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Microvilli are finger-like membrane protrusions, supported by the actin cytoskeleton,
and found on almost all cell types. A growing body of evidence suggests that the
dynamic lymphocyte microvilli, with their highly curved membranes, play an important
role in signal transduction leading to immune responses. Nevertheless, challenges in
modulating local membrane curvature and monitoring the high dynamicity of microvilli
hampered the investigation of the curvature-generation mechanism and its functional
consequences in signaling. These technical barriers have been partially overcome by
recent advancements in adapted super-resolution microscopy. Here, we review the
up-to-date progress in understanding the mechanisms and functional consequences
of microvillus formation in T cell signaling. We discuss how the deformation of local
membranes could potentially affect the organization of signaling proteins and their
biochemical activities. We propose that curved membranes, together with the underlying
cytoskeleton, shape microvilli into a unique compartment that sense and process signals
leading to lymphocyte activation.

Keywords: microvilli, actin, membrane curvature, BAR protein, WASp, TCR, super-resolution microscopy,
T-cell signaling

INTRODUCTION

Sea looks calm miles away but wavy inches ahead; same applies to the plasma membrane.
A variety of membrane protrusions have been identified on the cell surface, including microvilli,
filopodia, lamellipodia, and cilia (see Table 1). Those structures play a classical function in sensing
the environmental cues as well as facilitating cell migration. Meanwhile, accumulating evidence
suggests that membrane protrusions also play an active role in regulating biochemical reactions
that transduce membrane-proximal signaling (1–3), and dysregulation of their formation has been
associated with diseases like Huntington’s disease, PAPA syndrome, Wiskott–Aldrich syndrome
(WAS), and renal dysfunction (4–6).

In the immune system, microvilli are among the most common types of membrane protrusions
found on lymphocytes. Although they have been well-described by electron microscopy (EM)
studies (7), the biochemical and signaling functions of microvilli remained neglected until recently.
In this review, we discuss the potential of physical feature of microvilli in regulating chemical
reactions that transduce membrane-proximal signaling. We also summarize the development of
new techniques for imaging cell surface topography at high spatial or temporal resolutions, and for
modulating membrane curvature in a precision manner, which could provide powerful tools for
investigating the signaling function of microvilli.
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FORMATION OF DYNAMIC MICROVILLI

Microvilli are thin finger-like membrane protrusions that are
found on the surface of a wide variety of cell types (8),
including intestinal epithelial cells (9), dendritic cells (10), and
neurons (11). They are supported by actin filaments (F-actin)
that are organized in parallel bundles of 10–30 filaments (12, 13),
which resemble the actin network that constitutes filopodia (14).
However, filopodia often protrude from the lamellipodial and
lamellar actin network (15), while the microvilli actin network
does not (16, 17). In the case of lymphocytes, EM studies showed
the presence of microvilli on the surface of both T cells and B cells
(18). The diameter of the microvilli ranges from 50 to 550 nm, as
revealed by EM and fluorescence microscopy studies, while their
length varies between 100 nm to several microns (Figure 1) (7,
13, 19, 20). Thus, microvilli dramatically increase the cell surface
area, while having a negligible effect on the cytosolic volume.
Furthermore, actin depolymerizing toxin Latrunculin A (LatA)
eliminates most microvilli within 1 min in a reversible manner,
suggesting that microvilli are highly dynamic structures (13).
Recent technological advances in lattice light-sheet microscopy
allow 3D real-time tracing of such dynamic microvilli (20). It
was discovered that microvilli move laterally on the plasma
membrane and survey antigen-presenting cells (APCs) within
1 min, which is, coincidently or not, the half-life of T cell–
APC contact duration in vivo (20). Therefore, the dynamics of
microvilli fits well into their function in searching antigens.

Despite a handful of studies on microvilli morphology, our
knowledge on the regulatory mechanism of microvilli size,
structure, and dynamics is still limited. Evidently, their fate
following the formation of immunological synapse is still a matter
of debate. Cai et al. (20) demonstrated that there is no change in
the microvilli density before and after the immunological synapse
is formed. In contrast, Kim et al. (21) showed that at an early stage
of synapse development microvilli polarize toward the synapse,
but as the synapse matures, most of the microvilli disappear.
The later was further supported by a recent study by Ghosh
et al. (22), showing the loss of the microvilli after T cell receptor
(TCR) stimulation.

