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Neurological disorders are a group of disorders with motor, sensory or

cognitive damage, caused by dysfunction of the central or peripheral

nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance

for the development of the nervous system, including the migration and

differentiation of neurons, the formation of synapses, and axon regeneration.

However, when the nervous system is subject to pathological stimulation,

aberrant activation of Cdk5 will induce abnormal phosphorylation of a

variety of substrates, resulting in a cascade signaling pathway, and thus

lead to pathological changes. Cdk5 is intimately related to the pathological

mechanism of a variety of neurological disorders, such as A-β protein

formation in Alzheimer’s disease, mitochondrial fragmentation in cerebral

ischemia, and apoptosis of dopaminergic neurons in Parkinson’s disease. It is

worth noting that Cdk5 inhibitors have been reported to have neuroprotective

effects by inhibiting related pathological processes. Therefore, in this review,

we will briefly introduce the physiological and pathological mechanisms of

Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in

neurological disorders and the prospect of targeted Cdk5 for the treatment

of neurological disorders.
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Introduction

Neurological disorders are featured by impairment
movement, sensation, cognition, and behavior, which
is caused by damage to the peripheral nervous system
or central nervous system. These diseases share similar
pathophysiological mechanisms, such as oxidative stress,
cytotoxicity, mitochondrial fragmentation, autophagy,
endoplasmic reticulum stress, neuroinflammation, and calcium
overload. However, divergent pathological manifestations exist
in the different disorders (Sorensen, 2019). Cyclin-dependent

kinase 5 (Cdk5) is a proline-directed serine/threonine kinase,
which is a unique component of the family of cyclin-dependent
kinases (Dhavan and Tsai, 2001; Malumbres, 2014). Cdk5 plays
a pivotal role in the nervous system, including cortex layer
formation, synaptic growth and maturation, synaptic vesicular
transport (Liu et al., 2022; Takahashi et al., 2022a), stress-
enhanced memory consolidation, dendritic spine formation,
neuronal migration and differentiation, neurite outgrowth and
length (Chen et al., 2017; Huang et al., 2017; Shinmyo et al.,
2017; Lee et al., 2018; Nishino et al., 2019; Rao et al., 2020; Im
et al., 2022), learning and long-term behavioral changes, axonal
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regeneration (Xu et al., 2017; Hwang and Namgung, 2021), brain
microtubule network and actin cytoskeleton remodeling (Shah
and Lahiri, 2017; Shah and Rossie, 2018), as well as normal
cerebellar development and functions (Lee et al., 2019; Li et al.,
2019; Kodani et al., 2020; Ouyang et al., 2020). Additionally,
Cdk5 also plays a key role in gene expression, cell differentiation,
angiogenesis, and aging (Arif, 2012).

Cdk5 plays an important role in the pathological process of
neurological diseases. Cdk5 binds to specific partners p35 and
p39, after the pathological stimulus. P35 and p39 are cleaved
to p25 and p29 by calpain, with the increase in calcium
concentration. The association of Cdk5/p25 is more stable
and leads to aberrant hyperphosphorylation of substantial
Cdk5 substrates, resulting in cell death or apoptosis (Asada et al.,
2012; Nie et al., 2022). Cdk5 has also been implicated in the
development and progression of a variety of cancers, including
breast, lung, colon, pancreatic, melanoma, thyroid, and brain
tumors, making it a promising drug target for new anticancer
treatments (Pozo and Bibb, 2016).

When Cdk5 inhibitors are given, they show neuroprotective
effects on numerous cell and animal models. Cdk5 inhibitors
have great potential to be a therapeutic target for neurological
system diseases. In this review, we will summarize recent
advances in the molecular mechanisms of Cdk5 in neurological
diseases as well as the therapeutic potential of Cdk5 in these
neurological diseases.

