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ABSTRACT

The important role of human microbiome is being
increasingly recognized in health and disease con-
ditions. Since microbiome data is typically high di-
mensional, one popular mode of statistical associ-
ation analysis for microbiome data is to pool in-
dividual microbial features into a group, and then
conduct group-based multivariate association analy-
sis. A corresponding challenge within this approach
is to achieve adequate power to detect an associ-
ation signal between a group of microbial features
and the outcome of interest across a wide range of
scenarios. Recognizing some existing methods’ sus-
ceptibility to the adverse effects of noise accumula-
tion, we introduce the Adaptive Microbiome Asso-
ciation Test (AMAT), a novel and powerful tool for
multivariate microbiome association analysis, which
unifies both blessings of feature selection in high-
dimensional inference and robustness of adaptive
statistical association testing. AMAT first alleviates
the burden of noise accumulation via distance cor-
relation learning, and then conducts a data-adaptive
association test under the flexible generalized lin-
ear model framework. Extensive simulation studies
and real data applications demonstrate that AMAT
is highly robust and often more powerful than sev-
eral existing methods, while preserving the correct
type I error rate. A free implementation of AMAT
in R computing environment is available at https:
//github.com/kzb193/AMAT.

INTRODUCTION

Many microbiome studies often aim to investigate the statis-
tical association between human microbiome compositions
and an outcome of interest, such as a disease status. These

studies can not only improve our understanding of the non-
genetic components of complex traits and diseases, but also
lead to potential development of preventive or therapeutic
strategies targeted at the disease-associated microbial taxa
(1–3). Next generation sequencing technology, with its re-
cent progress, has increasingly begun to distinguish among
strains or exact sequence variants during taxonomic profil-
ing (4), which provides researchers the possibilities to an-
swer clinical and biological questions that have eluded sci-
entific efforts for decades. On the other hand, these research
opportunities on new organisms of higher resolution have
brought in new statistical challenges in microbiome asso-
ciation analysis. The first challenge is data sparsity or zero
inflation. The higher the taxonomic resolution (e.g. low tax-
onomic ranks such as species or strain), the sparser the data,
which makes it more difficult to detect association signals.
The second challenge in the analysis is the curse of dimen-
sionality. At a higher taxonomic resolution, there are more
taxa available for association analysis, which usually indi-
cates a heavier multiple testing correction burden. Conse-
quently, it becomes more difficult to identify associations
under family-wise statistical significance level. A naive ap-
proach would be to aggregate low-rank taxa belonging to
the same high-rank category, and then perform a univariate
association analysis between the high-rank taxon and the
outcome. This approach can both address the sparsity is-
sue and reduce the number of tests. However, it suffers from
substantial power loss when low-rank taxa have opposite di-
rections of effects, which get cancelled out during aggrega-
tion. Thus, new powerful and robust statistical association
analysis methods are desired.

Researchers have frequently encountered a similar sce-
nario (of variables with high dimensionality and low fre-
quency) in genetic association analysis, where millions
of rare variants have been genotyped in a typical whole
genome sequencing study. A consensus among statistical
geneticists is to group multiple rare genetic variants by
genes or genomic regions to perform a set-based multivari-
ate association analysis (5–7). In comparison to univariate
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association analyses, multivariate approaches considering
multiple variants simultaneously, in general, enjoy higher
statistical powers by combining weak association signals
and by reducing multiple testing burden. Following the
same spirit, several multivariate microbiome association
analysis methods and tools have been proposed recently (8–
14). In this paper, we follow the multivariate association
analysis research line to investigate new robust and powerful
statistical methods for testing association between a micro-
bial community/clade of multiple taxa and an outcome of
interest.

Microbial epidemiologists have increasingly recognized
that not all taxa within a clade are equally functional, where
functional can be understood as outcome-associated within
the context of microbiome association analysis considered
in this paper. In fact, it is likely that most microbial taxa
within a clade are not associated with the outcome of in-
terest (9,13). Hence, a big challenge in multivariate micro-
biome association analysis is to achieve enough power to
detect the association signal amid noises. One possible ap-
proach to achieve more powerful results within the con-
text of multivariate association analysis is to assign larger
weights to more important taxa. The weighting idea in mul-
tivariate association analysis first stems from rare-variant
genetic association analysis (5), where each rare variant is
weighted based on its minor allele frequency under the as-
sumption that rarer variants, in general, have larger impacts
on the phenotype. The resulting test might not be optimal if
the underlying true association patterns are against this as-
sumption. Therefore, an assumption-free and data-adaptive
weighting strategy would be preferred for more robust mul-
tivariate statistical association analysis (9,13,15). One such
example is to assign weights to each variant according to
the score statistics between the outcome and each individual
variant (9,16,17). By doing this, the problem can be allevi-
ated to some extent, but cannot be fully addressed as there
still exist small non-zero weights to potential noises (i.e.,
taxa with smaller score statistics). The accumulation of such
small noises can deteriorate the performance of the multi-
variate association test, especially when the number of taxa
being tested is moderate or relatively large (18), a widely-
observed phenomenon that has been termed as ‘curse of di-
mensionality’ in high-dimensional statistical literature (19).

