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BACKGROUND: Lung cancer is the leading cause of cancer-related death worldwide. Surgical resection remains the definitive
curative treatment for early-stage disease offering an overall 5-year survival rate of 62%. Despite careful case selection, a significant
proportion of early-stage cancers relapse aggressively within the first year post-operatively. Identification of these patients is key to
accurate prognostication and understanding the biology that drives early relapse might open up potential novel adjuvant
therapies.
METHODS: We performed an unsupervised interrogation of >1600 serum-based autoantibody biomarkers using an iterative
machine-learning algorithm.
RESULTS: We identified a 13 biomarker signature that was highly predictive for survivorship in post-operative early-stage lung
cancer; this outperforms currently used autoantibody biomarkers in solid cancers. Our results demonstrate significantly poor
survivorship in high expressers of this biomarker signature with an overall 5-year survival rate of 7.6%.
CONCLUSIONS: We anticipate that the data will lead to the development of an off-the-shelf prognostic panel and further that the
oncogenic relevance of the proteins recognised in the panel may be a starting point for a new adjuvant therapy.
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INTRODUCTION
Worldwide, lung cancer is the leading cause of malignancy-
related death in men and the second in women. Only 18% of
patients at initial presentation are suitable for curative treatment,
mainly surgical resection. The overall 5-year survival is 55%, 35%
and 15% for stage 1, 2 and 3 cancers, respectively [1, 2]. However,
there are still a considerable proportion of patients with
resectable lung cancers who relapse very quickly post resection.
The behaviour of these cancers does not obey the expected
outcomes based on prognostic scores such as the tumour node
metastasis (TNM) staging system. The mainstay of treatment for
early-stage non-small cell lung cancer (NSCLC) is radical surgery.
Stereotactic radiotherapy can be employed for local disease
control in patients who are unfit for surgery, but these cases are
at higher risk for recurrence [3]. Adjuvant platinum-based
chemotherapy has demonstrated an absolute survival benefit of
5% compared to surveillance alone; however, little progress has
been made in this area in the past 10 years. The future of
adjuvant therapy will involve multi-modality treatment with
targeted molecular agents and immunotherapy [3]. Multi-
modality therapy is not without associated morbidity; thus,

selecting patients who are biologically most at risk of post-
operative recurrence is a major clinical need.
Autoantibody (AAb) profiling is a promising approach that

incorporates the immune recognition of a myriad of aberrant
cancer proteins into a single diagnostic test. AAbs reflect the initial
humoral immune response against a tumour and their increased
levels can be detectable months to years prior to clinical evidence
of a primary tumour [4] or indeed recurrence post resection of a
primary tumour. While the mechanisms involved in the produc-
tion of AAbs in cancer patients remain speculative, AAbs are well
known to be sensitive biomarkers in the detection and
surveillance of many types of tumours. Gnjatic and colleagues
developed protein microarrays to assay the serological response
of cancer patients to tumours (serological expression cloning,
SEREX) [4]. These high-density protein microarrays, in which
proteins are immobilised in their natural conformations, allow the
functional testing of thousands of proteins simultaneously, thus
increasing the chance of the discovery of new AAb signatures [5].
Building on this work and principle, we utilised the Sengenics
Immunome™ Protein Array [Sengenics, Singapore] containing
1627 proteins, to screen sera from a total of 157 non-small cell
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lung cancer (NSCLC) patients across two independent cohorts. We
set out to identify a high-risk sub-group of surgically resectable
NSCLC patients who may benefit from adjuvant therapy, and
explore the biological significance of the identified biomarkers
along with information relevant to therapeutic application. We
implemented a bespoke machine-learning approach in order to
investigate the utility of using the pre-resection samples in the
context of malignancy to identify sera-based proteomic changes
specifically associated with outcome in NSCLC following surgery.

MATERIALS AND METHODS
Collaborating clinicians and principal researchers prospectively recruited
patients involved in our study across two major tertiary sub-specialty
centres in the midlands regions of England, UK as part of a large historical
observational study (CLUB) between 2010 and 2015. All patients under-
went curative NSCLC (adenocarcinoma or squamous cell carcinoma only)
resection (stage I–IIIa disease) at two major thoracic surgical units in
England. Patients not meeting this inclusion criterion or who had any other
previous malignancy were excluded from our study. Inadequate serum
sample (<1ml), non-cancer-related deaths, use of neoadjuvant chemother-
apy or positive pathological resection margins were excluded from this
study. All participants provided informed consent to participate in future
translational studies when they were initially recruited, previously
approved by the West Midlands—Solihull Research Ethics Committee
(Cancer of the Lung Biomarkers (CLUB): REC reference: 04/Q2704/34). The
study had National Cancer Research Network (NCRN) approval and was an
NCRN portfolio study. Patients were diagnosed by routine pathological
examination of their excised primary tumour and staged according to the
TNM staging system for NSCLC according to the International Association
for the Study of Lung Cancer (IASLC) guidelines (8th Edition) [6].