Under normal circumstances, Cdk5 is in an inactive state.
After binding to p35, it is normally activated, phosphorylates
many substrates, and plays normal physiological functions
such as neuron development and development, axonal
dendrite growth, and prominent functions. When neurons are
pathologically stimulated, the influx of intracellular calcium ions
increases, and after combining with calcium, p35 is split into
p25. The combination of p25 and CDK5 will cause CDK5 to
be in an over-activated state, thereby hyperphosphorylating
various substrates in cells, causing abnormal pathophysiological
responses, and leading to neurological diseases (Figure 1).

Neurodegenerative diseases

Cdk5 hyperactivation contributes to several
neurodegenerative diseases, including Alzheimer’s disease
(AD), Parkinson’s disease (PD), and Huntington’s disease (HD;
Cheung and Ip, 2012).

Alzheimer’s disease (AD)

Aβ generation

Aβ protein deposition is not only the pathological feature of
AD but also the key factor of AD progression. Aβ is produced

through sequential amyloidogenic cleavage of precursor protein
APP by β-secretase BACE1 and γ-secretase, with the oligomer
form considered to be the toxic form (Mawuenyega et al.,
2010). The mechanisms underlying Cdk5 in Aβ generation
and neurotoxicity are multifaceted. Cdk5 activation promotes
Aβ generation and accumulation in neurons. PPAR-β, a
nuclear receptor with a key role in metabolic processes, is a
phosphorylated substrate of Cdk5 and involved in Aβ generation
(Quan et al., 2019; Ribeiro Filho et al., 2019). Hypoxia leads
to abnormal phosphorylation of Cdk5 and accelerates the
process of AD (Fang et al., 2019). Cdk5/HIF-1 contributes to
Aβ generation (Chao et al., 2020). Cdk5 regulates Aβ-induced
mitochondrial fission and neurotoxicity by phosphorylating
Drp1 (Guo et al., 2018), which may be mediated by P27 (Jaiswal
and Sharma, 2017). APP, GSK-3 β, and TrkA play important
roles in Aβ pathological process, which is at least partly mediated
by Cdk5 activation (Palop and Mucke, 2010). Aβ regulates
the activity of Cdk5 as well (Lapresa et al., 2019). Aβ protein
physiological aggregation regulates Cdk5/Calcineurin signaling
(Lazarevic et al., 2017). Therefore, inhibiting the activity of
Cdk5 is of great significance in reducing Aβ generation and
delaying the progress of AD. Roscovitine, an inhibitor of Cdk5,
effectively reverses Aβ formation. Ginsenoside Rg1 can decrease
Aβ level via inhibiting the Cdk5/ PPAR γ pathway (Quan et al.,
2020). Some other drugs, such as streptozotocin, ketamine, and
phosphocreatine, also decrease Aβ levels through Cdk5 related
pathway (Li et al., 2020a; Park et al., 2020; Ai et al., 2022).
Therefore, targeting Cdk5 and the related pathways is a potential
strategy for AD therapy.

Tau phosphorylation

Tau phosphorylation and the formation of neurofibrillary
tangles in neurons is one of the notable hallmarks of AD
pathology. Aberrant phosphorylation and deposition of tau,
which is a cellular microtubule associated protein, will affect
the activity of microtubule and destroy cytoskeleton structure,
leading to neuronal apoptosis. Tau is a substrate of different
kinases, such as Cdk5, GSK-3β, or PKA. Cdk5 plays a key role in
tau phosphorylation and neurofibrillary tangles formation (Seo
et al., 2017). The miR-148a-3p/p35/PTEN signaling pathway
is an important pathway for tau hyperphosphorylation in AD
(Zeng et al., 2021). Many factors such as MARK4 (Saito et al.,
2019), and RPS23RG1 (Zhao et al., 2021), have been proved to
be related to tan pathology through regulating Cdk5 activity.
Glutamate induces Cdk5 and p35 mRNA transcription.
The glutamate-responsive increase of the Cdk5/p25 complex
contributes to tau hyperphosphorylation (Tanaka et al., 2022).
Cdk5 is also associated with early inflammation of AD
(Wilkaniec et al., 2018). Leukotriene, an inflammatory factor,
may accelerate tau pathological accumulation through the
Cdk5 pathway (Giannopoulos et al., 2019). Tau affects the
function of subcellular organelles, such as mitochondria and
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FIGURE 1

The role of Cdk5 in neurological disorders and the underlying molecular mechanisms.

