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v-3 supplementation in HIV-1-infected individuals with unsuppressed viral load: cause for caution?

Dietary n-3 (v-3) fatty acids, mainly eicosapentaenoic
(C20 : 5n-3, EPA) and docosahexaenoic acids
(C22 : 6n-3, DHA) are useful to decrease hypertrigly-
ceridemia in HIV-1-infected patients [1]. These fatty
acids are readily incorporated in cell membranes,
changing the properties of the phospholipid bilayer
[2]. Whether this triggers HIV-1 replication and
infectivity remains unexplored, as data are limited to
clinical trials conducted in patients under antiretroviral
therapy (ART) [3–5], thus precluding the evaluation of
any potential effect on viral load. To address this issue,
we set up an ex-vivo experiment to test HIV-1
infectivity and replication after inducing a range of
v-3 content in CD4þ T cell membranes resembling to
those obtained after dietary supplementation with v-3
fatty acids. Fatty fish and most fish oil capsules contain
both EPA and DHA species at different doses, with
DHA usually being the most abundant. The issue of
whether all v-3 species are equal regarding their effects
remains elusive. To avoid this caveat, we used DHA as
supplemental fatty acid because it is the most abundant
v-3 in cell membranes [6].

CD4þ T cells purified from healthy donors were infected
per triplicate with NL4-3 HIV-1 viruses and treated for
7 days with different concentrations of unesterified,
albumin-bound DHA (1.25, 2.5, 5, and 10 mmol/l). At
the end of the challenge, cell membrane composition was
determined by gas chromatography. DHA incorporated
into cell membranes in a dose-dependent manner (data
not shown), concurring with previous data [7]. Based on
previous studies in Western populations, the cardiopro-
tective target level for the v-3 index (i.e. sum of the
proportions of EPA and DHA in red blood cell
membranes) has been tentatively set at 8% [8]. In a trial
conducted in patients with well controlled HIV-1
infection and hypertriglyceridemia, after 8 weeks of
supplementation with 3.4 g/day of v-3, 60% of patients
allocated in the v-3 arm reached this optimal value [3].
Being aware of some existing methodological differences
(mostly regarding to the considered cell type [7] and
in-vivo/ex-vivo approaches), in our experiments, such a
value was only reached at DHA exposures at least

5 mmol/l (9.6� 0.8% in DHA-treated cells versus
3.8� 0.2% in untreated condition, P< 0.0001, n¼ 8;
Fig. 1a). We therefore selected this concentration to
investigate whether DHA enrichment influences HIV-1
infectivity and viral particle production, assessed by 50%
tissue culture infective doses on TZM-bI cells and by p24
ELISA, respectively.

We found that DHA induced a significant increase in 50%
tissue culture infective doses of the harvested medium
(1683� 355 in the untreated condition versus
3985� 1083 in DHA-treated, P¼ 0.02, n¼ 8;
Fig. 1b). We ruled out the possibility that the infectivity
rise was explained by an overproduction of viral particles,
as the HIV-1 particle amount remained essentially
unaffected (p24 ELISA, 689� 73 ng/ml in the untreated
condition versus 717� 108 ng/ml in DHA-treated,
P¼ 0.83, n¼ 9; Fig. 1c). Finally, we explored whether
DHA proportion in CD4þ T cell membranes was related
to the infectivity of the HIV-1 particles produced by those
cells. To that aim, we pooled data from all experiments
(three experiments per triplicate adding 5 mmol/l of
DHA, and a fourth experiment with all range of tested
DHA concentrations). We found a moderate but
significant direct correlation between DHA membrane
content and HIV-1 infectivity (Pearson’s correlation
coefficient ¼ 0.39; P¼ 0.03; n¼ 30).

The mechanisms underlying our findings remain elusive,
but studies in experimental models of infection diseases
revealed that DHA incorporation can disrupt the physical
clustering of lipid rafts and associated proteins, modulat-
ing immunity [9,10]. Future research is warranted, in
particular studies that focus on the lipid composition of
the virus envelope and receptor distribution in cell
membranes. Recognizing that our hypothesis can only be
directly tested in a randomized clinical trial, our
unprecedented data argue against the use of dietary
supplements of v-3 in patients with unsuppressed viral
load. This phenomenon could have an impact, but not
exclusively, on HIV-1-infected individuals with difficult
access to ART, HIV-ART patients with nonresponding
ART, or HIV-1-infected undiagnosed individuals.
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Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital
Clı́nic de Barcelona, Barcelona, Spain; 2Immunopathol-
ogy and Cellular Immunology, AIDS Research Group,
Catalan project for the development of an HIV vaccine
(HIVACAT), Institut d’Investigacions Biomèdiques
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Fig. 1. Infectivity and viral replication in medium from HIV-1-infected CD4R T cells, by absence or presence of DHA in medium
for 7 days. (a) DHAþ EPA proportion in membrane of CD4þ T cells treated with 5 mmol/l DHA (black) or untreated (grey).
Discontinuous line at 8% indicate proposed low-risk cutoff in red blood cells for cardiovascular protection. (b) Infectivity of
supernatant after culture in presence or absence of 5 mmol/l DHA (black or grey, respectively), expressed as 50% tissue culture
infective dose determined in TZM-bI cells. (c) Number of viral particles (HIV-1 p24 protein quantification) in supernatant after
culture in presence or absence of 5 mmol/l DHA (black or grey, respectively). Data expressed as mean� SD, obtained from three
independent biological experiments performed per triplicate. Student’s t-test was used to determine significance levels (�P<0.05;
���P<0.001). DHA, docosahexaenoic acids; EPA, eicosapentaenoic; TCID50, 50% tissue culture infective dose.
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