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The gut microbiota represents a complex and diverse ecosystem with a profound

impact on human health, promoting immune maturation, and host metabolism as

well as colonization resistance. Important members that have often been disregarded

are the methanogenic archaea. Methanogenic archaea reduce hydrogen levels via the

production of methane, thereby stimulating food fermentation by saccharolytic bacteria.

On the other hand, colonization by archaea has been suggested to promote a number

of gastrointestinal and metabolic diseases such as colorectal cancer, inflammatory

bowel disease, and obesity. Archaea have been shown to be absent during infancy

while omnipresent in school-aged children, suggesting that colonization may result from

environmental exposure during childhood. The factors that determine the acquisition

of methanogenic archaea, however, have remained undefined. Therefore, we aimed to

explore determinants associated with the acquisition of the two main gastrointestinal

archaeal species, Methanobrevibacter smithii and Methanosphaera stadtmanae, in

children. Within the context of the KOALA Birth Cohort Study, fecal samples from

472 children aged 6–10 years were analyzed for the abundance of M. smithii and

M. stadtmanae using qPCR. Environmental factors such as diet, lifestyle, hygiene, child

rearing, and medication were recorded by repeated questionnaires. The relationship

between these determinants and the presence and abundance of archaea was analyzed

by logistic and linear regression respectively. Three hundred and sixty-nine out of the

472 children (78.2%) were colonized byM. smithii, and 39 out of the 472 children (8.3%)

by M. stadtmanae. The consumption of organic yogurt (odds ratio: 4.25, CI95: 1.51;

11.95) and the consumption of organic milk (odds ratio: 5.58, CI95: 1.83; 17.01) were

positively associated with the presence of M. smithii. We subsequently screened raw

milk, processed milk, and yogurt samples for methanogens. We identified milk products

as possible source forM. smithii, but notM. stadtmanae. In conclusion,M. smithii seems

present in milk products and their consumption may determine archaeal gut colonization
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in children. For the first time, a large variety of determinants have been explored in

association with gut colonization by methanogenic archaea. Although more information

is needed to confirm and unravel the mechanisms in detail, it provides new insights on

microbial colonization processes in early life.

Keywords: microbiota, gut, infant, child, archaea, dairy products, milk, M. smithii

INTRODUCTION

The human gut contains a complex and diverse ecosystem
consisting of hundreds of microbial species that are acquired
during the first years of life (van Best et al., 2015). Although a
myriad of bacterial species have been studied within the human
infant gut, important colonizers that are often disregarded
are the methanogenic archaea (Horz, 2015). At present, five
methanogenic archaea species and two halophilic archaea
have been isolated from human feces from which only the
Methanobrevibacter smithii (M. smithii), Methanosphaera
stadtmanae (M. stadtmanae), and Methanomassiliicoccus
luminyensis (M. luminyensis) have been detected more than
once (Miller et al., 1982; Miller and Wolin, 1985; Dridi et al.,
2012a; Khelaifia et al., 2013, 2017; Khelaifia and Raoult, 2016). A
previous study from Dridi et al. showed that the most dominant
archaeal gut inhabitant is M. smithii with a prevalence of 88% in
children of 0–10 years of age. In contrast,M. stadtmanae andM.
luminyensis tend to colonize the child’s gut less frequently with a
prevalence of 11 and 1%, respectively (Dridi et al., 2012b).

Upon colonization, methanogenic archaea are responsible
for producing the majority of methane in the gut by reducing
carbon dioxide into methane in the presence of hydrogen
(Roccarina et al., 2010). The hydrogen in the gut is mainly the
result of bacterial fermentation, and accumulation of hydrogen
subsequently inhibits this process of breaking down food
components for energy. Therefore, reduction of hydrogen levels

by methanogens stimulates food fermentation by saccarolytic
bacteria (Horz and Conrads, 2010; Gaci et al., 2014). On the
other hand, colonization by archaea has been suggested to be
potentially detrimental for host health due to alterations in gut
metabolism and syntrophic interactions with other microbes
(Cavicchioli et al., 2003; Conway de Macario and Macario,
2009; Nakamura et al., 2010; Roccarina et al., 2010; Gill and
Brinkman, 2011). For instance, in previous studies higher
levels of archaea and excreted methane were found in patients
with gastrointestinal and metabolic diseases such as colorectal
cancer, inflammatory bowel disease, irritable bowel syndrome,
constipation, and obesity (Haines et al., 1977; Pimentel et al.,
2003; Kim et al., 2012; Blais Lecours et al., 2014; Triantafyllou
et al., 2014; Mbakwa et al., 2015; Vandeputte et al., 2016).