Golgi apparatus, through Cdk5 (Mohamed et al., 2017).
Cdk5 inhibitory peptide (CIP) can not only prevent the loss
of neurons and alleviate behavioral changes but also reduce
tau hyperphosphorylation and inflammation (Xu et al., 2019;
Huang et al., 2020). Drugs like Quercetin can inhibit the
pathological process of tau through the Ca2+-calpain-p25-
Cdk5 pathway (Shen et al., 2018). For the pivotal role of Cdk5 in
tau phosphorylation and the formation of neurofibrillary
tangles, Cdk5 is supposed to be a promising therapeutic target
for AD.

Cdk5 inhibition in AD

Cdk5 inhibitors can delay the pathological progression of
AD and prevent neuronal apoptosis. They have not been put
into clinical trials because of poor selectivity. More and more
studies continue to try to find new Cdk5 inhibitors and new
substrates of Cdk5 (Zhuang et al., 2020b). Recent studies have
found some new substrates and signaling pathways related
to Cdk5 in AD, such asCdk5-Mcl-1axis (Nikhil and Shah,
2017), ALDH1A1 (Nikhil et al., 2019), miR-125b (Zhuang
et al., 2020a), and miR-504-3p (Chen et al., 2022). New
Cdk5 inhibitors are also being studied in various AD models
like pyrrolidine-2,3-dione, and TFP5 (Shukla et al., 2017; Zeb
et al., 2019a,b). It is also found that a traditional Chinese
medicine, Nano-HO, improves cognitive function in AD by

modulating the signaling pathway JNK/cdk5/GSK-3β (Qu et al.,
2021). Similarly, Kaixinsan, a traditional Chinese medicine for
insomnia, is found to attenuate tau hyperphosphorylation and
neuroinflammation by inhibiting GSK3β and CDK5 activation
(Jiao et al., 2022). All of these chemicals have shown
neuroprotective effect but the specific mechanism is still not
fully elucidated.

Parkinson’s disease (PD)

The main pathological change of Parkinson’s disease is
the degeneration of substantia nigra pars compacta neurons.
However, the mechanism of Lewy body formation is still
unclear. Moreover, there is no effective treatment to slow
down the process of neurodegeneration (Kalia and Lang, 2015).
Dysregulation of Cdk5 is supposed to be related to the loss
of dopaminergic neurons and the progression of PD. Aberrant
p25/Cdk5 signaling was found in early-stage PD (He et al.,
2020). Previous studies found that Cdk5 can promote oxidative
stress, and lead to mitochondrial dysfunction and autophagy
dysfunction in PD. Moreover, in the mouse model of PD induced
by MTPP, aberrant Cdk5 results in activation of inflammation
(Cheng et al., 2020), immune hyperactivity (Shukla et al., 2019),
mitochondrial fission (Park et al., 2019), and degradation of
ubiquitin ligases (Wang et al., 2018), leading to the loss of
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TABLE 1 Summary of the main targets of cdk5 in neurological diseases and mechanism of Cdk5 and nervous system diseases.

Targets or Pathways References

Nervous
system
diseases

Alzheimer’s
disease

Aβ generation: Cdk5-PPAR-β, Ginsenoside Rg1-Aβ-
Cdk5/PPARγ pathway, Cdk5/Calcineurin signaling,
Cdk5/Drp1-mediated mitochondrial fission, GSK-3 β and
TrkA/Cdk5, Cdk5/HIF-1

(Mawuenyega et al., 2010; Palop and Mucke, 2010; Cheung
and Ip, 2012; Jaiswal and Sharma, 2017; Lazarevic et al., 2017;
Guo et al., 2018; Fang et al., 2019; Lapresa et al., 2019; Quan
et al., 2019, 2020; Ribeiro Filho et al., 2019; Chao et al., 2020;
Li et al., 2020a; Park et al., 2020; Ai et al., 2022)