The microvilli are also regulated by cytokines and chemokines.
Westerberg et al. (23) found that CD40 antibody together
with IL-4 induces microvilli on the surface of B cells. On the

other hand, the chemokines stromal derived factor 1α (SDF-
1α) and B lymphocyte chemokine (BLC) induce resorption
of microvilli (24, 25), which promotes B cell homing by
transition from rolling adhesion to integrin-mediated adhesion.
Not surprisingly, members of the ezrin-radixin-moesin (ERM)
family, which link the cortical F-actin cytoskeleton to the plasma
membrane, were found to regulate microvilli assembly, namely,
dephosphorylation of ERM proteins (ezrin, T567; radixin, T564,
moesin, T558), induced by chemokines, results in resorption
of microvilli within a few seconds (25, 26). Because ERM
dephosphorylation can be triggered by TCR activation (27), ERM
could mediate TCR-induced microvilli resorption (22).

Interestingly, changes in the microvilli shape and density
are also linked to several diseases. Uneven distribution of long
microvilli was observed on B cells from hairy cell leukemia
patients (28–31). Moreover, changes in microvilli morphology
were observed in WAS, a severe immunodeficiency disorder that
is caused by defective or missing Wiskott–Aldrich syndrome
protein (WASp). WASp activates Arp2/3 complex by inducing
a conformational change of Arp2/3 and by delivering the
first actin monomer of the nascent filament (32–36). On the

FIGURE 1 | Microvilli decorating the plasma membrane of lymphocytes.
(A) Scanning electron microscopy micrograph showing microvilli that protrude
from the cell surface of resting peripheral blood human T cells. Scale bar:
1 µm. Reproduced from Jung et al. (19). Copyright 2016 National Academy
of Sciences. (B) Transmission electron microscopy micrograph showing the
parallel arrangement of F-actin within the microvilli of 300.19 cell
(Abelson-transformed murine pre-B lymphoma) Scale bar: 50 nm.
Republished with permission of ASH from Ref. (13).

TABLE 1 | Comparison between common types of membrane protrusions.

Microvilli Filopodia Lamellipodia Cilia

Cell type Most cells Motile cells Motile cells All vertebrate cells,
except for

hematopoietic cells

Function Signaling and motility Sensory and guiding organelle Motility Signaling and motility

Diameter 50–350 nm 100–400 nm Sheet-like structure ∼250 nm

Length <4 µm Up to 40 µm 1–10 µm

Cytoskeleton core structure Actin Actin Actin Microtubule

Organization Parallel bundles Parallel bundles Branched network Motile cilia: “9 + 2”
Primary cilia: “9 + 0”

Other Often emerge from lamellipodial sheets Emerge from basal
body
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other hand, WASp could directly promote actin polymerization
independently of Arp2/3 (37). It has been demonstrated that
lymphocytes derived from patients with WAS, either in resting
or activated states, exhibit various microvillar morphological
abnormalities. These abnormalities include a decrease in
microvilli density and length, as well as formation of dysmorphic
structures (5, 24, 38–42). However, knockdown of Arp2 in Jurkat
T cells caused no significant effect on microvilli assembly (43),
which suggests that WASp might regulate microvilli formation
independent of Arp2/3. Meanwhile, further studies are required
to confirm the Arp2 phenotype in primary T cells.

CAN MICROVILLI SERVE AS A
SIGNALING CENTER?

The notion that microvilli could serve as a signaling center was
primed by studies showing that certain signaling proteins are
enriched in microvilli. Immunogold EM studies demonstrated
the enrichment of various receptors and adhesion molecules on
the microvilli, including insulin receptors, selectin, integrin, and
the T cell co-receptor CD4 (44–49). Mass-spectrometry analysis
was also implemented to compare the protein composition
between isolated microvilli and whole cell, from both human
peripheral blood T-lymphocytes and a mouse pre-B lymphocyte
line (50). It revealed that microvilli are enriched of GTP-binding
proteins, cytoskeletal proteins, and transmembrane proteins
as compared to the cell body (after removing the nucleus).
This study provides the first global mapping of the microvilli
proteome. However, it should be noted that using the cell body as
a control could lead to the identification of membrane-associated
proteins rather than microvilli-specific proteins, because the
surface-to-volume ratio is much higher in microvilli as compared
to the cytoplasm. It should be also noted that the identification of
membrane proteins by mass-spectrometry remains as a challenge
because of the proteins limited solubility in aqueous buffer (51).
Therefore, certain hits might be missing in the dataset. Thus,
orthogonal approaches will be needed to verify the microvilli-
enriched proteins.