The technique of shrinkage can be used to improve esti-
mation of microbial associations (20). In the specific context
of multivariate microbiome association analysis considered
in this paper, the aforementioned problem of noise accumu-
lation can also be mitigated by shrinkage. Specifically, we
want to shrink the weights of potential noises to exactly ze-
roes, which can be achieved via statistical variable/feature
selection. That is, we first select a subset of taxa and then
construct a multivariate association testing statistic only us-
ing those selected taxa, which is equivalent to assigning a
zero weight to each taxon that has not been selected. The
selected subset of features is often referred to as the test-
ing subset (21). Incorporation of feature selection can not
only boost the power of the association test by mitigating
the burden of accumulated noise features, but also increase
the interpretability of the result in the sense that the testing
subset can provide insight on the taxa that are more likely
to drive the overall association. Feature selection has been

extensively studied in the high dimensional statistical liter-
ature (19,22–27), and recently has been extended for mi-
crobiome data analysis (28–31). Such successful attempts
in microbiome research further motivate us to incorporate
feature selection into the framework of multivariate micro-
biome association analysis in order to develop a more pow-
erful and robust analysis framework than existing ones.

MATERIALS AND METHODS

Notation and model

Suppose the data include n subjects, an outcome of inter-
est, p microbiome features (e.g. abundances of p opera-
tional taxonomic units/OTUs), and q covariates that are
potential confounders, such as age and gender. For the
ith subject, let Yi be the outcome, Zi · = (Zi1, . . . , Zi p)

′
be

the vector of OTU abundances, and Xi · = (Xi1, . . . , Xiq )
′

be the vector of covariates. Correspondingly, we define
Yn×1 = (Y1, . . . , Yn)

′
, Zn×p = (Z1·, . . . , Zn·)

′
, and Xn×q =

(X1·, . . . , Xn·)
′
. Additionally, let (Z·1, . . . , Z·p) be the

columns of Z. To link the outcome of interest with micro-
bial features and clinical coviariates, we consider a linear
model (Equation 1) for a continuous outcome, and a logis-
tic model (Equation 2) for a binary outcome:

Yi = β0 +
p∑

j=1

Zi jβ j +
q∑

k=1

Xikαk + εi , (1)

logit P(Yi = 1) = β0 +
p∑

j=1

Zi jβ j +
q∑

k=1

Xikαk, (2)

where �0 is the intercept, β = (β1, . . . , βp)
′

and α =
(α1, . . . , αq )

′
are regression coefficients and �i’s are random

errors that independently follow a Normal distribution with
mean 0 and variance �2. Our goal is to test for possible as-
sociation between OTUs and the outcome, i.e. to test H0 :
β = 0 against H1: atleastone �j �= 0, (j = 1, . . . , p), which
has been extensively studied in literature (8–14).

Adaptive multivariate association analysis

A major challenge in achieving adequate statistical power
to test the multivariate null hypothesis H0 : β = 0 is that,
many underlying features are truly null (i.e., �j = 0 for many
Zj’s). The increased degrees of freedom paid to these noise
variables Zj’s can deteriorate the power of the multivariate
association test of H0: �1 = ··· = �p = 0, especially when
the number of variables p is relatively large. To alleviate
the accumulated noise effects, one feasible approach is the
sum of powered score (SPU) test, which weights each vari-
able differently according to the score vector (9,12,16). Let
U = (U1, . . . , Up)

′
be the score vector of β evaluated under

the null model. Then, the SPU statistic (characterized by a
tuning parameter � ) is defined as:

TSPU(γ ) =
{∑p

j=1 Uγ

j , if γ = 1, 2, 3, . . . ,

Max {|Uj | : j = 1, . . . , p} , if γ = ∞.

The SPU test can be viewed as a weighted multivariate
score test, which assigns a weight of Uγ−1

j to score Uj. One
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potential limitation of the SPU test is that, its power largely
depends on the choice of � . However, the optimal choice of
� relies on the true underlying outcome-microbiome associ-
ation pattern, which stays largely unknown (9,12,13). Con-
sequently, the adaptive SPU (aSPU) test, which combines
multiple SPU tests, has been developed (16,17), and the cor-
responding test statistic is given as TaSPU = Min{PSPU(� ): �
∈ �}, where PSPU(� ) denotes the P-value of TSPU(� ). In prac-
tice, researchers have observed that � = {1, 2, . . . , 8, ∞} of-
ten suffices, with � = 1 usually producing low powers when
directions of individual effects are opposite, and � = 8 often
providing almost identical results as those with � = ∞ (9).
The unification of a wide range of SPU tests by taking the
minimum allows the aSPU test to be data-adaptive and ro-
bust in terms of maintaining relatively high power across a
wide range of scenarios, since at least one SPU test is likely
to be powerful for the true association mechanism underly-
ing the data.

A new powerful and adaptive multivariate association analy-
sis via feature selection

We observe that the weighted sum
∑p

j=1 Uγ

j of all p vari-
ables in TSPU(� ) may suffer from low power due to the high
degrees of freedom paid to all variables, especially when
most variables are not associated with the outcome. One
way to circumvent this scenario of low statistical power is
to reduce the degrees of freedom by constraining the po-
tential noise variables to have zero weights. In other words,
we will use a new multivariate association test statistic of the
form

∑
j∈S Uγ

j , where S⊂{1, 2, . . . , p} is a collection of taxa
that are more likely to be outcome-associated. In this pa-
per, we have determined the testing subset S using statistical
feature selection methods. Specifically, motivated by a pre-
vious publication (32) in mediation analysis involving high-
dimensional microbial features, we have utilized the statisti-
cal framework of distance correlation (DC) learning (26,33)
to determine S in the multivariate microbiome association
analysis considered here.