Tau phosphorylation: Leukotriene/Cdk5, Cdk5/mitochondria
and Golgi function, Cdk5/MARK4, Cdk5/RPS23RG1, miR-
148a-3p/p35/PTEN signaling pathway, Quercetin-Ca2+-
calpain-p25-Cdk5 pathway, miR-504–3p and CDK5 axis

(Mohamed et al., 2017; Shen et al., 2018;Wilkaniec et al., 2018;
Giannopoulos et al., 2019; Saito et al., 2019; Xu et al., 2019;
Huang et al., 2020; Zeng et al., 2021; Zhao et al., 2021; Tanaka
et al., 2022)

Neurodegenerative
diseases

Cdk5 inhibitor in AD: Cdk5/Mcl-1, Cdk5-/ALDH1A1,
Cdk5/miR-125b, Nano-HO-JNK/Cdk5/GSK-3β, Kaixinsan/
GSK-3β and CDK5

(Nikhil and Shah, 2017; Shukla et al., 2017; Nikhil et al., 2019;
Zeb et al., 2019a,b; Zhuang et al., 2020a,b; Qu et al., 2021;
Chen et al., 2022; Jiao et al., 2022)

Parkinson’s
disease

Cdk5/inflammation, Cdk5/immune hyperactivity,
Cdk5/mitochondrial fission, Cdk5/degradation of ubiquitin
ligases, Cdk5-Luteolin, phosphorylation induced SIRT2 nuclear
translocation

(He et al., 2018; Wang et al., 2018; Park et al., 2019; Shukla
et al., 2019; Cheng et al., 2020; Reudhabibadh et al., 2021; Yan
et al., 2022)

Huntington’s
disease

P25/Cdk5, Cdk5-drp1, Cdk5/DARPP-32 (Paoletti et al., 2008; Langhorne et al., 2011; Cherubini et al.,
2015; Brito et al., 2019)

Ischemia
Stroke

Cdk5/Zinc chelator, Cdk5/neuregulin-1 β, Cdk5/TFP5,
Cdk5/tat-Cdk5 CTM, Cdk5/ERK1/2 signaling pathway,
Cdk5/inhibition of p53 dependent apoptosis, Cdk5/trkb-erk1/2-
creb pathway, Cdk5/phosphorylation of drp1s616, miR-148b-3p
via CDK5R1/SIRT1

(Becerra-Calixto and Cardona-Gomez, 2017; Cui et al., 2017;
Ji et al., 2017; Liu et al., 2017; Zhao et al., 2017; Munoz-Manco
et al., 2018; Tuo et al., 2018; Zhang et al., 2018; Shin et al.,
2019; Zhu et al., 2019; Chen et al., 2021, 2022)

Cerebrovascular
disease

Intracerebral
Hemorrhage

Cdk5-ATM signalin pathway, Cdk5/P35, Cdk5- p75NTR (Wu et al., 2016; Roufayel and Murshid, 2019; Zhou et al.,
2019)

Neuropathic
Pain

Cdk5/CREB, Cdk5/PPAR γ pathway, mir-196a-5p/Cdk5 axis,
Cdk5/CRMP2, Cdk5-NR2A pathway, Cdk5/TRPA1

(Li et al., 2014, 2020; Yang et al., 2014; Chernov et al., 2018;
Sulak et al., 2018; Moutal et al., 2019; Zhong et al., 2019;
Gomez et al., 2020a, 2021; Zhu et al., 2021)

Epilepsy Cdk5/mitochondrial fragmentation, Cdk5/neuroinflammation,
Cdk5/endoplasmic reticulum stress, Cdk5/p38 MAPK mediated
microglial response

(Tian et al., 2008, 2010; Li et al., 2016; Kim and Kang, 2017,
2018; Liu et al., 2017; Hiragi et al., 2018; Kim et al., 2019; Fan
et al., 2020; Lee and Kim, 2021)