For many years the dynamic nature of microvilli together
with their small dimensions have hindered the structural and
functional characterization of microvilli. Although EM provides
high spatial resolutions, understanding the signaling function
of microvilli requires characterizing microvilli morphology and
signaling protein localization with high temporal resolutions. The
advancement of fluorescence microscopy techniques in the past
decades has enabled an investigation of membrane morphology
and protein localization in microvilli at either high temporal
or spatial resolutions, though the combination of both is still
technically challenging (19–22, 52, 53).

The Haran group comprehensively characterized the
localization of TCR signaling proteins on the microvilli by a
unique imaging technique that allows accurate mapping of
membrane protein localization. By combining variable-angle
total internal reflection microscopy and stochastic localization
nanoscopy, the authors reconstructed 3D topographical maps
of T cells (19, 22). They have shown that TCR, co-receptor

FIGURE 2 | TCR localizes to the microvilli tip. Jurkat T cells expressing
GFP-V5G and TCRζ-tdTomato were imaged at the terminal stage of T cell
activation. Reproduced from Kim et al. (21) licensed under Creative Commons
(CC BY 4.0).

CD4, kinase Lck, adaptor LAT, and adhesion receptor CD2 are
highly enriched in the microvilli. On the sub-microvilli scale, the
Jun group, using Total Internal Reflection Fluorescence (TIRF)
microscopy, showed that TCR is specifically enriched on the
microvilli tip (Figure 2) (21). Thus, the tip localization of TCR
could promote searching of antigens and establishing contacts
with APCs (20). The Haran group also found that treatment
with LatA or expressing a dominant negative form of ezrin,
both of which reduce microvilli, leads to a random distribution
of TCR throughout the plasma membrane. Intriguingly, the
authors showed that following TCR stimulation, T cells lose
their microvilli, which consequently leads to an even distribution
of TCRαβ throughout the plasma membrane (22). This result
suggests that microvilli-dependent TCR enrichment could be
regulated by TCR triggering.

The “kinetic-segregation” model serves as one of the prevalent
mechanisms explaining TCR triggering (54–57). A key part to
this model is the segregation of the large tyrosine phosphatase
CD45 from the TCR-pMHC contact zone. Therefore, multiple
groups have investigated the localization of CD45 in the context
of microvilli and showed that the segregation between TCR and
CD45 occurs a few seconds after contacts are established (58–
61). Interestingly, although it has been assumed and supported
by experimental data that CD45 is evenly distributed on the
cell surface in resting T cells (19, 60), a new study revealed,
using expansion microscopy, that CD45 is excluded from the
microvilli tip even before contacts are established with APC
(53). These discrepancies could be caused by differences in T
cell subtypes, activation methods, and resolution of individual
imaging techniques.

Summarizing localization studies above, key components
mediating TCR-proximal signaling reside in microvilli. These
include TCR itself, kinase Lck, and adaptor LAT. It is expected
that cytosolic proteins that are associated with these membrane
proteins, including ZAP70, Grb2, Sos1, PLCγ1, Gads, and
SLP76, are likely to be enriched in microvilli as well. The
physical proximity of these molecules could increase the rate
of chemical reactions and efficiency of signal transduction.
Microvilli, therefore, could serve as a compartment to enrich

Frontiers in Immunology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 2187

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02187 September 9, 2020 Time: 19:38 # 4

Orbach and Su Lymphocyte Microvilli for Signaling

FIGURE 3 | Schematic of the microvilli and the organization of different signaling proteins on the microvilli. Many of the signaling molecules that are involved in T cell
activation preferentially localize to the microvilli. Yet, their organization within the microvilli is not known (marked in question mark). Green, microvilli tip region; red,
microvilli body; black, plasma membrane.