Study design
A total of 157 study participants’ (NSCLC stage I–IIIa) pre-operative serum
samples were utilised in the proteomics analysis, taken from a large
repository of trial patients. A sample size calculation, undertaken to achieve
a power of 95% was determined based on the standard deviations of each
protein in the immunome array. A random set of patients was selected from
the total study participants (investigators were blinded to clinical metadata)
in order to train the machine-learning model and subsequently tune the
model hyperparameters using k-fold cross-validation. This training cohort is
known as cohort 1. A smaller independent, second cohort was randomly
selected to provide an unbiased evaluation of the final model and validate
the model (cohort 2). Cohort sizes were determined using a stratified
random sample-based approach to split the overall dataset. For reasonably
sized datasets (n > 100), this commonly used approach in machine-learning
settings has been shown to be close to optimal when allocating 66–70% of
the samples to the training set (cohort 1) [7].

Study cohorts
Cohort 1 consisted of 111 NSCLC patients (65 survivors, 46 non-
survivors). Cohort 2 consisted of 46 NSCLC patients (27 survivors, 19 non-

survivors). Survivors were defined as patients who were alive and
recurrence-free at follow-up. The median follow-up of the entire
recurrence-free population was 1825 days (range 1195–2555 days).
Non-survivors were defined as patients who died from post-operative
recurrence within a median of 365 days. The participant characteristics
are summarised in Supplementary Table (S1). There was no significant
difference between cohorts 1 and 2 in terms of age, gender, histology,
stage, vascular invasion, need for adjuvant therapy and overall survival
(assessed using Wilcoxon’s rank-sum test and Fisher’s exact test for non-
parametric continuous data and categorical data, respectively). There
was a higher preponderance of adenocarcinomas in cohort 2 (60.9
versus 49.5%), and a higher preponderance of squamous cell carcinomas
in cohort 1 (50.5 versus 39.1%). The survival distribution of the total
study population is displayed in Fig. 1. Cox proportional multivariate
hazards analysis identified the IASLC stage and the presence of
lymphovascular invasion as significant independent negative prognostic
risk factors (hazard ratio (HR) 1.72, p < 0.001 and HR 2.03, p= 0.006,
respectively); histology was not significant.
All samples were assayed using the Sengenics Immunome Protein Array

containing 1600+ proteins spotted in quadruplicates (Sengenics, Singapore).

Sample collection
Serum samples were taken at enrolment or prior to surgery and
immediately pseudonymised so as to blind investigators to endpoints.
Samples were collected from all participants in a starved state to maintain
uniformity. A sample of 7 ml whole venous blood was taken into standard
collection tubes and allowed to clot for 2 h. Samples were centrifuged at
3000 × g for 20 min. Serum was then carefully aspirated, divided into
aliquots and stored at −80 °C [8].

Protein Immunome AAb assay
Serum samples were thawed, mixed by vortexing and any precipitate was
pelleted by centrifugation (13,000 × g, for 3 min). Aliquots of each sample
(11.25 µl) were then diluted 400-fold into Serum Assay Buffer (SAB; 0.1% v/v
Triton, 0.1% w/v bovine serum albumin (BSA) in phosphate-buffered saline;
20 °C), giving a final volume of 4.5ml.
Replica Immunome protein array slides were removed from storage