Glioblastoma Cdk5/PIKE-A, Cdk5/DRP1, miR-21/Cdk5, Cdk5/TP5,
Cdk5/DYRK1A, Cdk5/AC1MYR2, Cdk5/TRIM59,
OGT/CDK5/ACSS2 pathway

(Liu et al., 2008; Ren et al., 2015; Xie et al., 2015; Gonzalez-
Vera et al., 2016; Sang et al., 2019; Peyressatre et al., 2020a,b;
Tabouret et al., 2020; Chen et al., 2021; Zhou et al., 2021;
Ciraku et al., 2022)

Multiple
sclerosis

Cdk5/oligodendrocytes, Cdk5/lymphocyte activation (Pareek et al., 2010; Luo et al., 2016, 2018)

Other
neurological
disorders

Cdk5/ERK1/2 pathway, Cdk5/caspase-3 pathway, Cdk5/CRMP-
2, Cdk5/mitochondrial kinetic defects, Cdk5/Oxidative stress,
Cdk5/endoplasmic reticulum stress, nestin-Cdk5-drp1

(Lindqvist et al., 2017; Guo et al., 2018; Kamiki et al., 2018;
Roach et al., 2018; Shi et al., 2018; Spurrier et al., 2018; Wang
et al., 2018; Barrett et al., 2019; Chen et al., 2019; Liu et al.,
2019; Sase et al., 2019; Li et al., 2020b; Rong et al., 2020; Shukla
and Singh, 2020, 2022; Xia et al., 2020; Zhang et al., 2021;
Daniels et al., 2022; Manglani and Dey, 2022; Takahashi et al.,
2022b; Umfress et al., 2022; Zhou et al., 2022)

Abbreviations: PPAR γ, Peroxisome proliferator-activated receptor gamma; APP, Aβ precursor protein; GSK-3 β , Glycogen Synthase Kinase-3; Drp, dynamin-related protein;
MARK4, microtubule-affinityregulating kinase 4; TrkA, tropomyosin-relatedkinaseA; GSK-3 β , Glycogen synthase kinase; HIF-1, Hypoxia-inducible factor 1; RPS23RG1, The
type Ib transmembrane protein; Mcl-1, myeloid-cell-leukemia-sequence-1; ALDH1A1, aldehyde dehydrogenase 1 family member A1; Fbxw7, F-box/WDrepeat-containing
protein 7; TFP5, a modified truncated 24-aa peptide; DARPP-32, dopamine- and cyclic-AMP-regulated phosphoprotein of molecular weight 32,000; OGDR, The oxygen
glucose deprivation reperfusion; MEF2D, myocyte enhancer factor 2D; p75 NTR, p75 neurotrophic factor receptor; ATM, Ataxia Telangiectasia Mutated; ERK1, Extracellular
signal-regulated kinase 1; CREB, a transcription factor; TRPA1, transient receptor potential action channel 1; NR2A, N-methyl-D-aspartate receptor subunit 2A; NMDAR,
N-methyl-D-aspartate receptor; MAPK, mitogen-activated protein kinases; TP5, a thymopentin; MTLE-HS, mesial temporal lobe epilepsy with hippocampal sclerosis; PIKE-
A, Isoform A of phosphatidylinositol 3-kinase enhancer; DYRK1A, Dual-specificity tyrosine phosphorylation-regulated kinase 1A; ACSS2, acetate-dependent acetyl CoA
synthetase 2; CRMP2, collapsin response mediator protein 2.

dopaminergic neurons. Cdk5 phosphorylation induced nuclear
translocation of SIRT2 also leads to the loss of dopaminergic
neurons (Yan et al., 2022). Similarly, Cdk5 inhibitors have
exerted neuroprotective effects in PD (He et al., 2018). Luteolin
was reported to confer neuroprotective effect on the PD
model, which was also mediated by Cdk5 (Reudhabibadh et al.,
2021). Therefore, based on previous studies, Cdk5 has been
demonstrated to play a critical role in the development of PD,
thus making it to be a pivotal target for PD therapy (Table 1).