Methanogenic archaea have been shown to be absent during
infancy while omnipresent in school-aged children and their
presence seems to increase with age (Dridi et al., 2012b).
The latter suggests that colonization may result either through
exposure to sources of archaea during childhood, or through
factors shaping the gastrointestinal ecophysiology to make
the gut more favorable for archaeal colonization during this
time period. The factors that determine the acquisition of

methanogenic archaea, however, have remained undefined.
Although the rumen of beef cattle have been shown to be a
carrier for M. smithii and M. stadtmanae (Carberry et al., 2014),
these human gut colonizers have not been identified in selected
food products so far (Brusa et al., 1998). Moreover, no study
has conducted a comprehensive analysis on potential lifestyle
and dietary determinants of human gut colonization by these
methanogenic archaea. Therefore, we aimed to explore a wide
variety of potential determinants associated with the acquisition
of the two main archaeal species, M. smithii and M. stadtmanae,
in children. To this end, we used extensive data on determinants
prospectively gathered through repeated questionnaires within
the KOALA Birth Cohort Study in combination with data
on presence and abundance of M. smithii and M. stadtmanae
obtained from fecal samples in children of 6–10 years.

MATERIALS AND METHODS

Study Population
This study was conducted within the KOALA Birth Cohort Study
in the Netherlands. The study design has been described in detail
elsewhere (Kummeling et al., 2005). In summary, 2,834 pregnant
women were recruited between October 2000 and December
2002. Pregnant women with a conventional lifestyle (N = 2343)
were recruited from an ongoing cohort study on pregnancy-
related pelvic girdle pain in the Netherlands. In addition,
pregnant women with an “alternative” lifestyle (N = 491) were
recruited through organic shops, anthroposophical doctors and
midwives, anthroposophical under-five clinics, Steiner schools
and magazines for special interest groups. The “alternative”
lifestyle was expected to differ from the “conventional” lifestyle
in vaccination practices, use of antibiotics, dietary habits
(breastfeeding, organic foods, and vegetarian diet) and child
rearing practices (Kummeling et al., 2005).

Parents of a subgroup of children (N = 1,204) were
approached for the collection of a fecal sample of their child
at age 6–10 (Figure 1). Fecal samples were provided by 669
children. Transport time exceeded 4 days for 197 samples, which
were therefore excluded from analyses. As a result, quantitative
real-time PCR analysis was performed on 472 fecal samples.

Informed consent was given by all parents, and the study
was approved by the Medical Ethics Committee of Maastricht
University and the National Ethical Committee for Medical
Research.

Fecal Sampling
Parents received a stool sample kit consisting of a feces
collection tube with a spoon attached to the lid (Sarstedt,
Nürnbrecht, Germany) together with an instruction form
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FIGURE 1 | Flowchart illustrating how the population under study (n = 472) was obtained from the KOALA Birth Cohort Study population.

on fecal collection. After collection, the fecal sample was
sent to the Department of Medical Microbiology at the
Maastricht University Medical Center+ by mail. Upon
arrival fecal samples were 10-fold diluted in Peptone Water
(Oxoid CM0009) containing 20% (vol/vol) glycerol (Merck,
Darmstadt, Germany) and stored at −80◦C until further
analysis.