signaling proteins to promote TCR signaling (Figure 3). In this
regard, T cell microclusters are another entity that has been
proposed for promoting TCR signaling (62, 63). Because both
microvilli-localized proteins and T cell microcluster components
display a puncta-like structure on the cell membrane, it raises
an interesting question on the relationship between the two.
Current evidence suggests that these two entities are different but
related structures. The microvilli-enriched proteins are mostly
characterized in resting T cells and microvilli disappear, at
least in some studies, after TCR activation (22). In contrast,
T cell microclusters are formed after TCR activation (62, 63).
They also displayed limited mobility as compared to the highly
mobile microvilli (20). Meanwhile, the “pre-enrichment” of
signaling components in microvilli could facilitate T microcluster
formation upon TCR activation.

Besides a potential signaling function in T cells, microvilli
have also been proposed by the Jun Lab to serve as
precursors for generating TCR-enriched extracellular vesicles (or
synaptosomes) that activate dendritic cells (21). It remains to be
determined whether the synaptosomes are similar or different
to other TCR-enriched microvesicles (synaptic ectosomes) that
were described by the Dustin Lab (64). Ectosomes are generated
by the ESCRT complex, of which TSG101 facilitates the sorting

of TCR into the ectosomes whereas Vps4 facilitates the scission
of ectosomes from the plasma membrane. Interestingly, CD40L,
a key effector delivered by helper T cells to activate APC, is
also enriched in the microvilli and ectosomes, though CD40L is
spatially segregated from TCR in ectosomes (65). This probably
suggests that TCR and CD40L are independently sorted into
microvilli, whereas the exact mechanism needs to be determined.
It also remains as an intriguing question on how many microvilli
and their associated TCRs end up in synaptosomes or ectosomes.
Is ESCRT, a general membrane-shaping machinery, involved in
microvilli dynamics regulation and resorption? Answering these
questions will help to generate a complete picture of the microvilli
life cycle during T cell activation (65).

MECHANISMS FOR INDUCING
MEMBRANE CURVATURE AND PROTEIN
ENRICHMENT

Highly curved membranes represent a unique feature of
microvilli, which could also serve as a platform for enriching
proteins in microvilli. Several mechanisms have been proposed
for generating curved membranes. Polymerization of actin
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filaments drives membrane protrusion; in parallel, membrane-
associated proteins can also induce membrane curvature by the
insertion of conical transmembrane proteins or hydrophobic
protein domains into the membrane (66, 67). Intriguingly,
intrinsically disordered domains, when attached to membranes,
can drive membrane protrusion either with a positive or negative
curvature (68–70).

The Bin-Amphiphysin-Rvs (BAR) superfamily is a key
player involved in regulation, formation, and detection of cell
membrane curvature (71). In this superfamily, the N-BAR
and the F-BAR are associated with positive curvatures (e.g.,
membrane invagination or endocytic pits). In contrast, the I-BAR
subfamily of proteins is associated with negative curvatures as
found in various membrane protrusions (72). Many members
of the BAR superfamily contain the structurally conserved SH2
or SH3 domains that recruit their binding partners to the
curved membranes (73). One particular interesting example is
the I-BAR protein IRSp53 (also known as BAIAP2) that binds
cytoskeletal effectors such as N-WASP through its SH3 domain
(74). In an in vitro biochemical assay, IRSp53 induces tubular
membrane protrusions with similar dimensions of microvilli
(75). IRSp53 is localized to filopodia when ectopically expressed
in neuronal NSC34 cells (76) and regulates filopodia dynamics
(77). Interestingly, IRSp53 is also expressed in T cells (78), raising
its possible role in regulating microvilli formation. Surprisingly,
the N-BAR protein sorting nexin 9 (SNX9), which is expected
to recognize positive curvatures, is involved the biogenesis of
filopodia (79). In a cell-free system for reconstituting actin
bundles of filopodia (80), immunodepletion of SNX9 resulted
in shorter actin bundles. Moreover, SNX9 localizes to the
filopodial tip and shaft in RPE-1 cells (79). The positive role
of SNX9 in filopodia formation is dependent on its activity in
stimulating N-WASp and Arp2/3 (81), which probably overrides
the curvature-sensing function of the N-BAR domain. In terms
of the function of SNX9 in T cells, SNX9 was found to interact
with WASp, p85, and CD28 to form a signaling complex
on endocytic vesicles when T cells are activated by soluble
CD3/CD28 antibodies (82). It remains to be determined if SNX9
can regulate microvilli when T cells are activated by surface or
bilayer-presented stimuli because stimuli with a physical support
could cause different outcomes as compared to those in a soluble
format. Previous reports showed that TCR is internalized through
endocytosis when T cells are treated with soluble MHC tetramer
(83), whereas TCR is sorted into extracellular microvesicles when
T cells are activated by supported lipid bilayer (SLB)-presented
pMHC (64).

