repository, namely MRA 1236, MRA 1240
and MRA 1241. We also performed whole-genome se-
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quencing corresponding to each of the six resulting datasets,
which allowed us to accurately discard transcriptomic se-
quence variations arising from genomic SNPs, without the
need to use predictive or consensus-based methods. We
then used REDItools 2.0 (25) to perform empirical variant-
calling against the P. falciparum reference genome (v.41),
and we found SNV rates on the order of 10–3 per base, a
metric that was consistent across all six P. falciparum sam-
ples. In this work, we describe the spectrum of base substi-
tutions and their predicted functional effects.

MATERIALS AND METHODS

Parasite cultures

P. falciparum strain 3D7 was cultured as previously de-
scribed (26). Briefly, parasites were cultured in RPMI1640
medium supplemented with 25 mM HEPES, 0.5% Albu-
MAX I, 1.77 mM sodium bicarbonate, 100 �M hypoxan-
thine and 12.5 �g ml−1 gentamicin sulfate at 37◦C. Para-
sites were sub-cultured after every 2 days. Subculturing was
done by splitting the flask into multiple flasks in order to
maintain parasitemia around 5%. Hematocrit was main-
tained to 1–1.5% by adding freshly washed O+ve human
RBC isolated from healthy human donors. Synchronization
was done with the help of 5% sorbitol in the ring stage. Late-
stage synchronization was performed using the Percoll den-
sity gradient method (63%). Parasitemia was monitored us-
ing Giemsa staining of thin blood smear.

Stress induction

Parasites were subjected to heat and therapeutic
(artemisinin treatment) stresses for 6 hours from late
ring (∼17 h) to early trophozoite (∼23 h) stage as described
earlier (27). Briefly, double synchronization was carried
out to achieve tight synchronization of parasite stages.
Parasites were exposed to heat stress (40◦C for 6 h) and
artemisinin stress (30 nM for 6 h).

RNA sequencing

Parasites were harvested for RNA isolation after 6 h of
stress induction. Total RNA was isolated using TRIzol
reagent according to the protocol. DNAse treated RNA was
used for cDNA synthesis. Quality of the RNA was verified
using Agilent Bioanalyzer 2100. The cDNA libraries were
prepared for samples using Illumina TruSeq RNA library
preparation kit. Transcriptome sequencing was performed
using Illumina NextSeq 550 system in house at IISER Pune
with a standard flow cell.

Whole genome sequencing

Plasmodium genome DNA was isolated using the genome
DNA isolation kit. DNA concentrations were measured on
the Qubit double-stranded DNA (dsDNA) HS assay kit
(Invitrogen). Libraries for paired-end sequencing were con-
structed from DNA extracts ranging from <50 ng/ml to 0.2
ng/�l, using the Illumina NexteraXT kit (FC-131-1024, Il-
lumina, CA, USA). The pooled NexteraXT libraries were
loaded onto an Illumina NextSeq 550 system in house at
IISER, Pune with a standard flow cell.

DATA ANALYSIS, SNV CALLING AND DOWNSTREAM
ANALYSIS

Quality control and alignment

We first checked the sequencing quality for each RNAseq
and WGS sample by running each fastq file through FastQC
(28), and we trimmed the dataset to exclude positions that
had a phred score of <25 using Trim Galore (29) v0.6.6
(with cutadapt (30) v3.2). We then aligned the trimmed
RNAseq fastq files to the Plasmodium falciparum 3D7
genome (v. 41 from Ensembl) using STAR (31) v.2.7.6a
in 2-pass mode, and then indexed the resulting BAM files
using samtools (32,33) v1.10. To align the WGS data, we
used BWA (bwa mem) (34) v0.7.17-r1198, following which
we converted the resulting SAM file to a BAM file, which
we sorted by coordinates and indexed using samtools. The
command-line options used here are provided in the Sup-
plementary Information.