Fecal DNA Isolation and Quantitative Real
Time PCR
Repeated-Bead-Beating (RBB) plus a column-based purification
method was used to isolate DNA as described in detail elsewhere
(Zoetendal et al., 2006; Salonen et al., 2010). Afterwards, DNA
concentration and purity were determined by the Nanodrop
1000 spectrophotometer (Thermo Fisher Scientific, Wilmington,
USA). For the enumeration of M. smithii and M. stadtmanae
all fecal samples were subjected to 5′-nuclease based real-time
PCR assays. Primers and probes employed for PCR and the
amplification and quantification process as performed on an
Applied Biosystems Prism 7,000 sequence detection system
(Applied Biosystems) have been described in detail elsewhere
(Mbakwa et al., 2015). In short, quantification of the abundance
ofM. smithii andM. stadtmanae in fecal samples was achieved by
comparing the cycle threshold (Ct) values to a standard curve.

The standard curves were constructed by subjecting serial 10-
fold dilutions of positive plasmid constructs containing the target
sequences of M. smithii and M. stadtmanae to the same qPCR
assays. The lower limit of detection was 3.81 log10 copies/g feces
for M. smithii and 4.82 log10 copies/g feces for M. stadtmanae.
Further details on qPCR assays and conditions can be found
elsewhere (Mbakwa et al., 2015).

Determinants
Information on potential determinants was collected by repeated
questionnaires in the KOALA Birth Cohort Study. Information
was requested from 34 weeks of gestation until 6–7 years of age.
Questionnaires covered multiple topics including dietary habits
(food frequency questionnaires, FFQ), lifestyle characteristics,
hygiene, child rearing practices, diseases, and medication use.
Determinants of interest were selected based on findings from
previous research on the establishment of the microbiota and the
availability of information in repeated questionnaires.

Determinants selected for analysis were: age of the child
at time of fecal sample (continuous in years), recruitment
group (conventional cohort, alternative cohort), child’s gender,
maternal education (low: primary school, preparatory vocational
or lower general secondary school; middle: vocational, higher
general secondary or pre-university; high: higher vocational
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or academic education), maternal diet during pregnancy
(conventional; organic/biodynamic), place, and mode of delivery
(vaginal delivery at home; vaginal delivery in hospital; artificially
induced delivery in hospital; cesarean section in hospital),
gestational age (continuous [weeks]), birth weight (continuous
[grams]), regularly cleaning of pacifier in boiling water (no, yes),
duration of pacifier use (never, short [until 7 months], long
[at least until 12 months]), first time exposure to antibiotics
during the first 2 years of life (Never, at 0–3 months, at 3–
7 months, at 7–12 months, at 12–24 months), number of
siblings at 1 year of age (0, 1, ≥2), regular stay at daycare
during the first 2 years of life (never; at host parent or
daycare; host parent and daycare combined), vitamin D/AD
supplementation during the first 2 years of life (no; yes), number
of siblings at 4–5 years of age (0; 1; ≥2), type of pets kept
during life of the child (none; dog; cat; other; combination),
exposure to farm (animals) during the last 12 months at 6–7
years of age (never; pigs; chicken/pigeons; ox/goat/sheep/horse;
children’s farm visits; combination), antibiotic use within 1
year prior to fecal sampling (no; yes), child’s diet at 6–
7 years (conventional; >25% organic/biodynamic), vegetarian
diet of child (no; yes), total energy intake (continuous
[kcal]), carbohydrate intake (continuous [en%]), protein intake
(continuous [en%]), animal protein intake (continuous [en%]),
fiber intake (continuous [grams]), regular intake of organic raw
vegetables (no; yes), regular intake of organic fruit (no, yes),
regular milk consumption (at least once per week; no, yes),
regular organic milk consumption (at least once per week; no,
yes), regular cheese consumption (at least once per week; no, yes),
regular organic cheese consumption (at least once per week; no,
yes), regular yogurt consumption (at least once per week; no, yes),
regular organic yogurt consumption (at least once per week; no,
yes).

Statistical Analysis
Characteristics of the present study population (N = 472) and the
total KOALA birth cohort (N = 2,834) are presented as median
plus range for continuous variables and as frequency (n, %) for
categorical variables.