While the BAR proteins sense membrane curvature within
the nanometer scale, there are proteins that can also sense a
larger length scale. Septins and stage V sporulation protein M
(SpoVM) sense positive micron-scale curvatures (84, 85). It was
suggested that these nanometer-sized proteins sense micron-
scale curvature by polymerization into micro-scale filaments. In
contrast, the protein machinery that directly senses micron- or
submicron-scale negative curvatures remains to be determined.

What is the cellular function of membrane deformation?
Various studies have highlighted the role of membrane curvature
in regulating sorting of transmembrane proteins (86–89). Using
patterned nanostructure surfaces, Zhao et al. (90) found that

the protein machinery mediating clathrin-mediated endocytosis
prefers a positive curvature with a radius below 200 nm. Liang
et al. (91) discovered that small GTPase Ras senses membrane
curvatures in an isoform-dependent manner. One isoform
binds to membranes with low curvatures, whereas the other
binds to membranes with high curvatures. The effect of local
membrane curvature may also influence cell polarization. For
many years it had been assumed that cell polarization is induced
exclusively by a gradient of a chemoattractant. A recent report
revealed that chemical signaling is not sufficient for inducing
cell polarization of neutrophils and CD8+ T cells (92). Instead,
the authors found that polarization initiates with the formation
of curved membranes, which recruits BAR domain protein
SRGAP2, activates PI4KA, and results in PtdIns4P polarization.
Furthermore, to understand the mechanism by which membrane
curvature affects actin-dependent processes, such as endocytosis,
focal adhesion maturation, and stress fiber organization, Lou et al.
(93) have used patterned nanostructure surfaces to study actin
rearrangement. Intriguingly, the authors found that the actin
nucleator Arp2/3 and its regulators N-WASP and cortactin are
recruited by BAR proteins to membranes with positive curvatures
(with radii <200 nm). Consequently, branched actin networks
assemble around curved membranes, depleting the monomeric
actin pool for assembling stress fibers and mature focal adhesions.
Interestingly, members of the formin family, which promote
the polymerization of linear F-actin, showed no preferential
localization to curved membranes.

The lipid composition of the plasma membrane also influences
membrane geometry and protein localization. The size of
the lipid headgroups, their charge, as well as the saturation
state of acyl chains determines lipid shapes, and consequently
the local membrane curvature (66, 94). Lipids with small
headgroups such as cardiolipin, phosphatidylethanolamine,
ceramide, diacylglycerol, and phosphatic acid induce negative
membrane curvatures, whereas lipids with large headgroups
like lysophosphatidylcholine and phosphatidylinositol phosphate
induce positive curvatures (95). Some of these lipids can also
recruit proteins to the membrane. For example, the negatively
charged lipids phosphatidylserine and phosphatidylinositol 4,5-
bisphosphate recruit positively charged proteins by electrostatic
interactions (96–98). Sphingomyelin was found to selectively
localize to the microvilli of epithelial cells and to induce microvilli
formation through the indirect recruitment of ERM proteins
(99). Whether this is also the case in lymphocytes and what the
role of sphingomyelinase is in regulating microvilli formation
need to be further explored. On the other hand, lipids can
mediate the exclusion of proteins from curved membranes.
A recent intriguing study from Jung et al. showed that CD45 is
excluded out of the tip of microvilli in a cholesterol-dependent
manner (53). Although the localization of cholesterol needs
to be determined in the context of microvilli, cholesterol was
previously reported to be enriched in the negative curved
membranes in vitro or in silico (100, 101), where it, together
with sphingomyelin, also thickens the membrane (102, 103). The
thickened membrane caused by the accumulation of cholesterol
was suggested to exclude CD45 of which the transmembrane
domain is not long enough to be integrated into the thickened
membrane. Depletion of cholesterol by cyclodextrin reduced the
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exclusion of CD45 from the tip, accompanied by a decrease in the
membrane thickness and number of microvilli (53, 104). Besides
the contribution from individual lipids, membrane tension,
by serving as a physical barrier, can antagonize actin based-
protrusion (105).