We first present a synopsis of DC, which quantifies
the degree of dependence between two random variables
(33). Let {(Vi, Wi): i = 1, . . . , n} be a random sample
of size n from the population (V, W), with V ∈ R, and
W ∈ R. We define, Ŝ1 = 1

n2

∑n
i=1

∑n
j=1 |Vi − Vj | |Wi − Wj |,

Ŝ2 = 1
n2

∑n
i=1

∑n
j=1 |Vi − Vj | 1

n2

∑n
i=1

∑n
j=1 |Wi − Wj |,

and Ŝ3 = 1
n3

∑n
i=1

∑n
j=1

∑n
l=1 |Vi − Vl ||Wj − Wl |.

Then, ̂dcov(V, W) =
√

Ŝ1 + Ŝ2 − 2Ŝ3 is an estimate
of the distance covariance between V and W, and
̂dcorr(V, W) = ̂dcov(V,W)√

̂dcov(V,V) ̂dcov(W,W)
is defined as the cor-

responding sample DC, which is bounded within [0,1]. A
remarkable property of DC is that it is zero, if and only if
the two underlying variables are independent.

One important application of DC is for feature screening.
Distance correlation based sure independence screening or
DC-SIS (26), is a highly robust and attractive feature selec-
tion procedure due to its following two characteristics. First,
it is completely model-free in the sense that it allows for ar-
bitrary regression relationship between the predictors and
the outcome/ response (continuous/discrete/categorical),

regardless of whether it is linear or non linear. Second, it
possesses the sure screening property which ensures that, all
active features can be selected with probability approaching
one as the sample size increases (26). Both properties guar-
antee that association signals between the microbial fea-
tures and the outcome would be amplified after screening.
As a result, it would be easier to detect the signals for the
new method to be proposed in this paper. To this end, our
new statistical association analysis strategy proceeds by first
screening and then association testing.

We defer the details of our two-stage procedure and fo-
cus on the screening stage first. The fundamental idea of
DC-SIS is that, given a response and a set of predictors, at
first the DCs between each predictor and the response are
computed, and then predictors with DCs above a threshold
are selected. Even though there exist few proposals regard-
ing the choice of this threshold (26), we have implemented
a new data-driven thresholding strategy for selecting a test-
ing subset S. Since the data involve potential confounders,
at first we obtain the adjusted response r = (r1, . . . , rn)

′
as

the residuals of regressing the outcome Y on covariates X.
Let the sample DC between r and the jth column of Z be
denoted as dcj. We now present in Algorithm 1, a DC-based
data-adaptive procedure for feature selection:

Algorithm 1: Data-adaptive feature selection via distance
correlation learning

Input: Response (adjusted for additional covariates) rn×1,
and predictors Zn × p.

Output: Set of indices S⊂{1, . . . , p} denoting selected fea-
tures.

Procedure:

1. Compute {dcj: j = 1, . . . , p}.
2. Randomly permute the elements in r B-times to obtain

{r (b) : b = 1, . . . , B}.
3. For each b, compute DCs between r (b) and columns of

Z to get {dc(b)
j : j = 1, . . . , p}; b = 1, . . . , B.

4. For j = 1, . . . , p, if dc j > Mean{dc(b)
j : b = 1, . . . , B},

then j ∈ S.
5. If none of the columns of Z are selected in step 4, select

the feature having maximum DC with r .

In Algorithm 1, we have used the mean of {dc(b)
j : b =

1, . . . , B} as threshold for the jth feature. It is an estimate of
the average distance correlation value between the jth fea-
ture and the adjusted response when the former truly has no
prediction power over the latter (i.e. under the null model).
Thus, if the jth feature is a signal, we can expect dcj to ex-
ceed this threshold most of the times. It is of note that Al-
gorithm 1 is not the only method to obtain a testing sub-
set. In fact, many classic statistical feature selection meth-
ods can achieve the same goal. To this end, we have con-
ducted comprehensive numerical studies comparing Algo-
rithm 1 with other existing methods from two aspects. One
is the accuracy of selection in terms of precision and recall
rates. The other is how the selection results would affect
the performance of the statistical association testing pro-
cedure introduced in the next paragraph. The correspond-
ing results (Supplementary Tables S1–S2 and Supplemen-
tary Figures S1–S2), presented in Section 1 of the online
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Supplementary Data, have clearly demonstrated superiority
of the proposed strategy described in Algorithm 1. We now
introduce our new feature selection infused adaptive mi-
crobiome association testing (AMAT) procedure for more
powerful multivariate association analysis in Algorithm 2.

Algorithm 2: Adaptive Microbiome Association Test
(AMAT)

Input: A vector of continuous or binary outcome Yn×1,
OTU abundance matrix Zn × p, and a matrix of additional
covariates Xn × q.

Output: A P-value for testing H0 : β = 0 versus H1:
at least one �j �= 0, (j = 1, . . . , p).