Multivariable logistic regression models were used to assess
the association between potential determinants and the presence
of M. smithii and M. stadmanae, respectively. Multivariable
linear regression models were used to assess the association
with M. smithii abundance. Variable selection for the regression
models was based on purposeful selection as described by
Hosmer and Lemeshow (2000). A multivariable model was
fitted including all determinants identified from univariable
models with a p < 0.25. This model was further reduced to
only include variables with either a p-value lower than 0.10
or variables that affected the parameter estimate (β) of other
variables in the model by more than 20%, as recommended by
Bursac et al. (2008). This model was subsequently refitted with
variables that were not statistically significant (i.e., p > 0.25)
in univariable analyses. Afterwards, the model was reduced as
described before (p < 0.10), but only for the added variables.
As a result, all variables included in the main effects model
were statistically significant or made an important contribution

based on the presence of other variables in the model (Bursac
et al., 2008). After completion of purposeful selection the
resulting main effects model was additionally adjusted for
the following covariables of prior interest: age at time of
fecal sampling (years), gender (male, female), total energy
intake (kcal), recruitment group (conventional, alternative), and
BMI (z-score). For determinants with more than 30 missing
values a missing value group was constructed. Models were
checked for multicollinearity through Variance Inflation Factor
(VIF) scores. If VIF scores exceeded 10, determinants causing
multicollinearity were separated into independent models to
obtain effect estimates without multicollinearity for the affected
determinants. To limit the number of spurious associations,
results from multivariable analyses were corrected for multiple
comparisons by adjusting α by Benjamini-Hochberg procedure
at a false discovery rate (FDR) level of q = 0.05 (Benjamini and
Hochberg, 1995).

In secondary analyses, the impact of the number of
consumed organic dairy products, and organic as well as raw
vegetable and fruit products on the presence and abundance
of M. smithii and M. stadtmanae was examined. For this
purpose the individual variables for organic dairy (cheese,
milk, and yogurt) and organic fruit and raw vegetables were
grouped into index variables as follows: number of different
organic dairy products (0; 1; 2; 3), number of different
organic raw vegetable and fruit products (0; 1; 2). Since
organic dairy products were significantly associated with the
presence of M. smithii, analyses were extended to yogurt,
milk and cheese, irrespective of organic or conventional
origin.

For all statistical analyses IBM SPSS version 23 (SPSS Inc.,
Chicago, IL) was used.

Verification of Archaeal Presence in Milk
Raw Bovine Milk in Tanker Trucks

To validate findings from this study, publicly available data from
another study was used to identify archaea in 975 raw milk
samples collected from 899 tanker trucks (Kable et al., 2016).
These individual trucks arrived at two dairy processors in San
Joaquin Valley of California for product manufacturing during
three seasons between October 2013 and September 2014. The
sequences of the 16S rRNA V4 regions were obtained via the
Qiita database (https://qiita.ucsd.edu) under study ID 10485, and

further analyzed within Qiime (Caporaso et al., 2010)

Metagenomic DNA Isolation from Dairy Products

Processed milk and yogurt samples were collected from
biodynamic, organic and non-organic brands from the
supermarket (Supplementary Table 1). Raw unprocessed
milk was obtained from a local farmer via a standard tap-
procedure (Brunimat). Metagenomic DNA was extracted from
dairy products with the PowerFoodTM Microbial DNA Isolation
kit (MoBio Laboratories Inc.) according to manufacturer’s
instructions as evaluated in detail elsewhere (Quigley et al.,
2012). In short, cell lysis with chaotrophic agents and bead-
beating plus a column-based extraction was used to isolate
DNA.
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RESULTS

Fecal samples from 472 children with a median age of 7.2
(6.0–12.0) years were analyzed. Of these, 369 (78.2%) out
of 472 were colonized by M. smithii, while 39 (8.3%) out
of 472 children were colonized by M. stadtmanae. Due to
the low colonization rate of M. stadtmanae, analyses on its
abundance were not performed in this study. Supplementary
Table 2 shows participant characteristics of the KOALA Birth
Cohort Study (n = 2834) and the study population (n = 472)
for all selected determinants. In general, the distribution of
participant characteristics of the study population was similar to
the population of the entire KOALA Birth Cohort Study.