SNV calling and filtering

In order to use REDItools 2.0 with python 3.6, we modified
the python scripts we used to update the syntax to python
3 wherever appropriate. We then ran REDItools 2.0 using
minimal command line options (Supplementary informa-
tion) on the aligned RNAseq data and WGS data, using the
RNA-table obtained from the former run as an input to the
latter to specify the positions to be assayed in the WGS. The
output generated by REDItools is a tab-delimited table con-
taining data about each position read by the program in the
NGS data, including the chromosome, position, reference
nucleotide, coverage at that position, average read quality at
that position, alternate nucleotides found at that position (if
any) for the transcriptomic data (the first nine columns) and
similar information for WGS data (the remaining columns).
In order to annotate the RNA-table with the DNA-table, we
used Annotate with DNA.py, which is provided as part of
the REDItools suite of scripts. This script writes the WGS
data for each locus in the RNA-table filling in columns
10 and further. We filtered this combined output table us-
ing awk command-line to exclude those positions where: (i)
the WGS data showed an SNP, (ii) the frequency of base
changes in RNAseq data was <0.1, (iii) the RNAseq data
was invariant, (iv) the RNAseq coverage was <5 reads and
(v) the WGS coverage was <10 reads. We then used sam-
tools to remove duplicate reads in the aligned RNAseq data
as described in Supplementary Information. Then, we reap-
plied REDItools to this deduplicated RNAseq file, using the
previously generated, DNA-annotated and filtered RNA-
table as a region file along with the previously noted RED-
Itools options. We filtered and used the output tables from
this REDItools run for further analysis.

Downstream analysis

We used another script called AnnotateTable.py (also pro-
vided with REDItools 2.0) to annotate each SNV in the
final REDItools table with gene IDs, using a sorted and
trimmed gtf file (P. falciparum v41, from Ensembl) using the
command lines (Supplementary information). Using cus-
tom python scripts, we calculated the number of SNVs oc-
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curring in each gene and the relative frequency of SNV
occurrence in each gene and extracted the nucleotide se-
quences on either side of each changed position in order
to analyse patterns in the flanking nucleotides. We also ar-
rayed each SNV on the gene in which it occurred, dividing
each gene into 100 equal-width bins, and constructed a his-
togram based on binning each SNV in order to analyse any
positional bias of SNV occurrence on the gene body

We converted the gene-annotated RNA
DNA deduplicated file into a format resembling vari-
ant call format to use as input for snpEff (35), which we
used according to the documentation to perform functional
annotation of the SNVs in our output file. We processed the
output VCF files generated by snpEff using snpSift (36) to
filter the file and retain data related to predicted amino-acid
changes. We analysed this filtered VCF file using a custom
script to visualise the spectrum of amino-acid changes in
each sample. We did not retain any annotations of the types
‘upstream variant’ and ‘downstream variant’, since snpEff
defines upstream and downstream regions as 5 kilobases in
length, which is too large for the relatively compact genome
of P. falciparum. SNV rates per base were calculated as
the number of SNVs in the filtered output divided by the
genome length in nucleotides. We used Salmon (37) to
obtain gene abundance estimates in transcripts per million.

Analysis of samples sourced from SRA

NGS (RNAseq) datasets for P. falciparum patient-isolates
from Mali, Plasmodium vivax liver-stages (mixed cultures
and hypnozoites), Plasmodium vivax blood-stages, Es-
cherichia coli, and Bacillus subtilis were downloaded us-
ing SRA toolkit (38) as fastq files. We used genome ver-
sions PvP01 for P. vivax, ASM584v2 for Escherichia coli and
ASM608879v1 for B. subtilis. The bacteria datasets were
aligned using BWA, while the Plasmodium spp. datasets
were aligned using STAR. We analysed each dataset with
REDItools 2.0, filtering the output files to remove posi-
tions where; (i) the frequency of base changes in RNAseq
data was <0.1, (ii) the RNAseq data was invariant, (iii)
the RNAseq coverage was <5 reads and (iv) the average
phred-score was <25. SNV rates per base were calculated
as the number of SNVs in the filtered output divided by the
genome length in nucleotides.

Circos plot generation

We used the R package RCircos (39) to generate circos rep-
resentations for the SNV distribution on the whole-genome
scale.

