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Abstract Introduction: We discuss optimization and validation of composite end points for presymptomatic
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Alzheimer’s disease clinical trials. Optimized composites offer hope of substantial gains in statistical
power or reduction in sample size. But there is tradeoff between optimization and face validity such
that optimization should only be considered if there is a convincing rationale. As with statistically
derived regions of interest in neuroimaging, validation on independent data sets is essential.
Methods: Using four data sets, we consider the optimizedweighting of four components of a cognitive
compositewhich includesmeasures of (1) global cognition, (2) semanticmemory, (3) episodicmemory,
and (4) executive function.Weights are optimized to either discriminate amyloid positivity ormaximize
power to detect a treatment effect in an amyloid-positive population. We apply repeated 5 ! 3-fold
cross-validation to quantify the out-of-sample performance of optimized composite end points.
Results: We found the optimized weights varied greatly across the folds of the cross-validation with
either optimization method. Both optimization methods tend to down-weight the measures of global
cognition and executive function. However, when these optimized composites were applied to the
validation sets, they did not provide consistent improvements in power. In fact, overall, the optimized
composites performed worse than those without optimization.
Discussion: Wefind that component weight optimization does not yield valid improvements in sensi-
tivity of this composite to detect treatment effects.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Preclinical Alzheimer’s disease; Cognitive composites; End-point validation
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Table 1

External validation of weights optimized using AIBL

Grouped by

AIBL (bw) NA-ADNI J-ADNI ADCS-PI

PET PET/CSF APOE ε4 CDR-G

z1 MMSE MMSE (6%) MMSE 3MSE

z2 FCSRT CVLT (55%) ADAS-COG FCSRT

z3 LM LM (35%) LM NYU

z4 Digit Digit (5%) Digit Digit

d (equal bw) 33% 42% (year 2) 35% 48% 14%

d (logistic bw) 27% * 54% 95% 15%

Abbreviations: AIBL, Australian Imaging, Biomarkers and Lifestyle;

ADNI,Alzheimer’sDiseaseNeuroimaging Initiative;NA-ADNI,NorthAmer-

ican ADNI; J-ADNI, Japan-ADNI; ADCS-PI, Alzheimer’s Disease Coopera-

tive Study Prevention Instrument; CDR-G, clinical dementia rating global;

MMSE, Mini–Mental State Examination; 3MSE, modified MMSE; FCSRT,

Free and Cued Selective Reminding Test; CVLT, California Verbal Learning

Test; ADAS-Cog, Alzheimer’s Disease Assessment Scale–Cognitive; LM,

Logical Memory; NYU, New York University Paragraph Recall; Digit, digit

symbol substitution; PACC, preclinical Alzheimer cognitive composite.

NOTE. The MMSE, FCSRT, LM, and digit rows represent the four com-

ponents of the PACC. Columns 2 through 6 represent the four pilot data sets,

and indicated groupings, used to explore the performance of the PACC. The

indicated proxy components (e.g., CVLT) were used when the actual PACC

components (e.g., FCSRT) were not available in a study (e.g., AIBL). To

explore optimized weighting of the PACC, we fit AIBL data to a logistic

model of Ab1 status with month 36 component change z-scores as covari-

ates. The regression coefficients from this model (rescaled to sum to 100%)

provide a weighting tuned to discriminate Ab1 status. The resulting

weights are in bold and parentheses in the AIBL column, and the resulting

minimum detectable d is summarized in the bottom row. The numerically

minimized d was 25% (2% smaller than the logistic-derived d), but this

required weighting digit in the opposite direction (6% MMSE, 48%

CVLT, 54% LM, and 28% digit).

*The AIBL-optimized PACCwas not significantly different at any visit in

ADNI, whereas the original was significant only at year 2.
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1. Introduction

Cognitive composites are weighted sums of component
cognitive assessments. For example, the Preclinical
Alzheimer Cognitive Composite (PACC) [1] is a weighted
sum of four components: (1) Free and Cued Selective Re-
minding Test (FCSRT); (2) Logical Memory Paragraph
Recall; (3) Mini–Mental State Examination (MMSE); and
(4) Digit Symbol Substitution Test. The components were
chosen, based on a broad literature review, for their sensitivity
to decline in preclinical and prodromal stages of Alzheimer’s
disease. For example, theMMSEhasdemonstrated sensitivity
to decline in preclinical Alzheimer’s populations [2–4]. In its
current implementation, PACC components are weighted
equally, with the aim of giving more than half of the total
weight to episodic memory (components 1, 2, and part of
3), but also giving importance to orientation and language
(parts of component 3) and executive function (component 4).