Methanobrevibacter smithii Presence and
Abundance
Themultivariable regressionmodels (Table 1 and Supplementary
Table 3) showed a positive association between organic yogurt
and organic milk consumption and M. smithii colonization.
Children who regularly consumed organic yogurt were more
than four times as likely to be colonized by M. smithii as
compared to children who did not consume organic yogurt
[ORadjusted: 4.25 95% Confidence Interval (CI95): 1.51; 11.95],

whereas children consuming organic milk were even over five
times more likely to be colonized by M. smithii as compared
to children who did not consume organic milk (ORadjusted:

5.58, CI95: 1.83; 17.01). We subsequently performed secondary
analyses to examine the effect of the number of different organic
dairy products being consumed on M. smithii colonization
(Table 2 and Supplementary Table 4). These analyses showed
a statistically significant increasing trend between the number
of dairy products consumed and the chance of colonization by
M. smithii (Table 2, p= 0.002).

For all other potential determinants that have been examined
in the present study, no relationship withM. smithii colonization
was found. Moreover, when examining the relationship between
M. smithii colonization and the consumption of dairy products,
irrespective of organic or conventional origin, we did neither
find an association for milk nor for yogurt and nor for cheese
consumption.

In contrast to the analyses on the presence of M. smithii,
none of the determinants assessed in this study were positively
associated with the abundance of M. smithii (Supplementary
Tables 5, 6).

In models for both M. smithii presence and abundance
the model adjustment by a priori selected covariates did not
meaningfully alter parameter estimates. The minimal effect of
these covariates on parameter estimates indicates that models for
M. smithii were robust.

Methanosphaera stadtmanae Presence
Multivariable regression analyses on the presence of
M. stadtmanae showed no significant results after FDR
correction (Supplementary Table 7). However, after adjustment
for a priori selected covariables birth by cesarean section (OR:
6.89, CI95: 2.09; 22.67), first exposure to antibiotics at 13–24
months (OR: 3.38, CI95: 1.34; 8.50) and organic fruit intake (OR:

TABLE 1 | Final multivariable logistic regression model showing the

association between potential determinants and the presence of

Methanobrevibacter smithii.

M. smithii presence

Adjusted main effects model (N = 419)a

Determinant OR (CI95%) FDR crit.b p-value

Regular intake of organic milkc,d

No Ref.

Yes 5.58 (1.83; 17.01) 0.006 0.003f

Regular intake of organic yogurtc,d

No Ref.

Yes 4.25 (1.51; 11.95) 0.006 0.006

Diet of childe

Conventional (≤25%

organic)

Ref.

Organic (incl. biodynamic;

>25% organic)

0.36 (0.17; 0.79) 0.011 0.010f

Fiber intake (g)e 0.95 (0.88; 1.03) 0.028 0.250

aModel adjusted for: age at fecal sampling (years), gender (male/female), recruitment

group (conventional/alternative), total energy intake (kcal), and BMI (z-score).
bCritical FDR cut-off level as determined by Benjamini-Hochberg procedure.
cMissing value category omitted (included in FDR correction).
dDue to multicollinearity both regular intake of organic milk and regular intake of organic

yogurt were included in separate models, which included all other variables as listed in

this table.
eParameter estimates presented for the model containing organic milk intake. Parameter

estimates did not change substantially when the variable “organic milk intake” was

replaced by the variable “organic yogurt intake” (data not shown).
fSignificant association after correction for FDR by Benjamini-Hochberg procedure, also

indicated in bold.

4.73, CI95: 1.64; 13.62) were associated with an increased M.
stadtmanae presence (Table 3). In secondary analyses to examine
the effect of the number of organic fruit and vegetable products
consumed on the presence ofM. stadtmanae no significant trend
was found (p= 0.321).

In models for M. stadtmanae presence minor differences
in model estimates were found after adjustment for a priori
selected covariates. These differences may indicate underlying
relationships between potential determinants and a priori
selected covariates or model instability ofM. stadtmanaemodels.