Statistical analysis and error bars

A Pearson’s chi-squared test was performed to assess
whether the distribution of frequency of SNV types (by
base-substitution, as % of total) was significantly different
from a uniform distribution (with the assumption that all
base-substitutions are equally likely to occur). The test was
performed in R using the inbuilt chisq.test() function. A
Dunnett’s test was used to calculate statistical significance
for the differences in average SNV rates between the 3D7
parasite cultures and the three MRA parasite lines. This test

was performed in R using the DunnettTest() function from
the R library DescTools (40), using PF3D7 Ctrl as the con-
trol set. For Figures 2–4, error bars indicate 95% confidence
interval for replicates and the number of RNA-sequencing
replicates for each sample is as follows:

• P. falciparum MRA 1236: 3 replicates
• P. falciparum MRA 1240: 3 replicates
• P. falciparum MRA 1241: 2 replicates
• P. falciparum 3D7 Control: 2 replicates
• P. falciparum 3D7 Drug-stressed: 2 replicates
• P. falciparum 3D7 Temperature-stressed: 2 replicates
• P. falciparum Mali Isolates [PRJNA498885]: 3 replicates
• P. vivax [PRJNA422240] (mixed culture): 2 replicates
• P. vivax [PRJNA422240] (hypnozoites only): 2 replicates
• P. vivax [PRJNA515743]: 4 replicates
• E. coli [PRJNA592142]: 3 replicates
• B. subtilis [PRJNA592142]: 3 replicates

RESULTS

A global view of transcriptional sequence-variation

We applied REDItools 2.0 (a tool originally designed to de-
tect RNA-editing) to both the RNAseq data and the WGS
data for each sample (Methods). We removed SNVs arising
from genomic single nucleotide polymorphisms (SNPs) as
well as discarded positions where RNAseq data showed no
variation. Additionally, we ascertained optimum cutoffs for
WGS coverage (Supplementary Figure S1, Supplementary
Table S3), RNAseq coverage (Supplementary Figure S2,
Supplementary Table S4) and frequency of variation (the
number of reads supporting a variant nucleotide divided
by the total number of reads covering that position) (Sup-
plementary Figure S3, Supplementary Table S5). SNVs not
supported by at least 10 WGS reads and 5 RNAseq reads
were removed. Finally, we retained only those SNVs whose
frequency of variation was greater than or equal to 0.1. In
our estimation, this combination of cutoffs ensures that se-
quencing errors and other technical errors are largely fil-
tered out, and mitigates any technical variability. We noted
that the rates of occurence of SNVs––which were spread out
all over the genome (Figure 1A)––were not dependent on se-
quencing and alignment statistics of the sample, indicating
that they are consequences of biological characteristics of
the parasite, rather than technical properties of the sequenc-
ing runs and alignment methods (Supplementary Table S1).

Following filtering, each sample showed ∼3 × 104 vari-
ant positions (Supplementary Table S1). Annotating SNVs
with the genes in which they occurred showed that they
were located all across the transcriptome, affecting ∼3660
of 5700 genes in the reference annotation (Supplementary
Table S2) in all samples. To check whether the SNVs were bi-
ased toward either end of the transcript, we constructed an
average histogram of SNV frequency, dividing each affected
gene into bins of equal width, and then assigning bins to
each SNV. We observed that SNVs occupied the whole aver-
aged gene length and did not show a specific positional bias
along the gene body (Figure 1B). Notably, replicate datasets
for a given strain showed only a small amount of overlap,
further indicating the pervasive, non-specific nature of the
SNVs (Supplementary Figure S4). We computed the Sum
of SNV Frequencies (�SNV Freq) for a given gene as the
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Figure 1. A global view of single-nucleotide variations in Plasmodium falciparum (data shown for a representative sample, MRA 1236 replicate 1). Plot
showing the pervasive nature of SNVs. From outward: Track 1: SNV positions represented as vertical lines; Track 2: Ideogram of chromosomes, propor-
tional to chromosome lengths; Track 3: Heatmap of RNAseq coverage at recorded positions, converted to log10 scale for visualization; Track 4: Area plot
of frequency of variation at recorded positions. Histogram showing distribution of SNVs on an averaged gene body.

sum of variation frequencies at each variant locus on a gene.
Variation frequency is the number of variant reads divided
by the total reads covering that locus. �SNV Freq showed
no linear correlation to the gene abundance estimates (in
transcripts per million) of that gene (Supplementary Figure
S5). We similarly observed that �SNV Freq was not sig-
nificantly correlated (Pearson’s coefficient of correlation r
∼ 0.2) to the AT-content of that gene (the number of A-
or T-nucleotides divided by the length of that gene in base
pairs) (Supplementary Figure S6). We did, however, observe
that both the �SNV Freq and the number of variant loci on
a gene had a positive (Pearson’s r = 0.7) linear correlation
with gene length (Supplementary Figure S9).