The PACC has been criticized on several fronts. It has
been suggested that the MMSE has a restricted range of
likely scores in this population and should be dropped
from composite measures for preclinical Alzheimer’s [5].
Others have suggested a more data-driven approach should
be used to select components and weights should be opti-
mized to increase power to detect treatment effects or reduce
required sample size [6]. Our motivation is to explore the
out-of-sample performance of versions of the PACC with
such optimized component weights.

The component weights can be optimized according to
any reasonable criterion, for example, to maximize placebo
group decline [6], or maximize power, or to minimize the
smallest detectable effect size. All optimization algorithms
are “greedy” in the sense that their solution is guaranteed
to be optimal only for the given training set, and this tends
to come at the cost of generalizability to new data. Cross-
validation [7] can be used to provide an assessment of out-
of-sample performance.
2. Methods

2.1. Data sets

We explore composite optimization in cohorts with
normal cognition from four studies: (1) North American
Alzheimer’s Disease Neuroimaging Initiative (NA-ADNI
[8]), (2) Japan-ADNI (J-ADNI [9]), (3) Australian Imaging,
Biomarkers and Lifestyle Flagship Study of Ageing (AIBL
[10]), and (4) Alzheimer’s Disease Cooperative Study Pre-
vention Instrument (ADCS-PI [1]). For each data set, we
consider a “target” population (e.g., Ab1, APOE ε41 [i.e.
at least one APOE ε4 allele], or clinical dementia rating
global [CDR-G] progressors) and a complementary “refer-
ence” population (e.g., Ab2, APOE ε42 [i.e. no APOE ε4
alleles], or CDR-G stable). Table 1 summarizes the compos-
ite components available in the four data sets and the target/
reference groups used. For this analysis, we use the total free
recall score from the FCSRT in the ADCS-PI study.
2.2. Composite construction

The PACC is the sum of the four component z-scores,
defined

zjt5

�
yjt2yj0

�
sj0

;

for component j5 1,.,4 at time t, where sj0 is standard de-
viation of component score yj0. We consider optimized ver-
sions of the PACC which are weighted sums:

YtðwÞ5z1tw11z2tw21z3tw31z4tw4;

where w5 (w1, w2, w3, w4) is the weight vector or list of the
four component weights. We orient each composite the same
way (e.g., lower scores denote worsening) and constrain the
weights to sum to one. The originally proposed PACC uses
equal weights, effectively: w1 5w2 5 w3 5 w4 5 0.25.
2.3. Optimization

The feasibility of using thePACC todetect treatment effects
in an elderly population with preclinical Alzheimer (normal
cognition but abnormal amyloid accumulation in brain) was



Fig. 1. Amyloid (Ab) group profiles and the smallest detectable effect, d,

based on Australian Imaging, Biomarkers and Lifestyle (AIBL) study of ag-

ing [10] with mixed-effect model assuming 80% power, 5% two-sided a, 3-

year trial, and n5 500 per group. The assumed attrition for the active group

is shown along the bottom of the figure (row marked by green square). The

assumed attrition for the placebo group was 5% (n5 25 participants) less at

each visit. This amounts to an assumed overall attrition rate of 30% over

3 years (i.e., 1 2 (337 1 337 1 25)/1000 5 30%). The other rows of

numbers along the bottom are the observation counts for the indicated group

over time. (Reproduced from Figure 1 of [1].)
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based on natural history data such as that depicted in Fig. 1.
Change is estimated in the amyloid-b (Ab) positive and nega-
tive groups, and the smallest detectable treatment effect is ex-
pressed as a percent difference between those groups, d. We
can “optimize” w according to any objective function, that
is, any function conceived to evaluate the performance of
any givenweight vector.We explore twopotential approaches:

1. Minimize minimum detectable d: Weights are derived
tominimize the detectable treatment effect (d) as a per-
centage of the group difference in change frombaseline
between the target and reference populations. These
weights are found by submitting the sample size for-
mula [11] to a numerical optimization routine [12].
The resultingweight is rescaled so that it sums to 100%.

2. Logistic regression: Weights are derived from a logis-
tic regression to discriminate the target (e.g., Ab1)
from the reference population (e.g., Ab2) based on
3-year component change scores. In this model, Ab
status is the binary outcome variable, and the four
component change scores are predictors. The resulting
regression parameter estimates from this logistic
regression are normalized so that they add to 100%
to produce the weights. The composite then can be in-
terpreted as a linear predictor of Ab status based on
component change scores.