Verification of Archaeal Presence in Milk
To evaluate the contribution of milk and yogurt to gut
colonization by archaea, we re-analyzed 16S sequence-data of
raw milk from a previous study (Kable et al., 2016) as only the
bacterial results of these samples from 899 tanker trucks were
reported in the original publication. The relative abundances
showed that the vast majority of all recovered archaeal
sequences could be assigned to the genera Methanobrevibacter
(87.70%) and Methanosphaera (3.63%) compared to the other
10 (<1.70%; Figure 2). In addition, 947 out of the 975 milk
samples (97.13%) were positive for Methanobrevibacter while
Methanosphaera sequences were present in 348 of the milk
samples (35.69%). To further assess the absolute counts of
methanogens in dairy products, we subsequently screened
unprocessed raw milk, pasteurized milk, and pasteurized yogurt
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TABLE 2 | Secondary multivariable logistic regression model estimating

the impact of the number of organic dairy products on the presence of

Methanobrevibacter smithii.

M. smithii presence

Adjusted main effects model (N = 406)a

Determinant OR (CI95%) FDR crit.b p-value

First exposure to antibiotics (during first 2 years of life)

Never Ref.

At 0–7 months 0.61 (0.33; 1.13) 0.020 0.115

At 8–12 months 1.20 (0.58; 2.49) 0.035 0.631

At 13–24 months 0.78 (0.39; 1.57) 0.030 0.490

Regular intake of organic products (cheese, milk, and yogurt)

Trend (0, 1, 2, 3) 2.12 (1.31; 3.43) 0.005 0.002c

Diet of child

Conventional (≤25%

organic)

Ref.

Organic (incl.

biodynamic; >25%

organic)

0.30 (0.14; 0.65) 0.010 0.002c

aModel adjusted for: age at fecal sampling (years), gender (male/female), recruitment

group (conventional/alternative), total energy intake (kcal) and BMI (z-score).
bCritical FDR cut-off level as determined by Benjamini-Hochberg procedure.
cSignificant association after correction for FDR by Benjamini-Hochberg procedure, also

indicated in bold.

samples (Supplementary Table 1).M. smithii andM. stadtmanae
were quantified by qPCR on isolated DNA of these samples.
Although M. smithii could not be detected in yogurt samples,
we found significant levels of M. smithii in milk (Figure 3).
The average absolute counts in processed milk was highly
similar for biodynamic (2.63 log10 DNA copies/ml), organic
(2.88 log10 DNA copies/ml) and conventional milk (2.94 log10
DNA copies/ml). However, rawmilk (3.73 log10 DNA copies/ml)
showed higher M. smithii counts compared to processed milk.
For M. stadtmanae, no detectable levels could be measured in
any of the samples. In conclusion, we identified milk as a possible
source offM. smithii.

DISCUSSION

To the best of our knowledge, this is the first large-scale
explorative study investigating the associations between a wide
range of potential determinants and intestinal colonization by
methanogenic archaea in school-aged children. We found that
consumption of organic yogurt and milk products is related to
colonization of M. smithii in particular. Moreover, we identified
M. smithii in raw and processed milk, which could therefore be
considered as potential sources for archaeal colonization.

The difference in metabolic activity might be a possible
explanation for the large difference in the prevalence of the two
main intestinal archaea. M. smithii is responsible for producing
the majority of methane in the gut by reducing carbon dioxide
using hydrogen as the primary electron donor. Alternatively, M.
smithii can use formate as a direct substrate to produce methane
(Roccarina et al., 2010). In contrast,M. stadtmanae is only able to

TABLE 3 | Final multivariable logistic regression model showing the

association between potential determinants and the presence of

Methanosphaera stadtmanae.

M. stadtmanae presence

Adjusted main effects model (N = 420)a

Determinant OR (CI95%) FDR crit.b p-value

Birthweight (g)c 1.001 (1.000; 1.002) 0.019 0.028

Place and mode of deliveryc

Natural birth at home Ref.

Natural/artificial birth

at hospital

1.61 (0.67; 3.88) 0.034 0.288

Caesarean section 6.89 (2.09; 22.67) 0.003 0.002f

First exposure to antibiotics (during first 2 years of life)c

Never Ref.

At 0–7 months 0.54 (0.16; 1.83) 0.038 0.323

At 8–12 months 0.70 (0.21; 2.36) 0.050 0.566

At 13–24 months 3.38 (1.34; 8.50) 0.013 0.010f

Regular intake of organic milkd,e

No Ref.