buffer and washed in 200 ml cold SAB on an orbital shaker (50 RPM, 5
min). Each slide was then placed array side up in a hybridisation chamber
and incubated with individual diluted sera (4.5 mL) on a horizontal shaker
for 2 h at 20 °C, with gentle agitation. Each protein array slide was then
rinsed briefly twice with 30 mL SAB, followed by immersion in 200 mL of
SAB buffer for 20 min at room temperature with gentle agitation. Each
slide was then incubated with a detection antibody (20 μg/ml Cy3-
labelled anti-human IgG in SAB) for 2 h at room temperature with gentle
agitation, rinsed briefly with SAB buffer and then washed three times in
SAB for 5 min at room temperature. Excess buffer was removed by
immersing the slide briefly in 200 mL deionised water, after which slides
were then dried by centrifugation (240 × g for 2 min) at room
temperature. Slides were then stored at room temperature and scanned
the same day at 10 µm resolution using an Agilent G2505C fluorescence
microarray laser scanner.
An outline of the bioinformatics analysis algorithm is shown in Fig. 2.
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Fig. 1 Multivariate analysis using logistic and Cox proportional hazards regression to assess outcome in terms of post-operative
mortality and time to death, respectively. Stepwise backward elimination was employed to remove the least significant independent
predictors. All variables (age, gender, histology, IASLC stage, nodal status, lymphovascular invasion and adjuvant chemotherapy use) were
entered into the model and successively removed depending on significance in the model.
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Data pre-processing
Scanned images were pre-processed and quality control checks were
performed on the generated data using the Sengenics internal pipeline [9].
Composite normalisation of the data was done subsequently by using
both quantile- and intensity-based modules on the Cy3-labelled biotiny-
lated BSA-positive control probes as reported by Duarte et al. [10]. AAb
binding towards specific proteins was presented as relative fluorescent
intensities (RFUs) and used as inputs for downstream analysis.

Penetrance fold-change analysis
The penetrance fold-change (pFC) analysis compares both the
frequency and strength of AAb signals with the intention of identifying
biomarkers that are highly elevated in survivors. To achieve this,
individual FCs of survivors and non-survivors were estimated using the
equation below:

IFC protein A; sample Xð Þ ¼ RFU protein A; sample Xð Þ=μ RFUðprotein A; control groupÞ

Protein A represents each protein in the Immunome array and X
represents every sample assayed in the microarray platform. The mean
RFU value for each protein in the control group was used as a background
threshold.
For both the survivor and non-survivor groups, respectively, pFC values

for each group were obtained by calculating the mean IFC of patients who
pass the IFC threshold of ≥2. The penetrance frequencies were then
calculated by estimating the number of patients (in each group) who has
an IFC ≥2 [11]. Biomarkers were further filtered based on the criteria of (i)
pFC of survivors ≥2, (ii) % penetrance frequency of survivors ≥10% and (iii)
penetrance frequency of non-survivors ≤10%.

Selection of biomarker panel
A combination of feature selection and machine-learning methodologies
were used to determine the optimal number of biomarkers that were able
to provide the best stratification between survivors and non-survivors [12].
For feature selection, univariate statistical tests, random forest importance

ROC curve generation*

Multi-model Inference Approach

Stepwise Backward Elimination Logistic Regression

Additive Predictive Modelling

Boosted Logistic Regression

Recursive Feature Elimination with Random Forest Machine
Learning

Corroboration of Marker Selection

Data Pre-processing

13 biomarker signature tested in cohort 1 and validated in cohort 2

Top 18 biomarkers entered into an information theoretics model to determine

Top 44 biomarkers entered into multivariate model with elimination of least

Biomarkers cumulatively entered into an ROC model starting with top most

Top 60 biomarkers entered into a machine-learning model to ensure significant predictive accuracy

Repeated cross-fold validation looped over 100 unsupervised
iterations

Top most stable predictive biomarkers identified; n=60

Lasso regression

DESEq2

RFE with LOOCV resampling estimation

Total number of raw candidate biomarkers; n = 1622

Filtering based on penetrance fold change analysis; n=1355

stable (i.e. 1st, 1st + 2nd, 1st + 2nd + 3rd) until optimal number of biomarkers found

Beyond n=44, ROC metrics start to deteriorate

significant biomarkers with respect to outcome; n=18

most parsimonius model based on AICc-weighting; n=13

Fig. 2 Data analysis algorithm illustrating steps in raw data handling to applied machine-learning processes and generation and testing
of a final biomarker panel in the validation cohort. Throughout the algorithm, we indicate the number of biomarkers that are successively
eliminated based on variable importance and stability in the model. At each iterative step, the number of biomarkers is displayed indicating
successive removal and refinement of the model.

A.J. Patel et al.