A demonstration of the R code used for both approaches is
included in the Appendix. Note that optimization comes at
the price of simplicity and clinical interpretation. For
example, a composite optimized using either of the afore-
mentioned approaches could down-weight a component
with greater clinical relevance. Also, available natural history
data provide no information regarding treatment effects on
components. These objective functions effectively assume,
without supporting data, that treatment effects will be the
same on each component. It is possible for an optimized com-
posite to down-weight a component that could have greater
response to treatment (to the detriment of power).

To explore the out-of-sample performance of these opti-
mization routines, we attempt two forms of validation: (1)
“external” validation, and (2) repeated 5 ! 3-fold cross-
validation. We describe both approaches in the following
sections.

2.4. External validation

The external validation approach we apply is a two-step
process:

1. Training/optimization step: We derive optimized
weights using the two optimization approaches
described previously applied to one of the data sets. In
this application,wechoseAIBL toact as the training set.

2. Validation step: We apply the optimized weights from
the training step to each of the other external data set to
compute the corresponding optimized composite. We
fit a mixed model of repeated measures (MMRM) [13]
to estimate the difference between target and reference
groups in optimized composite change at 36 months,
as well as the variance-covariance parameters required
for the power calculation. The model treats time as a
categorical variable and includes a fixed effect for
age at baseline. The model assumes heterogeneous
variance with respect to time, and compound symmet-
ric correlation structure. We submit these out-of-
sample pilot estimates of the variance-covariance pa-
rameters to a sample size formula for MMRM [11]
to determine the minimum detectable effect size d as
a percentage of the difference between target and
reference groups at year 3. We assume a 36-month
trial, 6-month visit intervals, N 5 500 participants
per group, 30% attrition, 5% a, and 80% power.

The choice of AIBL for the training set is arbitrary. Any
study could have been used instead. This external validation
exercise is meant to be a gentle introduction to, and motiva-
tion for, “validation” in general. We expect the optimized
weights to demonstrate improvements when applied to
AIBL, but much less improvement, if any, when the
AIBL-optimized weights are applied to the other data sets.
A limitation of the external validation approach is that
each study has different population characteristics and
different assessments. To address this limitation, we also
apply cross-validation in which optimization and validation
are done within the same study.

2.5. Repeated 5 ! 3-fold cross-validation

Cross-validation [7] is typically used to estimate out-of-
sample prediction error or to estimate a tuning parameter
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that minimizes out-of-sample prediction error. Here we use
cross-validation to estimate the out-of-sample estimate of
power, as expressed by minimum detectable effect size.
A key aspect of cross-validation is that it holds out data
(validation set) while performing estimation on the rest
of the data (training set). This feature allows an assessment
of the out-of-sample performance of an estimate derived on
the training set when applied to the independent validation
set. Notably, the nonparametric bootstrap does not have
this hold-out feature. Cross-validation is typically done
with five or ten “folds” where each fold, in turn, is omitted
from the training step and reserved as the out-of-sample
validation set. Because our data sets are relatively small,
we chose instead to use repeated 5 ! 3-fold cross-
validation [14] to reserve a larger data set for the power
calculation.

Repeated 5! 3-fold cross-validation is essentially a boot-
strapped 3-fold cross-validation. With repeated 5 ! 3-fold
cross-validation, we divide each study up into three random
subgroups of roughly equal size with roughly the same pro-
portion of subjects in the target and reference groups. Each
of the three random subgroups, in turn, is reserved as the vali-
dation set, and we apply the validation step procedure
described previously. The remaining two-thirds of the data
are used to derive optimized weights (training/optimization
step). We then repeat this 3-fold cross-validation five times
on different random permutation of the data. We summarize
the medians and ranges of the optimized weights and out-of-
sample minimum detectable effect sizes across the 15 folds
of the 5 ! 3-fold cross-validation.