Yes 3.52 (0.97; 12.73) 0.022 0.056

Regular intake of organic yogurtd,e

No Ref.

Yes 1.690 (0.49; 5.86) – 0.409

Regular intake of organic fruitc

No Ref.

Yes 4.73 (1.64; 13.62) 0.006 0.004f

Animal protein intake

(en%)c
0.77 (0.65; 0.92) 0.009 0.004f

aModel adjusted for: age at fecal sampling (years), gender (male/female), recruitment

group (conventional/alternative), total energy intake (kcal) and BMI (z-score).
bCritical FDR cut-off level as determined by Benjamini-Hochberg procedure.
cParameter estimates presented for the model containing organic milk intake. Parameter

estimates did not change substantially when the variable “organic milk intake” was

replaced by the variable “organic yogurt intake” (data not shown).
dMissing value category omitted (included in FDR correction).
eDue to multicollinearity both regular intake of organic milk and regular intake of organic

yogurt were included in separate models, which included all other variables as listed in

this table.
fSignificant association after correction for FDR by Benjamini-Hochberg procedure, also

indicated in bold.

produce methane from hydrogen (Gaci et al., 2014). Moreover,
colonization by M. smithii and M. stadtmanae might originate
from different environmental sources, which could explain their
different prevalence. Factors that play a role in the acquisition
of methanogenic archaea are largely unknown. However, the
environment is assumed to play a crucial role in gut colonization.
This view is strengthened by a twin study that indicated
that not genetic factors, but shared and unique environmental
factors were of importance for the occurrence of methanogens
in humans (Florin et al., 2000). The prospective design and
long-term follow-up allowed us to examine a wide range of
environmental, dietary and life-style associated determinants
throughout childhood. Out of the determinants present during
infancy, caesarean section compared to vaginal delivery at home,
first exposure to antibiotics in the 2nd year of life compared to
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FIGURE 2 | Variation in the relative abundances of dominant archaea

taxa in raw milk of re-analyzed 16S sequence-data from Kable et al.

(2016). Data represent the abundances of the various archaeal taxa (found at

0.1% or greater) as proportion of the total archaeal populations in raw tanker

milk. Relative abundances of OTU’s rarified at 15,000 sequences per sample

are indicated at their highest identified taxa. (o), order. (f), family. (g), genus.

no antibiotic treatment during the first 2 years and organic fruit
consumption were associated with increased odds of colonization
by M. stadtmanae. These findings on M. stadtmanae in the
present study need however to be interpreted with great care.
Due to the small group of children colonized by M. stadtmanae
(n = 39), models for M. stadtmanae were prone to instability.
Therefore, these factors need to be verified in other studies with,
preferably, larger sample sizes. In particular, the association with
birth mode is in contrast with previous findings that intestinal
colonization by methanogenic archaea in neonates and infants
is very rare (Palmer et al., 2007). However, it could be postulated
that the pioneer species associated with caesarian section delivery
drive a subsequent colonization pattern that is more favorable
for the establishment of M. stadtmanae at a later stage. As such,
it is important to study the co-occurrence and co-exclusion of
archaea and bacterial taxa in future studies, in order to identify
microbial networks that might favor archaeal colonization.

Although one previous study found females to be more
often colonized by methanogenic archaea than males (Florin
et al., 2000), the current view is that there is no association
between methanogenic archaea and gender (Dridi et al., 2011b).
In this study, we assessed fecal samples of 244 (51.7%) males
and 228 (48.3%) females. Of all males under study 187 (76.6%)
were colonized by M. smithii, while 182 (79.8%) females were
colonized by M. smithii. Furthermore, 19 (7.8%) males were
colonized byM. stadtmanae. This was similar to the colonization
by M. stadtmanae in females, as 20 (9.6%) females were
colonized. Moreover, we also did not find an association between
gender and eitherM. smithii orM. stadtmanae.