Procedure:

1. Obtain the normalized OTU matrix Z* and the adjusted
response r .

2. Use Algorithm 1 with r and Z as inputs to obtain S.
3. Compute the aSPU statistic based on Z∗

S. Denote this
statistic as TAMAT.

4. For each b = 1, . . . , B, permute the elements of r to get
r (b), and repeat steps 2-3 (use r (b) and Z as inputs in step
2). Denote the resulting aSPU statistics as T(b)

AMAT; b =
1 . . . , B.

5. The P-value is estimated as PAMAT =
1
B

∑B
b=1 I[T(b)

AMAT ≤ TAMAT], where I[ · ] is the indi-
cator function.

Note that, we first follow the same normalization tech-
nique used in a previous SPU-based approach (12). Specif-
ically, we transform the OTU abundance matrix Z into a
compositional matrix (if Z contains counts), and then the
OTU-wise proportions are standardized to have zero mean
and unit variance (Z* matrix as described in Algorithm 2).
Let S := {j1, . . . , j|S|}⊂{1, . . . , p} denote a collection of
|S| OTUs that are obtained via the aforementioned feature
selection procedure described in Algorithm 1. Then, the
microbial design matrix used to examine the multivariate
null hypothesis H0 : β = 0 is Z∗

S = (Z∗
· j1 , . . . , Z∗

· j|S| ), which
is very different from existing similar approaches (9,12) that
consider all p variables in the test statistic. Since we are con-
ducting the test with microbial features that are more likely
to be outcome-associated, permutations are used to control
the type I error. One can also view AMAT as a weighted
multivariate association test, which assigns zero weights to
all variables that are not selected. Although we use permuta-
tions in AMAT for calculating both the P-values of inherent
SPU statistics (i.e., PSPU(� )’s) and the final P-value PAMAT,
the computational cost is greatly reduced as the same set
of null statistics are used to serve both purposes (12). The
computational details are provided in Section 2 of the on-
line Supplementary Data.

RESULTS

We have used both numerical simulation studies and ap-
plications to multiple real data sets to illustrate the perfor-
mance of the proposed method AMAT. We demonstrate the
usefulness of our new approach by comparing it to other
well-established methods in the literature.

Simulation design

A comprehensive simulation study has been conducted to
compare AMAT with five existing multivariate microbiome
association tests: adaptive microbiome-based sum of pow-
ered score test or aMiSPU (9), the optimal microbiome
regression-based kernel association test or OMiRKAT (8),
optimal microbiome-based association test or OMiAT (12),
linear decomposition model or LDM (14), and microbiome
higher criticism analysis or MiHC (13). The aMiSPU test
first uses OTU abundances and branch lengths of a phylo-
gentic tree to compute a separate variable called general-
ized taxon proportions, and then uses those to conduct a
set of SPU tests which are finally combined via the min-
imum P-value approach (9). Unlike the SPU framework,
which combines multiple taxa via weighted linear combi-
nation of individual score statistics, the MiRKAT com-
bines taxa via beta-diversity induced kernel metrics (e.g.,
Bray-Curtis kernel, weighted UniFrac kernel, unweighted
UniFrac kernel, and generalized UniFrac kernel with pa-
rameter 0.5) (8). Then, OMiRKAT takes the minimum of
these MiRKAT P-values as its test statistic (8). The OMiAT
further merges a set of MiRKATs and SPU tests by using
the minimum of their P-values as its test statistic (12). The
LDM method examines microbiome associations using de-
composition of linear models. Finally, the MiHC method
uses the same minimum P-value approach to combine the
Simes test and two modified versions of the higher criticism
test (13). The default settings in the corresponding software
packages were used to implement these aforementioned
competing methods. Note that, all of these tests (AMAT,
aMiSPU, LDM, MiHC, OMiAT, and OMiRKAT) use per-
mutations to establish statistical significance. Particularly in
our simulations, we used B = 500 permutations and set � =
{2, 3, 4, 8} for AMAT. It is of note that aMiSPU examines
a slightly different hypothesis (association between the out-
come and generalized taxon proportions computed at p leaf
nodes as well as at the internal nodes) from the other tests,
which only test for association between p OTUs and the out-
come.

We followed simulation settings used in prior micro-
biome association analyses (8,9,12) to first generate the
OTU table that mimicked a real throat microbiome data
set with 856 OTUs (34), which is also analyzed later in
this paper. The procedure is described in the following
steps:

• Based on the throat microbiome data set (34), the esti-
mated OTU proportions (π̂1, π̂2, . . . , π̂856) as well as the
estimated over dispersion parameter θ̂ were obtained via
the method of maximum likelihood (35).

• For sample i, the observed OTU proportions were
randomly generated from a Dirichlet distribution:
(p1i , p2i , . . . , p856i ) ∼ Dirichlet(π̂1, π̂2, . . . , π̂856, θ̂ ).

• The total count of OTUs for sample i, say ni, was ran-
domly drawn from a negative binomial distribution with
mean 1000 and size 25.