All analyses were conducted using the R [15], with
packages nlme [16], and longpower [17]. Graphics were pro-
duced using ggplot2 [18].
Table 2

Median (range) of the training set optimized weights (the “zi” rows) and validatio

optimization approaches

Component

AIBL NA-ADNI

n 5 164 n 5 97

Weights optimized by logistic regression

z1 MMSE* 18 (5–35) 25 (0–48)

z2 FCSRT* 48 (34–77) 26 (0–74)

z3 LM* 33 (0–49) 25 (0–76)

z4 Digit 0 (0–4) 28 (0–51)

d 55 (39–100) 55 (39–100)

Weights optimized by minimum d

z1 MMSE* 0 (0–20) 35 (0–61)

z2 FCSRT* 42 (10–71) 12 (0–70)

z3 LM* 47 (7–90) 9 (0–98)

z4 Digit 0 (0–26) 20 (0–69)

d 54 (45–69) 65 (35–88)

Abbreviations: AIBL, Australian Imaging, Biomarkers and Lifestyle; ADNI, A

ADNI; J-ADNI, Japan-ADNI; PI, Alzheimer’s Disease Cooperative Study Preve

Mental State Examination; FCSRT, Free and Cued Selective Reminding Test; LM

NOTE. Cross-validation reveals wide ranges for the optimized weight values ac

d as assessed on validation sets.

*See Table 1 for actual tests used in each study.
3. Results

3.1. External validation

Table 1 summarizes the results of the external validation.
The weights optimized using the logistic regression
approach applied to AIBL down-weighted MMSE (6%)
and digit symbol (5%) and up-weighted CVLT (55%) and
logical memory (35%). This resulted in a small improve-
ment in the minimum detectable treatment effect (from
33% treatment effect without optimization to 27% with opti-
mization). However, when these optimized weights were
applied to the other data sets, we saw the minimum detect-
able treatment effect actually increased. By using the numer-
ical optimization approach, we were able to reduce the
minimum detectable effect in AIBL down to 25%, but this
required weighting Digit Symbol in the opposite direction.
This is likely due to minimal and variable change on Digit
Symbol in AIBL. The optimized weight would likely
converge to a sensible estimate with a larger data set.
3.2. 5 ! 3-fold cross-validation

Table 2 and Figs. 2 and 3 summarize the results of the
5 ! 3-fold cross-validation. Both optimization ap-
proaches tend to down-weight MMSE and Digit Symbol
overall (Fig. 2); however, we see large range of weight
values across the folds. All of the ranges include 25%
(i.e., no optimization), except the range for MMSE
weights in AIBL and PI-APOE (bottom left; Fig. 2) and
the range for digit symbol weights in AIBL and PI-
progression (top right; Fig. 2).

Fig. 3 shows the validation set estimate of the minimum
detectable effect using no optimization (“PACC”) and the
n set estimates of minimum effect size d (the “d” rows) using two different

J-ADNI PI-APOE ε4 PI-CDR-G

n 5 58 n 5 413 n 5 505

48 (10–79) 23 (14–53) 14 (9–55)

5 (0–59) 43 (0–55) 76 (41–88)

0 (0–32) 22 (4–34) 8 (0–19)

28 (0–55) 13 (0–33) 0 (0–3)

43 (18–56) 72 (50–151) 73 (62–202)

7 (0–100) 2 (0–19) 5 (0–69)

51 (0–77) 72 (0–100) 42 (14–53)

34 (0–55) 14 (0–67) 37 (11–68)

0 (0–90) 9 (0–85) 12 (0–55)

37 (24–71) 72 (58–91) 57 (49–249)

lzheimer’s Disease Neuroimaging Initiative; NA-ADNI, North American

ntion Instrument; CDR-G, clinical dementia rating global; MMSE, Mini–

, Logical Memory; Digit, digit symbol substitution.

ross the training sets and wide ranges for the resulting minimum detectable



Fig. 2. Medians (points) and range (vertical lines) of theweights optimized by logistic regression (top) andminimumdetectable d (bottom) by data set across the

15 repeated cross-validation subsamples. The bold lines denote the median pooled across the data sets. Cross-validation reveals wide ranges for the optimized

weight values across the training sets, and wide ranges for the resulting minimum detectable d as assessed on validation sets. *See Table 1 for actual tests used in

each study. Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIBL, Australian Imaging, Biomarkers and Lifestyle; CDR-G, clinical demen-

tia rating global; Digit, digit symbol substitution; FCSRT, Free and Cued Selective Reminding Test; J-ADNI, Japan-ADNI; LM, Logical Memory; MMSE,

Mini–Mental State Examination; NA-ADNI, North American ADNI; PI, Alzheimer’s Disease Cooperative Study Prevention Instrument.
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two optimization approaches. The pooled medians (51%
with no optimization, 60% with logistic regression weights,
and 58% with minimized d) suggest that, overall, there is
no reliable improvement in power using the optimized
composites.
4. Discussion