240

British Journal of Cancer (2022) 126:238 – 246



and mutual information metrics were used as filter methods to rank
biomarkers (the full list of filter functions are listed in Supplementary
Methods (S2)). Given the degree of multi-collinearity between the
biomarkers, Recursive-feature elimination (RFE) with random forest
modelling was applied to the dataset, looping across 100 unsupervised
iterations using random seeds for marker reliability. The topmost stable
biomarkers were used to generate biomarker panels by additively selecting
the top-ranking biomarkers (top 3.75% of biomarkers, n= 60) in a
cumulative fashion, starting with the most stable biomarker from the
RFE set (i.e. 1st, 1st+ 2nd, 1st+ 2nd+ 3rd etc). Receiver operating
characteristic (ROC) metrics were determined for each additive model
and the top-performing combination was taken forward as input to
machine-learning models. Any further addition of biomarkers did not lead
to significant improvements in model performance, but only further
increases in computational time. To determine the biomarker panel
performance, ROC, sensitivity and specificity were evaluated and the
biomarker panel with the best sensitivity and specificity was deemed the
optimal panel to stratify between survivors and non-survivors. For this
analysis, Boosted Logistic Regression was performed under default settings
using accuracy estimation methods, repeated cross-fold validation and
leave-one-out cross-validation [13].

Model selection
To corroborate marker selection from the RFE algorithm, we used lasso
regression with repeated tenfold cross-validation in the training set. This
was applied using the R package glmnet. We set the elastic-net penalty, α,
that bridges the gap between lasso (α= 1, the default) and ridge
regression (α= 0), to 0.9 for numerical stability [14]. Furthermore, we
processed proteomics data using DESeq2 (v.4.0.2) software to identify
differentially expressed proteins between survivors and non-survivors. A
cut-off of gene expression FC of ≥2 or ≤0.5 and a false discovery rate q ≤
0.05 was applied to select the most differentially expressed proteins.

Akaike information criterion
We adopted a model averaging approach using the Akaike information
criterion (AIC) weights [10, 15] in order to estimate the in-sample
prediction error and thereby the relative quality of the statistical models
for a given set of data. We used an information-theoretic approach to
calculate the AIC for each model permutation within the top-ranking
biomarkers using the glmulti and MuMIn packages in order to determine
the most parsimonious model with the greatest explanatory predictive
power. The AIC is a measure of how well a model fits the data relative to
the other possible models given the data analysed and favours fewer
parameters [16]. The model with the lowest AIC is the best model
approximating the outcome of interest. AIC can be expressed as:

AIC ¼ �2 log-likelihoodð Þ þ 2K ;

where K is the number of model parameters and log-likelihood is a
measure of model fit. In this study, as n/K ≤ 60 for sample size n and the
model with the largest value of K, we used the second-order bias
correction version of the AIC (AICc):

AICc ¼ �2 log-likelihoodð Þ þ 2K þ 2KðK þ 1Þn� K � 1;

AICc ¼ AICþ 2KðK þ 1Þn� K � 1;

where n is the sample size, K the number of model parameters and log-
likelihood is a measure of model fit [15, 17]. From an information-theoretic
perspective, the Akaike weights for a particular model can be regarded as
the probability or “weight of evidence” that the model is the best model (in
a Kullback–Leibler sense of minimising the loss of information when
approximating full reality by a fitted model) out of all of the models
considered/fitted based on the available dataset [15, 16].

RESULTS
Identification of predictive biomarkers (Fig. 2)
Initial data processing involved filtering according to the pFC
analysis in order to avoid biasing subsequent model generation.
One thousand three hundred and fifty-five biomarkers remained,
which were taken forward into the deeper analysis. The
biomarkers, which appeared most frequently with the highest

importance values across 100 randomly seeded iterations, are
listed in Supplementary Table (S3). Corroborative regression and
genomics analysis methods were performed and indicate the
biomarkers, which were common to all analytical techniques.
Overall, 60 biomarkers (RFE set) were identified as the most stable
with no improvement in predictive performance beyond this
number.

Additive predictive modelling
The RFE set of biomarkers was used to generate biomarker panels
by additively selecting the top-ranking biomarkers in a cumulative
fashion. These inputs were used to determine the ROC metrics at
each additive iteration for cohort 1, displayed in Supplementary
Graph (S4). An upward linear trend in all three parameters (area
under the curve (AUC), sensitivity, specificity) was noted as more
biomarkers were added. This progressive increase peaked at 44
cumulative biomarkers (AUC 0.975; sensitivity 87%; specificity
98.5%). Beyond this, the predictive metrics become rather
unstable and less uniform, hence the decision to proceed with
the top 44 biomarkers for deeper analysis.