• For sample i, the observed OTU counts were randomly
generated from a multinomial distribution: (Zi1, Zi2, . . . ,
Zi856) ∼ Multinomial(ni; p1i, p2i, . . . , p856i).
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Table 1. Empirical type I error rates with a continuous outcome. Under the null model of scenario I, covariate X2 is associated with a randomly selected
set of OTUs, and D denotes the corresponding signal density. Under the null model of scenario II, covariate X2 is associated with a set of OTUs that are
phylogenetically related, and under the null model of scenario III, covariate X2 is associated with a set of abundant OTUs. n denotes the sample size

n Scenario AMAT aMiSPU LDM MiHC OMiAT OMiRKAT

I, D=3% 0.0488 0.0456 0.0508 0.0442 0.0464 0.0470
I, D=10% 0.0476 0.0504 0.0464 0.0444 0.0460 0.0452

100 I, D=20% 0.0434 0.0516 0.0474 0.0458 0.0494 0.0502
I, D=30% 0.0484 0.0498 0.0474 0.0414 0.0464 0.0484

II 0.0476 0.0474 0.0442 0.0468 0.0426 0.0422
III 0.0518 0.0490 0.0462 0.0390 0.0536 0.0470

I, D=3% 0.0490 0.0496 0.0540 0.0542 0.0506 0.0510
I, D=10% 0.0524 0.0532 0.0484 0.0546 0.0544 0.0466

200 I, D=20% 0.0496 0.0510 0.0460 0.0506 0.0446 0.0502
I, D=30% 0.0452 0.0464 0.0448 0.0542 0.0450 0.0498

II 0.0470 0.0504 0.0462 0.0532 0.0456 0.0486
III 0.0522 0.0480 0.0466 0.0532 0.0522 0.0472

Table 2. Empirical type I error rates with a binary outcome. Under the null model of scenario I, covariate X2 is associated with a randomly selected set
of OTUs, and D denotes the corresponding signal density. Under the null model of scenario II, covariate X2 is associated with a set of OTUs that are
phylogenetically related, and under the null model of scenario III, covariate X2 is associated with a set of abundant OTUs. n denotes the sample size

n Scenario AMAT aMiSPU LDM MiHC OMiAT OMiRKAT

I, D=3% 0.0482 0.0498 0.0446 0.0210 0.0486 0.0462
I, D=10% 0.0496 0.0502 0.0468 0.0224 0.0510 0.0478

100 I, D=20% 0.0514 0.0486 0.0492 0.0252 0.0512 0.0474
I, D=30% 0.0518 0.0478 0.0468 0.0250 0.0552 0.0496

II 0.0538 0.0534 0.0494 0.0284 0.0534 0.0430
III 0.0530 0.0500 0.0498 0.0364 0.0488 0.0532

I, D=3% 0.0514 0.0484 0.0484 0.0196 0.0516 0.0446
I, D=10% 0.0502 0.0494 0.0496 0.0176 0.0490 0.0430

200 I, D=20% 0.0518 0.0492 0.0538 0.0216 0.0496 0.0480
I, D=30% 0.0516 0.0474 0.0518 0.0200 0.0500 0.0470

II 0.0506 0.0488 0.0470 0.0206 0.0470 0.0426
III 0.0544 0.0522 0.0488 0.0354 0.0454 0.0454

Then, continuous and binary outcomes were generated
under the linear model (Equation 3) and the logistic model
(Equation 4) respectively as,

Yi = 0.5 scale(X1i + X2i ) +
∑
j∈A

β j scale(Zi j ) + εi , (3)

logit P(Yi = 1) = 0.5 scale(X1i + X2i ) +
∑
j∈A

β j scale(Zi j ),

(4)

where X1i and X2i were the covariates to be adjusted for,
the error �i ∼ N(0, 1) independently, A was the set of in-
dices for outcome-associated OTUs, and the ‘scale’ func-
tion was used for standardization (mean 0 and standard
deviation 1) across different samples. X1i’s were generated
from a Bernoulli distribution with success probability 0.5,
and X2i’s were generated to be correlated with the OTUs as,
X2i = ∑

j∈A scale(Zi j ) + N(0, 1).
Under the null model we set �j = 0, for all j ∈ A,

and under the alternative model we studied three differ-
ent scenarios: (I) the outcome was associated with a ran-
domly selected set of OTUs, (II) the set of associated OTUs
were phylogenetically related, (III) the outcome was associ-
ated with some abundant OTUs: Under the first scenario,
we considered four different signal density (say D) levels:
3%, 10%, 20% and 30%. Under the second scenario, the
OTUs were partitioned into a number of clusters based on
the cophenetic distances in the real phylogenetic tree (36).

For this purpose, we used the Partitioning Around Medoids
(PAM) algorithm based on the optimal number of clusters,
which maximized the average silhouette width in a search
up to 30 clusters (13,37). Then, we randomly assigned the
clusters into each iteration of the simulations as the signal-
set. This was done to overcome the bias of specifying arbi-
trary cluster(s) as the signal-set throughout (12). Under the
third scenario, we randomly picked 10 OTUs from the top
100 most abundant OTUs as the association signals. Addi-
tional simulations studies that include generating data un-
der different schemes, with different library sizes, and from
a different distribution such as negative binomial are pre-
sented in Section 3.1– Section 3.3 of the online Supplemen-
tary Data (Supplementary Tables S3– S6 and Supplemen-
tary Figures S3–S9). The regression coefficients {β j : j ∈
A}were simulated from Uniform(−1, 1) distribution to rep-
resent mixed effect directions. We used 5000 replicates to
evaluate the empirical type I error rate and 1000 replicates
to evaluate the empirical power. For each of the 1000 repli-
cates under the alternative model, the set of causal OTUs
were randomly selected. We considered n = 100, 200 as sam-
ple sizes, and set the nominal level of significance � = 0.05
throughout this simulation.