So far, only one study assessed potential carriers of archaea in
food, but yogurt and milk have not been assessed herein (Brusa
et al., 1998). The present study suggests an association between
dietary factors and archaeal colonization, as organic yogurt and
milk were significantly associated with the presence ofM. smithii.
Due to the high correlation between organic milk and yogurt
intake, we were however not able to disentangle whether only
organic milk or organic yogurt or both were truly responsible
for the association withM. smithii during multivariable analyses.

FIGURE 3 | Absolute counts of M.smitthii in whole or full-fat dairy

products (n = 2–3). Replicates (n) denotes repeated isolation and

quantification of the product. Average counts were calculated from archaea

positive samples only.

Cheese was however not associated withM. smithii colonization,
which is in line with previous findings where no M. smithii
or M. stadtmanae were detected in different types of cheese
(Brusa et al., 1998). Analyses on the number of dairy products
consumed, used to address multicollinearity, indicated that the
consumption of multiple different dairy products might be
associated with an increasedM. smithii presence.

A well-known carrier of M. smithii and M. stadtmanae is
the rumen of beef and cows (Carberry et al., 2014; Cersosimo
et al., 2016). Therefore, it is likely that products derived
from cows, such as dairy products, may contain some of
these taxa, which was reflected in our results. Moreover, these
specific methanogenic archaea have also been found in soil
which could be the route of origin to cows as revealed from
the Integrated Microbial Next Generation Sequencing database
(Lagkouvardos et al., 2016). The archaeal presence in soil might
be the underlying reason that especially organic products were
associated with colonization. Organic cows have more outdoor
access compared to conventionally farmed cows and could
therefore have increased archaea uptake. Additionally, drugs for
organic cows are less prescribed whereas conventional cowsmore
often receive antibiotics to prevent microbial infections (Zwald
et al., 2004). Methanogens are susceptible to antibiotics such as
bacitracin, a commonly used antibiotic in cattle, which might
eliminate them (Dridi et al., 2011a). Although the screening of
multiple dairy products indicated the presence of M. smithii in
both conventional and organic dairy products, the latter could
alternatively explain the lack of association of consumption of
conventional dairy products with M. smithii colonization within
our cohort study.

As the culture-independent techniques applied in the present
study do not distinguish viable microbes from cell-free DNA
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originating from lysed microorganisms, we cannot completely
exclude that dairy products only contain archaeal DNA instead
of viable archaea. However, we used the concentrated pellet of
the microbial cells for downstream analyses of milk products,
thereby minimizing the detection of circulating cell-free DNA. It
is therefore likely that a living fraction of archaeal cells has been
measured.

For milk, the typical neutral pH is viable for both M. smithii
and M. stadtmanae, which favor an optimal pH of 6.9–7.4
whereas yogurt has a more acidic environment (Miller and Lin,
2002; Ledenbach and Marshall, 2009; Dridi et al., 2011b), which
might explain why we could not detect methanogenic archaea in
yogurt samples. In addition, methanogens have been discovered
in a wide variety of extreme environments with temperatures
until at least 100◦C (Elias et al., 1999; Tung et al., 2005). The latter
might indicate that these microbes could resist heat treatments
and pasteurization performed for milk products. All in all, this
strengthens the possibility that viable methanogenic archaea
could indeed be present in milk products, even after thermal
processing.

To get definite prove that milk products are a source of
archaea, future studies using either culture-based methods
or molecular methods that enable differentiation between
intracellular and cell-free DNA, such as the use of propidium
monoazide (PMA) as a membrane impermeable DNA
intercalating dye (Janssen et al., 2016), are warranted. Several
studies already identified living bacteria with an implemented
PMA-assay in both human feces and processed milk (Bae and
Wuertz, 2009; Soejima et al., 2012; Quigley et al., 2013; Cangelosi
and Meschke, 2014).

In conclusion, dairy products, in particular organic milk
products, may play an influential role in the colonization of the
gut by M. smithii in children. Moreover, M. smithii seems to be
present in both raw and commonly consumedmilk products. For
the first time, a large variety of determinants have been explored
in association with gut colonization by methanogenic archaea.
Although more information is needed to confirm and unravel
the mechanisms of archaeal colonization in more detail, it may
provide new targets for prevention of diseases associated with the
presence of methanogenic archaea.
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