Multi-model inference approach
Given that a 60-biomarker diagnostic scoring system would be
cumbersome and impractical, we utilised an information-theoretic
approach to determine the biomarker combination with the
highest diagnostic potential in the most parsimonious model. We
employed the AICc method in order to estimate the “goodness of
fit” of statistical models and thereby compare multiple models
with one another. The AICc avoids overfitting the model in smaller
sample sizes. Based on the cumulative ROC analysis, we
proceeded with the top 44 biomarkers in this downstream
analysis. Following stepwise backward elimination of these
markers in a multivariate logistic regression model, with survivor-
ship as the dependent variable, 18 biomarkers were determined to
be the most significant and were therefore used in the multi-
model inference analysis. Any further addition of more biomarkers
did not lead to significant improvements in model performance,
but did contribute to significant increases in computational time.

Assessing model performance
Panel a, the most parsimonious and best-performing model,
comprised 13 biomarkers—SPATA19, TSPY3, GLS2, TCEA2, TSGA10,
HMGN5, LUZP4, HDAC4, SPACA3, IMPDH1, TXN2, TFG and PPP2R1A
(Supplementary Table (S5)). ROC metrics for each individual
candidate biomarker are found in Supplementary Table (S6), along
with association with clinico-pathological correlates (Supplemen-
tary Figure S7). This refined model was assessed in cohort 1 (AUC
0.918, sensitivity 89.1%, specificity 80.1%) and validated in the
independent cohort 2 (AUC 0.842, sensitivity 84.2%, specificity
74.1%) (Fig. 3). There was no significant difference in the ROC
metrics between the two cohorts, indicating good performance in
the validation cohort. We noted a preponderance of bona fide
cancer testis antigens (CTAGs) in the RFE biomarker set (16/60
(26.7%)). We thus elected to explore two further CTAG specific
panels in order to determine the prognostic relevance of these
highly conserved proteins in NSCLC. We refer to the final biomarker
panel we defined as panel a (13 biomarkers). Panel b refers to the
CTAGs extracted from the RFE set (16 biomarkers) and panel c refers
to the CTAGs extracted from panel a (6 biomarkers). The strong
CTAG presence in panel a comprises six proteins antigens, SPATA19,
SPACA3, TSPY3, TCEA2, TSGA10 and LUZP4, all with established pro-
tumourigenic roles in different cancers under certain conditions
(Supplementary Table (S5)). CTAGs trigger unprompted humoral
immunity and immune responses in malignancies, altering tumour
cell physiology and neoplastic behaviours. Their limited expression
in normal somatic tissues coupled with recurrent up-regulation in
epithelial carcinomas makes them highly attractive biomarker and
vaccine targets. We explored the performance of all three panels in
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cohorts 1 and 2 (Fig. 4). Panel a performed significantly better in
cohort 1 (test) than both panels b and c (CTAG panels). However, in
cohort 2 (validation), the differences between panel a and the CTAG
panels (b and c) was not significant. Panel b (16 CTAG panels)
outperformed panel a in cohort 2 (AUC 0.875 versus 0.842, p=NS),
but panel c underperformed compared to panel a in cohort 2 (AUC
0.69 versus 0.842, p=NS). The increased predictive performance of
panel b (16 CTAG panels) reaffirms the importance of CTAGs in
discriminating between survivorship in lung cancer. In spite of
CTAG preponderance, these data show that the non-CTAG antigens
in panel a, which are critical mediators of Wnt signalling and
phosphatase activity, are clearly biologically important in their
ability to prognosticate in lung cancer.

Survival analysis
Further interrogation of these signatures was carried out by
generating a continuous risk score for every individual on the
basis of model coefficients. The resultant predicted risk scores
from cohort 1 (training) were divided using optimal cut-off points
determined through ROC analysis in order to further dichotomise
the patient cohorts as “high expressors” and “low expressors”. We
performed this for all three panels (a–c), the scores being inferred
directly from the biomarker signal intensities. Using these
individual risk scores, we carried out survival analyses (Fig. 5)
and multivariate Cox proportional hazards modelling (Fig. 6) in the
entire NSCLC cohort. Patient age, gender, histology, nodal status,
IASLC stage, lymphovascular invasion and whether patients
underwent adjuvant chemotherapy were all predictors that were
entered into the model alongside all the panel scores. All panels
were able to effectively dichotomise between survivor statuses in
our cohort, with high expression conferring a significantly worse
outcome (p < 0.001), reaffirming findings from the ROC analysis.
Five-year survival in high expressers of panels a, b and c was 7.6%,
16.4% and 19.9%, respectively, and high expressers of panel a had
a median survival of just under 16 months, which for early-stage
resected lung cancer is very low. On multivariate testing, only
panels a and b were deemed significant independent predictors
of survival, HR 19.6 and 7.22, respectively (p < 0.05). IASLC stage
was still deemed an independent predictor of outcome albeit not
significant (HR 1.24, p= 0.11). Panel c was deemed a significant
independent predictor of outcome only when entered into a