Simulation results

The empirical type I error rates with a continuous outcome
are reported in Table 1, and those with a binary outcome
are reported in Table 2. All tests seem to have well controlled
type I error rates across all configurations, except for MiHC,
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Figure 1. Empirical powers and the corresponding 95% confidence inter-
vals obtained with a continuous outcome under scenario I.

Figure 2. Empirical powers and the corresponding 95% confidence inter-
vals obtained with a continuous outcome under scenario II.

which tends to be conservative especially when the outcome
is binary.

The empirical powers with a continuous outcome are pre-
sented in Figure 1 (Scenario I), Figure 2 (Scenario II), and
Figure 3 (Scenario III). We observe that AMAT has the best
performance in most cases. Under Scenario I, only MiHC
was able to outperform AMAT in the sole setting where the
density of association signals was extremely sparse (i.e. 3%).
MiHC quickly lost its superiority as the signal density in-
creased, and AMAT was the most powerful test thereafter.
Considering sample size n = 100 with scenario I, where the

Figure 3. Empirical powers and the corresponding 95% confidence inter-
vals obtained with a continuous outcome under scenario III.

signal-set consisted of a randomly selected set of OTUs,
as an example, AMAT had powers of 44.7%, 49.8% and
52.5% under signal densities 10%, 20% and 30%, respec-
tively, while the corresponding powers of the first runner-
ups were only 33.6%, 35.4% and 38.3%. Under Scenario II,
where the signal-set was characterized by phylogenetic rela-
tionships, the power of AMAT under sample size n = 100
was 50.1%, which was 34.3% higher than that of the first
runner-up. Under Scenario III, i.e. when association signals
were abundant OTUs, most tests were powerful, and MiHC
was slightly better than the rest given the fact that associa-
tion signals were relatively sparse (10 abundant OTUs out
of 856 OTUs).

The empirical powers with a binary outcome are pre-
sented in Figure 4 (Scenario I), Figure 5 (Scenario II),
and Figure 6 (Scenario III). In this case, AMAT had the
best performance throughout all scenarios being consid-
ered. Under Scenario I and II, OMiAT was the second most
powerful test, and under Scenario III, LDM became power-
ful and had powers similar to AMAT. As observed in Table
2, MiHC tends to be conservative when the outcome vari-
able is binary. Correspondingly, MiHC tends to less power-
ful with a binary outcome even when the signal density is
low in Figures 4 and 6.

To summarize, the proposed method AMAT tends to be
the most powerful statistical association analysis method
than many existing methods under most scenarios consid-
ered in our comprehensive numerical studies, except for the
only scenario where the association signal density is ex-
tremely sparse (e.g. 3%). The MiHC test is specifically de-
signed to tackle this scenario of very sparse signal densities.
However, the performance of MiHC with a binary outcome
variable often is inadequate. Overall, the simulation results
clearly depict the highly robust and powerful performance
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Figure 4. Empirical powers and the corresponding 95% confidence inter-
vals obtained with a binary outcome under scenario I.

Figure 5. Empirical powers and the corresponding 95% confidence inter-
vals obtained with a binary outcome under scenario II.

of AMAT, and thus it can be considered as an efficient tool
for microbiome association analysis.

Application to throat microbiome study on smoking

Cigarette smoking is associated with an increased risk of
acute respiratory tract infections. In a study (34) investigat-
ing the effect of cigarette smoking on the upper airway bac-
terial communities, swab samples were collected from the
right and left nasopharynx and oropharynx of 29 smok-
ing and 33 non-smoking healthy asymptomatic adults. De-
noised 16S rRNA gene sequences (region V1−V2) were

Figure 6. Empirical powers and the corresponding 95% confidence inter-
vals obtained with a binary outcome under scenario III.

analysed using the QIIME pipeline (38) to construct the
OTUs. Further details on data collection and process-
ing can be found in the original paper (34). We used the
left oropharyngeal samples to test the association between
smoking status and microbial community composition. Po-
tential confounders, which included gender and antibiotic
usage within last 3 months, were adjusted for in our anal-
ysis. Quality control and data filtering steps resulted in an
OTU table with 856 OTUs from 60 samples of which 28
were smokers. These 856 OTUs were further classified into
different taxonomic levels (115 genera, 57 families, 27 or-
ders, 16 classes and 11 phyla).