The composition and organization of the glycocalyx layer,
which covers the outer leaflet of the plasma membrane, also
contributes to cell morphology and membrane protrusions
(106). Mucins are flexible transmembrane glycoprotein polymers
within the glycocalyx that are enriched on the surface of
many membrane protrusions, such as epithelial microvilli (107).
A recent study has demonstrated the role of the mucins
in generating forces driving the tubularization of the plasma
membrane (108). In contrast, rigid glycoproteins have not shown
similar phenomenon as the mucins. In the case of T cells,
many cell surface proteins are highly glycosylated, among which
CD43 and CD45 are the most abundant glycoproteins (109,
110). Notably, different isoforms of CD45 are expressed at
different T cell development stages, and these isoforms differ
significantly in their extracellular domain sizes (58, 111). It
remains as an interesting question whether these isoforms
contribute differently to microvilli formation.

APPROACHES TO MANIPULATE
MICROVILLI AND MEMBRANE
CURVATURE

Investigation of the microvilli function can be extremely
challenging due to limited tools to specifically manipulate them in
cells without perturbing other actin-based processes. Moreover,
their small dimensions (r< 200 nm) and unique architecture (i.e.,
negative membrane curvature viewed from inside of microvilli)
hamper the application of traditional in vitro reconstitution
approach to the study of microvilli. Nevertheless, methods for
studying filopodia, which present similar structural properties as
the microvilli, as well as other recent technological advances that
enable the accurate shaping of membranes, can be implemented
to interrogate microvilli.

Genetic Approaches
In microvilli the actin filaments are organized in parallel bundles
(13). Various crosslinkers such as fascin, fimbrin, and espin
promote the formation of actin bundles (112–115). While direct
evidence is required, these actin crosslinkers can be attractive
targets for specifically modulating microvilli shape and density,
as demonstrated in filopodia (113). The ERM family, another
component involved in microvilli formation, plays a major
role in connecting actin cytoskeleton to the cell membrane.
Overexpressing a dominant-negative form of ezrin dramatically
reduces microvilli formation (24). Yet, a recent finding suggests
that the enrichment of ezrin around membrane protrusions is
facilitated by I-BAR-domain proteins (116).

Pharmacological Approaches
Complementing genetic manipulations, pharmacological
treatments perturbing membrane composition or cytoskeleton

can modulate microvilli in a rapid fashion. Greicius et al. (104)
reported a decrease in microvilli density by depleting cholesterol
using cyclodextrin. A similar effect could be achieved by using
the actin depolymerizing toxin LatA (13, 19). However, both
drugs are expected to affect the whole membrane structure,
actin network, and surface presence of many signaling proteins,
all of which may complicate the interpretation of the results
regarding microvilli-specific functions. Recently, an inhibitor of
the crosslinker protein fascin has been identified, which could
be potentially used to manipulate microvilli. This inhibitor
blocks the activity of fascin to bundle actin filaments in vitro,
and filopodial formation in multiple cell lines. Furthermore, it
blocks cancer cell metastasis, potentially by inhibiting filopodia
formation (117).

Physical Approaches
In vitro assays have been developed to isolate the effect of
membrane curvature from complex cellular environment. Yet,
while methods to generate positive membrane curvature are well
established, it is not the case with negative membrane curvatures,
especially in the range of microvillus sizes (r < 200 nm).
In one approach, a giant unilamellar vesicle (GUV) is held
by a micropipette at one side and pulled, on the other side,
by a polystyrene bead holding by optical traps (Figure 4A).
A membrane nanotube can be generated with controlled radii,
ranging from 7 to 100 nm, by adjusting the micropipette
pressure (118). Similarly, an optical trap has been used to pull
short tethers (r < 100 nm) from the cell membrane (119).
Meanwhile, these manipulations are technically challenging and
may be time-consuming. GUVs are also sensitive to osmotic
changes and therefore can bring difficulty to long-duration
experiments. Alternative approaches to study negative curvature