multivariate model without panels a and b. This reaffirmed the
findings that the CTAGs alone from panel a were not sufficiently
predictive enough when compared with panels a and b, but are
still significant predictors independent of age, gender, IASLC
stage, lymphovascular invasion, histology, nodal status and
whether patients underwent adjuvant chemotherapy.
We performed multivariate analyses in various subgroups

according to gender, histology ISALC stage and adjuvant therapy
status to explore the relevance of panel a in relation to specific
clinico-pathological factors. In all subgroups, panel a was the most
significant independent predictor of outcome (Supplementary
Table (S8)).

DISCUSSION
Results from the NLST and European NELSON trials were strongly
supportive of lung cancer screening [18, 19]. Widespread use of CT
coronary angiography to assess inpatient chest pain as well as the
use of whole-body CT use in the assessment of Trans-catheter
valve intervention results in a high detection rate of incidental
findings, a large proportion of which are lung malignancies. The
combination of screening strategies and increased use of CT
scanning for non-cancer-related conditions will result in a surge in
the detection rate of early-stage lung cancers and therefore an
increased surgical resection rate. Early-stage lung cancers confer a
multitude of outcomes ranging from indolent disease with high
post-operative disease-free survival rates at 5 years to highly
aggressive disease with relapse in the first 12 months post
resection.
Current prognostic biomarkers for early-stage lung cancers have

been described but are limited in their utility owing to the lack of
proper validation and lack of adequate sensitivity and/or
specificity. The key points in evaluating biomarker studies in
early-stage lung cancer include well-defined objectives and study
populations, robust specimen storage and use, and the use of a
clinically applicable assay that is validated in an independent
cohort of patients. Critical appraisal of published prognostic
signatures in early-stage lung cancers found that adherence to
these criteria was poor with overt flaws in study design.
Subramanian and Simonet al published a set of guidelines to
inform prognostic biomarker studies in lung cancer, and although
all the studies pertain to gene expression microarray data, we
have adhered to these criteria as closely as possible [20]. We
validated our signature in one completely independent dataset,
which is a feature that is lacking in many prognostic signatures in
early-stage lung cancer [20]. A 14-gene, quantitative real-time
PCR-derived expression signature was previously validated in two
independent large stage I, non-squamous NSCLC datasets, which
demonstrated the robustness of the statistical design. This
signature showed poor survival in high-risk patients based on
gene expression in both validation cohorts, and although the AUC
values were significantly higher for this signature than standard
NCCN risk criteria in both validation sets, the absolute values were
still relatively low (0.60 and 0.61), compared with the AUC values
from our panels a and b (AUC 0.842 and 0.875) [21]. Furthermore,
this study did not assess the therapeutic relevance of the genes
identified in the final signature.
Historically, the majority of AAb-based biomarker research,

including that in NSCLC, has concentrated on the diagnosis of
disease states or early detection of cancers as opposed to trying to
map the course of disease post treatment [22]. Sensitivities and
specificities of biomarker panels for lung cancer detection have
ranged from 0 to 92.2% and 79.5 to 92.2%, respectively [23].
Circulating proteins have also been investigated as prognostic

biomarkers in early-stage lung cancer, the most common of which
are CEA and CYFRA 21-1. The largest study exploring the role of
CEA found that elevated pre-operative levels conferred poor
5-year survival [24].

Final biomarker panel ROC curves
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Fig. 3 ROC curves for Biomarker Panel A in both Cohorts. ROC
curves demonstrating the performance of panel (a) (13 biomarkers)
in both cohort 1 (test) and cohort 2 (validation). P value indicates no
significant difference in the performance of this model between
cohorts. AUC 95% confidence intervals are displayed within
brackets.
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Given the complexity and multi-factorial nature of the anti-
tumour immune response and tumour immune evasion mechan-
isms in cancers that are not solely reliant on single oncogenic
drivers, combination biomarker signatures are more valuable [23].
None of the prognostic studies offered any predictive assessment
of their panels, but instead used hazard ratios (measures of
association, not predictive power) with no separate test/validation.
Three broad categories of genes comprised our final panel