We first examined whether there was an overall shift
in the composition of oropharyngeal microbiome com-
munity, consisting of the 856 taxa, between the smok-
ers and the non-smokers. We used 10 000 permutations
for all tests, and the corresponding P-values of AMAT,
aMiSPU, LDM, MiHC, OMiAT and OMiRKAT were
0.0038, 0.0050, 0.0023, 0.4984, 0.0144 and 0.0070, respec-
tively. Thus, all tests except MiHC showed that the associ-
ation between microbiome profiles and smoking status was
significant after adjusting for the potential confounders,
which was consistent with the previous results (8,9). As
mentioned earlier, besides being a powerful global test,
AMAT can provide useful information on identifying taxa
that are likely to be outcome-associated. The importance
of members in the testing subset can be ranked based on the
corresponding sample DCs. In this case, AMAT generated
a testing subset of 317 OTUs, which was almost 63% re-
duction in the dimension of the feature space. Interestingly,
almost 76% of OTUs from the testing subset belonged to
only three phyla: Firmicutes, Bacteroidetes and Proteobac-
teria, which indicated that the overall community-level sig-
nificant association with smoking might had been primarily
driven by changes in these phyla.
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Figure 7. Venn diagram of detected associations between smoking sta-
tus and oropharyngeal microbiota at different taxonomic ranks. Methods
omitted at a rank indicates that no significance are detected at that rank.

Changes in the structure of the microbiota that are as-
sociated with the outcome of interest can occur at any tax-
onomic rank, or along any relevant branch of the phylo-
genetic tree. For example, it is well known that changes
at the phylum level (e.g. Firmicutes and Bacteroidetes) are
reported to be associated with obesity (39). On the other
hand, strain level associations with the metabolism of drugs
in human have been reported (40). Hence, it was also of
interest to conduct a comprehensive association analysis
among all taxonomic ranks to elucidate the relationship be-
tween smoking status and the oropharyngeal microbiota
under consideration. Specifically, we conducted association
analysis at the levels of genus, family, order, class and phy-
lum with taxa-sets that contain at least five taxa. Conse-
quently, 35 genera, 29 families, 17 orders, 14 classes and
9 phyla were subjected to association analysis. The fam-
ily wise error rate (FWER) was controlled at 0.05 within
each taxonomic rank via the Bonferroni correction. The
results indicated that AMAT and OMiAT had a clear ad-
vantage in terms of identifying significant differences with
AMAT providing maximum number of discoveries (see Fig-
ure 7). Overall, AMAT made eight discoveries of which four
were unique to it (Veillonella genus, Coriobacteriales or-
der, Coriobacteriia class and Firmicutes phylum), while four
were also discovered by OMiAT. Several microbiome stud-
ies found Firmicutes to be associated with smoking (41,42).
The discoveries made by LDM did not coincide with those
of any other tests except for a case at the genus level. The
original study (34), which conducted univariate association
testing at both family level and genus level, found Veillonel-
laceae family along with Megasphaera and Veillonella gen-
era from the Firmicutes phylum, to be included in the set
of taxa that distinguished the left oropharyngeal microbial
communities of smokers from nonsmokers (see Table 3 and
Table S3 of (34)). Our multivariate analysis revealed Veil-
lonellaceae as a significant family, which was identified only
by AMAT and OMiAT. Besides, AMAT identified both

Veillonella and Megasphaera genera, whereas only the lat-
ter was identified by OMiAT. No other findings from the
competing tests matched with the discoveries of the origi-
nal study. These results were consistent with our simulation
studies in the sense that AMAT and OMiAT tend to be the
two most powerful tests in most of the simulation settings.
On the other hand, MiHC and aMiSPU failed to identify
even a single significant taxon across all taxonomic ranks
being considered, possibly due to power loss from a smaller
sample size of this data set.

Application to gut microbiome study on body mass index

The human health is strongly affected by one’s diet, which
is known to partly modulate the gut microbial commu-
nity. For instance, dysbiosis of the gut microbiome has been
shown to be associated with obesity (39). In a previous
research examining the relationship between dietary pat-
terns and gut microbiome composition (43), fecal samples
from 98 healthy volunteers were collected, the V1–V2 re-
gion of the 16S rRNA genes were sequenced, and the QI-
IME pipeline (38) was used to obtain the OTUs. We refer to
the original paper (43) for further details. Here, our objec-
tive is to test for a possible association between the gut mi-
crobiota and body mass index (BMI). A filtering to include
OTUs with counts of more than three in more than three
samples resulted in a community of 557 OTUs, which were
further taxonomically classified into 31 genera, 17 families,
7 orders, 8 classes and 6 phyla.

At the community-level association testing, which in-
volved all 557 OTUs, all tests except aMiSPU and LDM
were able to detect a significant association between BMI
and the gut microbial community (P-values of AMAT,
aMiSPU, LDM, MiHC, OMiAT and OMiRKAT were
0.0293, 0.0976, 0.1370, 0.0241, 0.0471 and 0.0345 respec-
tively). The original study (43) also identified BMI to
be significantly associated with the microbiome compo-
sition (see Table S1 of (43)). Next, we conducted asso-
ciation analysis at different taxonomic ranks with taxa-
sets that contain at least five taxa. As before, the Bonfer-
roni correction was used to control the FWER. The re-
sults showed that no test uniformly outperformed others
across all taxonomic ranks. At the family level, both MiHC
and OMiAT identified Veillonellaceae, whereas aMiSPU,
LDM, and OMiRKAT identified Lachnospiraceae. But,
AMAT showed superiority by identifying both Veillonel-
laceae and Lachnospiraceae, which had been found to be
associated with BMI in other studies as well (44,45). On
the other hand, AMAT did not detect any significant gen-
era, while Ruminococcaceae Incertae Sedis was identified
by MiHC, and Lachnospiraceae Incertae Sedis was iden-
tified by aMiSPU, LDM, and OMiRKAT . Furthermore,
LDM, which failed to detect the community-level associ-
ation, identified three additional taxa-sets (Firmicutes phy-
lum, Clostridia class and Clostridiales order). But these find-
ings were not consistent with the corresponding results from
any of the other tests considered.