FIGURE 4 | Methods to physically manipulate membrane curvature. (A)
Schematic of optical trap that is used to pull a thin nanotube from GUV held
by a pipette (top). Confocal microscopy reveals that GFP-IRSp53 BAR protein
localizes to nanotube pulled from GUV (magenta) that is held by a pipette
(bottom). Scale bar: 5 µm. Reproduced from Prévost et al. (118) licensed
under Creative Commons (CC BY 4.0). (B) Schematic of a cell on a
nanofabricated surface with structures of different radii (top). Scanning
electron microscopy microfabricated of nanofabricated chip with a gradient
nanobar array with a variable width from 100 to 1,000 nm (100 nm increment;
bar length: 2 µm) (middle). The averaged nanobar images of anti-FBP17
immunostaining for 10 different nanobar widths. FBP17 localizes to positively
curved structures with a width <400 nm (bottom). Reproduced from (93).
Copyright 2019 National Academy of Sciences.
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employ substrates that serve as a mold to induce membrane
curvature on artificial membranes and cells (Figure 4B). Focused
ion beam has been applied to etch an array of invaginations with a
radius of 100 nm on a glass surface (120). The fabricated substrate
can then be covered with SLB to mimic the highly curved
membranes in microvilli. Another promising means to induce
membrane curvature is by using nanofabricated substrates (90,
121). Yet, the diffusion of membrane components may be
affected by the substrate (122, 123), which should be carefully
evaluated beforehand.

OUTLOOK

Looking forward, significant questions remain to be addressed
in terms of the mechanism and signaling function of T cell
microvilli:

(1) What are the mechanisms that regulate microvilli
formation and dynamics? Besides identifying the key
protein and lipid components regulating microvilli, it will
also be necessary to understand the relationship between
microvilli and other membrane structures, for example, the
recently identified CD2 Corolla which seems to be devoid
of microvilli (124).

(2) How do microvilli regulate the localization and
oligomerization state of proteins and lipids? Phase
separation, or the formation of liquid-like microclusters,
emerges as a new principle in regulating TCR signaling
(125, 126). The unique membrane topology in microvilli
could play an important role in regulating the assembly
of signaling microclusters. On the other hand, microvilli
could bring proteins physically close even if there are
no direct interactions between those proteins. Future
co-localization studies should be best performed in the
context of microvilli to understand the exact nature of the
entities that are examined. In addition, many other tiny and
transient proteo-lipid nanodomains have been identified
on the plasma membrane (127–130). It remains as an open
question on the relationship between these structures and
the microvilli-localized proteins.

(3) How do microvilli modulate chemical reactions? The src-
family kinase Lck has been shown to be enriched in
microvilli (22). Future studies are expected to reveal the
microvilli localization or even sub-microvilli localization
(tip, side, or base) of other enzymes in the TCR
signaling (e.g., PLCγ1, ZAP70, SHP1, CBL), together

with their corresponding substrates. Elegant reconstitution
approaches will be needed to recapitulate the essential
physical and chemical environment of microvilli to
understand how curved membranes in microvilli affect the
specific activity of kinases, phosphatases, and lipases.

(4) How do microvilli regulate TCR signal transduction? As
protrusive structures that search the surrounding space and
make contacts with the APCs, microvilli are constantly
experiencing mechanical forces from the environment
(131). These forces may be involved in the regulation of cell
recognition and calcium flux, as found in the microvillar
photoreceptor cells (132). Moreover, TCRs on the tip of
the microvilli receive stimuli from APCs. Meanwhile, what
happens after antigen recognition remains unclear. How is
signal transduced from the tip of microvilli to the cell body?
Do microvilli participate in kinetic proof-reading since
microvilli are enriched with proteins mediating multiple
steps along the TCR pathway? Do microvilli serve as a
signaling unit that integrates signals from TCR and co-
receptors first before sending them to the cell body, or
are different signals transduced individually across the
microvilli? With these questions being addressed, the
current map of T cell membrane signaling is likely to be
significantly expanded from a 2D surface to a 3D world.
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