The spectrum of SNV types and effects

In order to understand the variations in greater detail,
we characterised the range of nucleotide substitutions and
their probable functional effects. We observed that A-to-
G changes and T-to-C changes predominated, each rep-
resenting on average 28.6% and 20.3% of the total num-
ber of SNVs found (Figure 2A). A-to-T and T-to-A sub-
stitutions (∼14% and ∼13% respectively, of the total num-
ber of SNVs) were the second most abundant on average.
G-to-C and C-to-G substitutions were the least abundant
SNV type (Figure 2A, Supplementary Table S6). These pro-
portions were relatively well-conserved between the drug-
resistant MRA lines as well as the drug-sensitive 3D7 cul-
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Figure 2. SNV types and effects. (A) Base changes (percentage of total). (B) Base shift patterns (%X > denotes the proportion of SNVs where base X
changed to another base; %>X denotes the proportion of SNVs where the reference base was X). The distribution of predicted functional effects: (D)
representative heatmap of the spectrum of amino acid changes. (E) Representative heatmap of the abundance of the most common dinucleotide patterns
flanking each focal (original/reference) base. (A–C) Error bars represent 95% confidence intervals; number of replicates = 2 (3D7 CTRL, 3D7 ART,
3D7 TEMP, MRA 1241), 3 (MRA 1236, MRA 1240). (D) and (E) show data from sample MRA 1236 replicate 1.

ture. To check whether these base-change characteristics de-
pended on environmental stresses, we subjected the 3D7 P.
falciparum 3D7 line to temperature stress (at 40◦C) and sep-
arately, to mild drug stress (dihydroartemisinin at 30 nM),
each for six hours at the early trophozoite stage. However,
these stresses had a minimal effect on the base-change pro-
file, and the proportions of nucleotide substitutions were
remarkably similar between the control P. falciparum 3D7
culture and the two stressed cultures (Figure 2A). With the
assumption that all base substitutions are equally proba-
ble, we performed a chi-squared test and found that the fre-
quency distribution of base substitutions we observed dif-
fered significantly from the expected uniform distribution
(P = 5.8868 × 10|217x2 = 1521.3, df = 167). Interestingly,
As and Ts changed most frequently, as might be expected
due to the AT-richness of the P. falciparum genome, but
Cs and especially Gs were misincorporated most often by
percentage (Figure 2B, Supplementary Table S7). Given the
bias of the spectrum of base-substitutions toward the A-to-
G and T-to-C substitution types, we speculated that RNA
editing may be responsible for a subset of SNVs. We tested
this hypothesis by searching for sequence-motifs centered

on or around SNVs as well as performing a BLAST-based
search for potential RNA-editing enzymes in the proteome
of the parasite. We used human and Trypanosoma brucei
enzymes known to be RNA-editors as query sequences for
the latter analysis, but we did not find any high-confidence
candidate RNA-editors in P. falciparum, nor any conserved
motifs (Supplementary Table S8).