(panel a), namely CTAG expression, Wnt signalling protein
aberrancy and serine/threonine protein phosphatase deregula-
tion. CTAGs are united by their role in embryonic development
and restriction of expression to male germ cells. Ectopic re-
expression of these antigens has been seen in a variety of somatic
solid tumours and in triple-negative breast cancers, high expres-
sion is correlated with worse survival in multivariate analysis (HR
2.02, 95% confidence interval 1.27–3.20; p= 0.003) [25]. Ectopic
gene signatures of normally silenced CTAG genes that are
expressed in cancer associated with a highly aggressive lung
cancer phenotype and independently predicted poor outcome
[26]. We identified 16 CTAGs (27%) in our RFE set (S3) as being
highly discriminatory for survivorship in this distinct cohort of
NSCLC patients (SPATA19, SPACA3, TSGA10, TSPY3, LUZP4, TCEA2,
CTNNA2, MAGEB2, SPO11, MAGEB4, MAEL, CSAG1, MAGEB5,

COX6B2, GAGE2 and TSSK6). This CTAG only model displayed
high predictive power in the validation cohort (AUC 0.875,
sensitivity 84.2%) and was a significant independent predictor of
poor outcomes. Clonal and subclonal CTAG expansion is generally
uniform in tumour cells with variations in behaviour tightly
regulated by epigenetic alterations [27].
Aberrant activation of the Wnt/β-catenin signalling pathway

is causally linked to cancer recurrence, immune evasion and
metastasis. A number of the identified tumour-associated
antigens are known to signal via this cascade, HMGN5, TFG,
MAEL, SOX15 and Dicckopf-1, the latter of which has been
investigated in numerous other biomarker signatures [28–30]
and like TFG interacts via the Wnt co-receptor LRP6 [31].
Proteins such as MAEL and PTK7 both signal via this cascade
and the expression was significantly associated with poor
outcomes in our cohort. MAEL, also a CTAG, has been shown to
be critical for cancer cell survival and is over-expressed in the
bladder and gastric cancers [32]. Functional experiments have
determined that MAEL protein exerts its oncogenic dominance
through degradation of the protein phosphatase ILKAP [33, 34].
Mutating or silencing of phosphatase activity is a well-known
tumour escape mechanism [35, 36] and is the third core
component of our identified biomarker panel. MAEL provides a
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unique link between all three biological pathways. These
molecules provide unique therapeutic targets as demonstrated
by an antibody–drug conjugate against the Wnt signalling PTK7
tyrosine kinase molecule, which elicited potent anti-tumour
activity in low-passage patient-derived solid tumour xenograft
models [37]. In solid tumours like NSCLC, high PTK7 expression
confers significantly reduced overall survival [37]. Targeting this
molecule in phase I trials have just completed accrual
[NCT02222922]. Multiple other agents targeting the Wnt
signalling axis that have entered or completed phase I clinical
trials and include Vantictumab, a monoclonal antibody
against the Fzd receptor (NCT01345201, NCT02005315,
NCT01957007 and NCT01973309), decoy receptors such as
OMP-54F28 (NCT02069145, NCT02092363, NCT02050178 and
NCT01608867) and porcupine enzyme inhibitors (NCT01351103
and NCT02521844) [28, 38].
Cellular responses to DNA damage are integral to maintaining

the genome and preventing cancer progression; serine–threonine
phosphatases like protein phosphatase 2 play a key role in the
DNA damage response through the regulation of important cell
cycle proteins and tumour suppressor genes such as ATM, Chk1,
Chk2, p53 and BRCA1 [36]. Cancer cells tend to evade the
activation of DNA repair pathways through copy number
alterations of Ser/Thr phosphatases, missense mutations and
increased mutant gene expression. Identifying aberrancy of these
important proteins and utilising early antigen expression is key to
disease surveillance and therapeutics. Following the exploitation
of BCR/ABL kinase inhibition in chronic myeloid leukaemia, efforts
have been made to explore PP2A phosphatase reactivation/
inhibition in anti-tumour therapy. PPP2R1A dysregulation was
individually a significant independent predictor of poor survival in
both cohorts; belonging to the PP2A enzyme family, these
complexes exert control over oncogenic signalling pathways
(MEK/ERK and Srk-Jnk) and over collateral resistance phosphoryla-
tion pathways. Their inhibition in a KRAS-mutant human lung
cancer cell line resulted in improved responses with MEK
inhibitors [39]. Mutations of PPP2R1A significantly enhance cancer
cell migration in endometrial and ovarian carcinomas [40],
whereas allosteric activation of this wild-type complex induces
cell cycle arrest with broad anti-tumour activity [35]. Notably, over-
expression and mutation of the target antigen are two of the
classical mechanisms for AAb production, with CD4+ T-helper cells
specific to mutated neoepitopes being able to drive the expansion
of a set of antigen-specific B cells, resulting in the secretion of
polyclonal AAbs that are able to recognise both mutated and wild-
type forms of the antigen [41]. Thus, our observation that anti-
PPP2R1A AAbs are independent predictors of poor survival is
consistent with the known aberrant function of PPP2R1A in
oncogenesis, albeit our data does not allow us to yet distinguish