We explore the out-of-sample performance of opti-
mized composites and find there is no evidence to support
their use for optimizing the PACC given the available
Fig. 3. Medians (dots) and range (vertical lines) of the minimum detectable

d attained out-of-sample using no optimization (left) and the two optimiza-

tion methods. Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging

Initiative; AIBL, Australian Imaging, Biomarkers and Lifestyle; CDR-G,

clinical dementia rating global; J-ADNI, Japan-ADNI; NA-ADNI, North

American ADNI; PI, Alzheimer’s Disease Cooperative Study Prevention In-

strument.
data. Both MMSE and Digit Symbol were consistently
down-weighted by optimization, suggesting they are
contributing less to the composite performance. However,
there was a wide range of optimized weights across cross-
validation folds (long vertical lines in Fig. 2), indicating
that the MMSE and digit symbol were valuable in some
subsamples. Furthermore, down-weighting MMSE and
digit symbol did not reliably improve composite perfor-
mance (i.e., decrease the minimum detectable effect) in
the validation sets (Fig. 3). The MMSE has good face val-
idity as a global assessment and has demonstrated sensi-
tivity to preclinical decline [2–4]. Digit Symbol has
good face validity as a measure of executive function
that is associated with progression to dementia [19] and
mortality risk [20]. It is possible that other larger data
sets, perhaps with treatment effects, could inform a reli-
able optimization in the future. Based on available data,
we do not find strong support for removing or down-
weighting MMSE or Digit Symbol. Our results are consis-
tent with conclusions of Insel et al. [21], who found that
applying equal weights provided the greatest estimates
of cross-validated power in an analysis of ADNI. They
also found diminishing returns when considering compos-
ites with more components.

We applied two validation approaches, each with their
own strengths and limitations. The external validation
approach applied to existing data will always suffer from
mismatches of populations or assessments between training
and validation data sets. And attempting to collect new data
is an expensive solution to this limitation. On the other hand,
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cross-validation is a mere simulation of real-world valida-
tion. Furthermore, the cross-validation subsamples may
not be of sufficient size for training and/or validation steps.
We argue that this sample size limitation is actually a limita-
tion of optimization because optimization should not be at-
tempted without robust validation.

Also, the optimization that we attempted must neces-
sarily make assumptions about treatment response which
are unsupported by the available natural history data. We
and others (e.g., [6]) have implicitly assumed that a treat-
ment would have the same effect on each component. We
and others have also implicitly assumed that each compo-
nent is of equal clinical meaningfulness. And even if an opti-
mization can be validated, the improvement in power comes
at the price of simplicity and face validity. Therefore, optimi-
zation should only be considered if there is a convincing
rationale and its efficiency gains can be validated.

Ramchandani et al. [22] discuss a global rank test
approach and review-related literature on nonparametric
global tests for multiple outcomes. Their proposed adaptive
weighting method uses the actual clinical trial data to derive
weights. Simulations suggest type-I error is maintained and
“power can improve significantly in settings with differing
treatment effect sizes or moderate correlation between out-
comes.” However, the global test approach has some limita-
tions in comparison to the likelihood-based approach in our
setting, and so results might not be directly comparable.
First, the global treatment effect is much more broad than
typical MMRMestimand (i.e., ITT contrast at the final visit).
The global test approach provides a measure of how many
patients were “better off” in the active versus control group,
but it does not provide an estimate of the degree to which
they were better off (it is elementally trinary: better, worse,
or equivocal) or when they were better off (certain time
points could be prioritized, but other time points would
have to break ties). This lack of specificity may be a concern
to regulators, not to mention the lack of a prespecified
outcome. Second, the global test approach does not accom-
modate covariates, which account for considerable vari-
ability in our setting, and render the Missing at Random
assumption more plausible.
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RESEARCH IN CONTEXT

1. Systematic review: We searched the literature on
cognitive composites for preclinical Alzheimer as
well as the literature on cross-validation. The
important references from this search are included in
our list of references.

2. Interpretation: Despite considerable improvements
in power to detect treatment effects within a given
training sample, these improvements do not persist
when tested in independent validation samples. We
conclude that component weight optimization does
not yield valid improvements in sensitivity of our
composite to detect treatment effects.

3. Future directions: Until larger data sets from actual
treatment trials are available, we urge caution when
applying optimization methods. Until such data sets
are available, we advocate constructing composites
using simple baseline standardization applied to
components with solid face validity.

http://www.fnih.org
http://dx.doi.org/10.1016/j.trci.2016.12.001
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