Further, we annotated effects to the SNVs using snpEff
(35) to investigate the range of predicted functional conse-
quences, and filtered the snpEff outputs using snpSift (36)
to analyse amino acid change patterns. A small percentage
were found in intronic regions, possibly reflecting alterna-
tive splicing in some transcripts (Figure 2C, Supplementary
Table S9). The majority of SNVs in the coding region were
missense (mean value 47.8%), with about 22.7% of them
being synonymous, and about 3% being nonsense changes
(Figure 2C). These proportions were also well conserved be-
tween all three MRA lines, the 3D7 control and two 3D7
stressed cultures, with missense variants being more com-
mon across MRA lines (51.8%) than 3D7 lines (42.4%).
Asparagine was consistently the most changed amino acid,
likely due to its abundance in the parasite’s proteome, with
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lysine, isoleucine, aspartate, and glutamate rounding out
the most changed residues, although a proportion of SNVs
resulted in synonymous codon changes (Figure 2D, Sup-
plementary Figure S7). We also tested whether focal nu-
cleotides had characteristic flanking sequences that might
increase their propensity to be changed. To this end, we
extracted a pentanucleotide sequence for each variant po-
sition, taking two nucleotides on either side of each focal
nucleotide, and quantified the most abundant flanking se-
quences (Figure 2E, Supplementary Figure S8). We found
that an ‘AA AA’ or a ‘TT TT’ pattern accounted for most
of the SNVs we observed. This pattern was most abun-
dant around all focal nucleotides, but patterns other than
these were very rare when the focal base was a C or a G.
We further observed that an A or a T seemed a necessary
part of both 5’- and 3’-flanking dinucleotides in all of the
most abundant flanking sequences. For focal As and Ts,
‘AT TA’ (for focal As) and ‘TA AT’ (for focal Ts), i.e. pat-
terns forming pentanucleotide sequences of alternating As
and Ts, were also well represented. We note that these pat-
terns are likely to be further reflections of the parasite’s AT-
rich genome.

Transcriptional sequence-variation in Plasmodium falci-
parum

To investigate the extent of the SNVs in each P. falciparum
line, we calculated a per-kilobase (/kb) rate of change by di-
viding the total number of SNVs found by the length of the
P. falciparum genome. We obtained an average rate of ∼1.48
variations/kb, i.e. ∼1.48 × 10–3 variations per base. This un-
expectedly high variation rate was also well-conserved be-
tween various P. falciparum lines, with strain- and stress-
specific rates ranging from 1.29 to 1.78 variations/kb (Fig-
ure 3).

Transcriptional sequence-variation is higher in Plasmodium
than bacteria

Transcriptional sequence-level variation is often at-
tributable to error rates associated with transcription.
These rates are noted to range from ∼10–5–10–6 per base in
yeast (18), similar rates in C. elegans (19), and comparable
or higher rates in bacteria ranging from 10–4 (17) to
10–5–10–6 (16) errors per base. To investigate the relative
differences between the SNV rate in Plasmodium falciparum
and other organisms, we retrieved transcriptomic data de-
scribing E. coli, B. subtilis [PRJNA592142], P. vivax (liver
stages [PRJNA422240] and blood stages [PRJNA515743]),
and P. falciparum patient isolates [PRJNA498885] from
SRA and performed identical calculations to arrive at SNV
rates per nucleotide and per kb using REDItools. We used
filtering parameters similar to the ones described above,
except for the WGS-coverage filter. We observed an average
SNV rate per base of 7.23 × 10–4 for E. coli, 3.49 × 10–4 for
B. subtilis, 4.35 × 10–3 for P. vivax schizonts + hypnozoite
mixed sample, 1.80 × 10–3 for P. vivax hypnozoites, ∼10–3

for P. vivax blood stages cultured in vivo in simians, and
7.42 × 10–3 in P. falciparum patient isolates (Figure 4).

Since these values came from transcriptome-only analy-
ses and SNP exclusion was not possible (this was reflected in

the much higher rates we observed for the Plasmodium spp.
samples from SRA), we also calculated the SNV rates of in-
house samples without SNP exclusion (∼2.1 × 10–3 across
all sample replicates) (Figure 4). Interestingly, we observed
that the SNV rates in Plasmodium species were consistently
an order of magnitude higher than in bacteria, for which the
reported error rates had been the highest to date (to the best
of our knowledge).

DISCUSSION

In this work, we show that SNVs arising from base substi-
tutions occur pervasively and non-specifically at a rate of
the order of one every kilobase in the transcriptomes P. fal-
ciparum across treatment conditions and strains. We also
show that a majority of these SNVs are predicted to have a
functional impact. Given their non-specific occurrence, we
speculate that these SNVs are likely reflections of RNA Pol
II errors.