between the two possible molecular origins of the AAbs. Current
phase 2 trials in recurrent glioblastoma (NCT03027388) are
investigating the role of PP2A inhibitor, LB100.
Whilst the aim of this study was to identify a highly prognostic

panel for surgically resectable lung cancer, the biology of the final
markers suggests a line of sight to the clinic in terms of adjuvant
therapies, in which high expression of our prognostic biomarker
might indicate a very poor outcome group of patients whose
survival might be improved by targeting some of the proteins that
the AAbs have formed against particularly the CTAGs. The highly
restricted expression patterns of CTAGs in normal tissues and
ectopic expression in tumour types makes them highly sought
after as targets for cancer vaccines [31]. The Lipo-MERIT trial
demonstrated strong CD4+ and CD8+ T cell induction along with
durable objective clinical benefit in unresectable melanoma
patients treated with a poly-antigenic liposomal RNA vaccine
with or without combination with anti-PD1 checkpoint blockade
therapy [32]. The RNA vaccine targeted four main CTAGs: NY-ESO-
1, MAGEA3, TPTE and Tyrosinase [32]. In our dataset, low CTAG
expressers (Fig. 5) had good outcomes, with 85.4% 5-year overall
survival (p < 0.001); targeting this group is unlikely, therefore, to be
of benefit; however, high expressers who suffer poor outcomes
post resection may well be suitable for a CTAG-based polyepitopic
RNA vaccine as an adjunct to standard adjuvant chemotherapy in
order to further eliminate micro-metastatic deposits and cells with
a high biological propensity for aggressive disease.

LIMITATIONS AND FURTHER WORK
Overall study limitations include the retrospective design and
heterogeneity of the study population, which can introduce
selection bias. This allied with the clinical diversity of the
population may mean the results are less easy interpretable.
However, we sought to mitigate against this using our robust
random machine-learning-based approach. Despite good perfor-
mance, the panel identified should also be employed to
determine clinical utility in larger independent NSCLC cohorts
with the parsimonious panel as well as in other cancers to
ascertain if the signature is disease-specific.
There are additional intrinsic limitations related to the

identification of proteins markers in biological fluids, in particular
the expression of AAb against highly conserved intracellular
tumour markers or in immuno-privileged sites. The host immune
response against cancer antigens is complex and tends to direct
itself towards the most immunogenic epitopes. It is known that
autoantigens that are modified before or during the course of
tumour formation and progression in cancer can stimulate the
immune response in patients when they are released from tumour
cells and that immune responses have been observed to be
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responsible for tumour growth promotion, but also prevention in
a process called immuno-editing [42]. Further underscoring this,
most of the seroreactive biomarkers in the RFE set (n= 60) are
intracellular antigens (52/60) interacting with membrane and non-
membrane-bound organelles such as ribosomes (4/60), with the
majority residing within the nucleus (37/60), a usually immuno-
privileged site. This pattern has been observed in AAb studies in
melanoma [42]. Despite this, AAbs generated against autologous
nuclear antigens are frequently found in cancer patient sera [43].
Nuclear antigens, however, do not undergo antigen presentation
during the negative selection of self-reactive lymphocytes largely
because of their intrinsic proteolytic instability, which affects the
binding kinetics with major histocompatibility complex class II
receptors. Exposure of the nuclear antigens to one’s immune
system and the resultant generation of AAbs is, therefore, thought
to occur following tumour cell death and release of the
intracellular contents into the circulation, although altered cellular
localisation [44], or shedding in exosomes, in transformed cells
may also play a role. The understanding of these key points might
help to clarify the response of our body against cancer
autoantigens in a patient-specific manner, but further clinical
validation is needed in order to extend the use of these 13
biomarkers in early detection and mapping the prognosis of
cancer.
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