DISCUSSION AND CONCLUSION

In this paper, we have focused on the problem of statisti-
cal multivariate association analysis within the context of
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microbiome studies and proposed the AMAT method, a
new testing strategy that instills the benefits of feature
selection into the multivariate association testing frame-
work, which has not been attempted in many popular ex-
isting association analysis methods such as OMiRKAT (8),
aMiSPU (9) and OMiAT (12). One major contribution of
AMAT is that, by recognizing the existing multivariate tests’
vulnerability to the adverse effects of accumulated noise
features, AMAT introduces a novel perspective of utiliz-
ing dimension reduction techniques under the multivariate
microbiome association analysis framework to achieve ex-
tremely robust and powerful results across a wide range of
scenarios. The recently developed MiHC method has rec-
ognized the same phenomenon, but it only provides solu-
tion to scenarios with very sparse association signals (13).
On the other hand, data-adaptive feature selection embed-
ded in AMAT makes it more flexible and robust to different
levels of association signal densities, and has been shown
in our numerical studies to be much more powerful than
MiHC except for few extremely sparse scenarios. Moreover,
results of two real data application examples indicate that
AMAT serves as a highly robust and powerful test for mi-
crobiome association analysis. A third example presented in
Section 3.4 of the online Supplementary Data also supports
this conclusion. Therefore, our new AMAT method fills an
important gap in multivariate microbiome association anal-
ysis, and will be an extremely appealing tool for association
analysis when the underlying signal density is neither too
sparse nor too dense.

The performance of AMAT also depends on the effi-
ciency of the intermediate feature selection procedure. We
have utilized the distance correlation based sure indepen-
dence screening framework which not only possesses the
sure screening property, but also is highly robust to model
misspecification (26). Additionally, we have implemented a
new thresholding strategy that determines the dimension of
the reduced feature space (say d) in a data-driven manner.
Researchers often prefix d as [n/log(n)] ([.] denotes the floor
function) or n − 1 (19,26), which have been shown to be ver-
satile in classic high-dimensional inference. Such choices,
however, may not be appropriate for the relatively small
sample sizes frequently encountered in most current mi-
crobiome association analyses. Among some popular fea-
ture selection tools (19,26,27,46) evaluated in our numerical
studies, the feature selection strategy outlined in Algorithm
1 had the optimum performance within the context of the
current paper (see details in Section 1 of the online Supple-
mentary Data). It is of future research interest to further
boost the power of AMAT by sharping the intermediate
feature selection tool embedded in it.

Unlike many previous microbiome community level as-
sociation analysis tools, which have incorporated the micro-
bial phylogenetic tree into association analysis (8,9,12,13),
the role of phylogenetic tree has been downplayed in the
current paper. One major concern against this idea is due
to computational reasons. The intermediate feature selec-
tion step in each of the different permutations (used for es-
tablishing significance) results in different subsets of OTUs
kept for association testing. This causes different pruning
of the phylogenetic tree in the testing stage (if phylogenetic
information is accommodated in association testing), which

can be computationally expensive when either the number
of OTUs or the number of permutations is large. More-
over, outcome-associated microbial changes can occur at
any taxonomic ranks and/or along any relevant branch of
the phylogenetic tree (2). When the analysis unit of AMAT
is a group of OTUs belonging to some particular relatively
low taxonomic rank (e.g. genus or family), all OTUs in the
group being tested share relatively homologous phylogeny,
and the phylogenetic tree is expected to play a less impor-
tant role in this type of association analysis. Even when the
tree plays an active role in microbiome-outcome associa-
tion (e.g. simulation scenario II), our numerical studies have
demonstrated the robustness of AMAT under such scenar-
ios.

The size of data sets is exploding as metagenomic se-
quencing technologies keep evolving, and there is an even
more pressing need to perform a more powerful micro-
biome association analysis so that true association signals
can be detected amid a huge amount of background noises.
Our research demonstrates that implementation of feature
selection can improve the performance of microbiome as-
sociation analysis, and correspondingly AMAT serves as a
highly robust and powerful taxa-set based multivariate as-
sociation testing tool. Furthermore, its testing subset can
provide insights on the taxa that are more likely to drive the
detected overall association, and thus can lead to cost effec-
tive downstream validation and functional studies. Finally,
the good performance of AMAT comes at a price. Since
the feature selection algorithm is implemented in each per-
mutation used for P-value calculation, the computational
cost of AMAT is typically larger than its competitors. Tak-
ing a simulation under Scenario II with n = 100 as an ex-
ample, the average computation time of AMAT over 1000
replicates is around 100 s, while that of LDM and MiHC is
around 70 s. OMiRKAT, the fastest among the tests con-
sidered, takes only a few seconds. Fortunately, the relatively
small sample size of microbiome data makes AMAT still
feasible from a computational perspective.
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