It is also possible that P. falciparum has mechanisms
facilitating RNA editing, another potential source of a
subset of the SNVs we report. While our search did not
yield any distinct sequence motifs, nor any high-confidence
RNA-editing enzymes candidates (Supplementary Table
S8), RNA editing may still be occurring in P. falciparum
– the phenomenon in the parasite might be more akin to
what is termed promiscuous editing (41) in humans, wherein
repetitive elements in the human transcriptome, such as Alu
elements, are widely edited. Given that the P. falciparum
genome and transcriptome are AT(/AU)-rich, it is conceiv-
able that such a form of RNA editing may be occurring in
relatively low-complexity regions of the parasite transcrip-
tome. However, the fact that replicate datasets of any given
sample showed an overlap in SNVs of no greater than ∼10%
indicates that RNA-editing is unlikely to be (solely) respon-
sible for this pervasive variation.

This aforementioned AT-richness is also a characteris-
tic of the Plasmodium genus, and specifically P. falciparum
that research is still unable to fully explain. Our data shows
that A and T are the most likely to change (as would be
expected from an AT-rich starting point), Gs and Cs are
more likely to be misincorporated (Figure 2C). As a result,
it seems that the net effect of the SNVs in P. falciparum is
of a compensating nature, in the context of nucleotide bias.
We also observe such a pattern when comparing %GC val-
ues for WGS data and the corresponding RNAseq datasets,
with the %GC rising a little in the transcriptome (Supple-
mentary Table S10). Previous work (20) suggests that a large
number of SNVs (as highly specific, recoding RNA editing
events) in cephalopods represents a paradigm of low lev-
els of genetic mutation, and correspondingly high levels of
transcriptomic mutations (which provide the requisite pro-
tein diversity). In Plasmodium, if the numerous SNVs we
report actually do lead to a nucleotide-bias compensation,
then an analogous paradigm may be in play, and this may,
in part, explain why the Plasmodium genome itself retains
its AT-richness.

Indeed, this AT-richness was a preeminent concern to us
since it opened up the possibility that the abundance of tran-
scriptional SNVs we observed could be down to a hand-
ful of confounding factors. The first of these was a bio-
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Figure 3. SNV rates in MRA and 3D7 Plasmodium falciparum lines. *** denotes significance at P < 0.001 (two-tailed) and *denotes P < 0.05 as calculated
using a Dunett’s test with PF3D7 Ctrl as the control group. Error bars represent 95% confidence intervals; number of replicates = 2 (3D7 CTRL, 3D7 ART,
3D7 TEMP, MRA 1241), 3 (MRA 1236, MRA 1240).

Figure 4. SNV rates of MR4 and 3D7 Plasmodium falciparum lines as compared with those for other samples and species. Error bars represent 95% confi-
dence intervals; number of replicates = 2 (3D7 CTRL, 3D7 ART, 3D7 TEMP, MRA 1241, P. vivax Mixed Culture, P. vivax Hypnozoites), 3 (MRA 1236,
MRA 1240, PF Mali Isolate, E. coli, B. subtilis), 4 (P. vivax Blood Stages).

logical issue––the possibility of the parasite’s RNA pol II
exhibiting slippage or becoming more error-prone in AT-
rich swathes of the genome. Recent work showed that the
translational machinery of P. falciparum can handle the AT-
richness of its genome effectively (42). In one of their ex-
periments, the authors noted that the abundance of polyA-
containing reporter mRNAs, as measured using Real-Time
Quantitative Reverse Transcription PCR, was comparable
to that of control (non-polyA-containing) reporter mRNAs
in P. falciparum. This implies that the transcriptional ma-
chinery in the parasite is likely also adept at handling the
AT-richness of the parasite’s genome. This fact, taken to-
gether with our data would seem to indicate that most of

the SNVs we observed, while they might be reflections of
an inherent transcriptional (i.e. RNA Pol II mediated) error
rate, are not entirely explicable by simply the relatively lower
complexity of the parasite’s transcriptome. It also leaves
open the question of whether this points to the possibility
that the parasite RNA pol II has evolved to this state of sta-
bility on an AT-rich landscape.

Another, larger source of concern was the possibility of
the parasite’s AT-richness causing technical errors during
the library preparation phase of NGS. However, our re-
sults (especially our observation that the AT-richness of a
gene is not significantly correlated to the variation in that
gene) suggest that the analysis strategies and filtering we
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employed have mitigated such false-positives to a significant
degree. We also sought to reduce technical errors in general,
namely errors in sequencing, errors associated with PCR,
and errors made by the reverse transcriptase enzyme dur-
ing cDNA preparation. Quality trimming of the raw data
(Methods), as well as the quality cutoff built into REDI-
tools2.0, mitigated sequencing errors by omitting low qual-
ity data, i.e. ambiguous sequence calls, from further analy-
sis. We used read depth cutoffs at two filtering stages: first,
when filtering the initial variant calls, and second, when fil-
tering variant calls made on deduplicated data (Methods).
These steps mitigated errors introduced into reads during
PCR, since such errors would not pass the read depth cutoff
following data deduplication. Lastly, as described above in
the second instance of data filtration, we retained only those
SNVs where the RNA coverage was at least 5 reads: the
aforementioned deduplication means that the SNVs thus
retained were covered by at least 5 unique reads. We ex-
pect that this significantly lowers the probability of reverse
transcriptase errors being retained in the final set of vari-
ants, since it is extremely unlikely that the enzyme will make
an error corresponding to the same gene locus on several
unique reads, which by definition do not share a common
start and end position in alignment. We thus expect that
quality-control of the raw data and stringent filtering of the
results of our analysis have together significantly mitigated
technical artefacts, and the SNVs we report are biological
in origin.

An intriguing observation we made in this study was
the apparent lack of a positive association and indeed a
negative, non-linear relationship between �SNV Freq and
gene expression (Supplementary Figure S5). Unfortunately,
we do not have an exact explanation for this observation.
One possibility is the presence of an as-yet unknown RNA-
surveillance mechanism that controls the number of errors
occurring in transcripts associated with a gene. An analo-
gous mechanism has been predicted in E. coli, where tran-
scriptional error rates were found to be lowest in highly
abundant proteins, on which selection is expected to act
more strongly and in which the consequences of high er-
ror rates would likely be most significant (43). Our observa-
tions indicate the possible presence of such a mechanism in
P. falciparum, although we are unable to elucidate its precise
nature in the present work, and we look forward to interpre-
tations from the field.

In summary, just as clonal P. falciparum cultures exhibit
an inherent variation in gene expression levels (1,3–6), our
results suggest that heterogeneity at the sequence level could
add a layer of complexity to the overall diversity of the
parasite’s eventual phenotype. We speculate that it could
be another source of variation characteristic of the para-
site, conceivably arising from transcription errors, allowing
a population of genetically identical cells to be phenotyp-
ically plastic to stresses or challenges, and facilitate a bet-
hedging strategy in the face of various stressors. Recent
work showed that the transcriptional and translational ma-
chinery of P. falciparum could handle the AT-richness of its
genome effectively (42). This fact, taken together with our
data would seem to indicate that most of the SNVs we ob-
served, while they might be reflections of an inherent tran-
scriptional (i.e. RNA Pol II mediated) error rate, are likely

not entirely explicable by simply the relatively lower com-
plexity of the parasite’s transcriptome. Therefore, we antic-
ipate that our observations, which may be generalisable for
other pathogenic parasite, will lead to further investigations
into the exact source(s) and consequences of the pervasive
SNVs that seem characteristic of P. falciparum, with regard
to its basic biology, possible clinical implications of such
variation, and its potential interplay with the previously re-
ported phenomena of gene-expression level variation as well
as structural variations in the Plasmodium transcriptome.
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All custom code written for the analysis described herein
as well as for generating figures is deposited at https://
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reditools2.0. Other code used in this work is included
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with the corresponding final list (filtered, deduplicated) of
variants as REDItools 2.0 output tables as well as raw gene
abundance estimates as calculated by Salmon are deposited
in GEO with accession GSE179055. Raw WGS data is de-
posited in SRA with BioProject ID PRJNA741726.
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