Huntington’s disease (HD)

Huntington’s disease (HD) is an autosomal dominant
disease with a combination of motor, cognitive, and behavioral
characteristics. HD is caused by the extended CAG trinucleotide
repeat (variable length) in HTT (the gene encoding protein
huntingtin; Bates et al., 2015). Huntington protein leads
to neuronal dysfunction and death through a variety of
mechanisms, including proteinase deposition, destruction of

Frontiers in Cellular Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncel.2022.951202
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/journals/cellular-neuroscience#articles
https://www.frontiersin.org


Ao et al. 10.3389/fncel.2022.951202

transcription and mitochondrial function, and direct toxicity of
mutant protein (McColgan and Tabrizi, 2018). Cdk5 has been
confirmed to participate in the pathological process (Bowles
and Jones, 2014). It was suggested that, unlike in AD and PD,
Cdk5 exerts neuroprotective effects in HD (Kaminosono et al.,
2008). However, some other studies have yielded different
results. It was reported that Cdk5 knockout with overexpression
of mutated huntingtin (MHTT) alleviated cortical striatal
learning deficits and hippocampus dependent memory
decline (Alvarez-Periel et al., 2018). P25/Cdk5 signaling is an
important mediator of dopamine and glutamate neurotoxicity
associated with HD (Paoletti et al., 2008). Cdk5 mediates
dopaminergic neurotoxicity by regulating Drp1, which induces
mitochondrial fragmentation in HD pathology (Cherubini
et al., 2015). In the nucleus accumbens, Cdk5 dysfunction
regulates DARPP-32 phosphorylation, which contributes
to depression-like behavior in HD (Brito et al., 2019).
Therefore, Cdk5 is supposed to get double-sided nature in
HD diseases. How to use its beneficial side and how to prevent
its detrimental side is a task worthy of consideration in the future
(Figure 2).

Cerebrovascular disease (CVD)

Cerebrovascular disease is the most common disease in the
nervous system and one of the major threats to human health
and life worldwide (Langhorne et al., 2011). In recent years, there
is evidence that targeting Cdk5 can protect synaptic plasticity

and provide long-term neuroprotection after stroke (Gutierrez-
Vargas et al., 2017).

Ischemic stroke

Cerebral ischemia is one of the most serious public
health problems worldwide (Tolonen et al., 2005). The
important pathophysiological mechanisms of ischemic stroke
are neuroinflammation, oxidative stress, calcium overload,
mitochondrial fragmentation, and Golgi stress caused by
ischemia and hypoxia (Sun et al., 2019). As a unique Cdk
in the nervous system, Cdk5 has been demonstrated to play
an important role in the pathological process of ischemic
stroke. In a large number of animal models of cerebral
ischemia or neuronal cell ischemia models, Zincchelator
(Tuo et al., 2018), neuregulin-1 β (Zhang et al., 2018),
tfp5 (Ji et al., 2017), and tat-Cdk5 CTM (Zhu et al.,
2019) are found to have a neuroprotective effect through
Cdk5 related pathways. Cdk5 inhibition with scCdk5mir
astrocytes (Becerra-Calixto and Cardona-Gomez, 2017), Cdk5
RNAi-based therapy (Munoz-Manco et al., 2018) or transplanted
with PTPN21 (Cui et al., 2017) also confers neuroprotection
in ischemic stroke. The mechanisms underlying Cdk5 in
ischemia stroke are multifaceted, such as protecting cells
through the ERK1/2 signaling pathway (Zhao et al., 2017),
inhibition of p53 dependent apoptosis (Shin et al., 2019),
trkb-erk1/2-creb pathway (Liu et al., 2017), phosphorylation
of drp1s616 (Chen et al., 2021) and sponging miR-148b-3p

FIGURE 2

The role of Cdk5 in neurodegenerative diseases. →: promote or aggravate; a: inhibit or protect.
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(Chen et al., 2022). Given that reducing the level of
Cdk5 in astrocytes could protect against brain damage in
cerebrovascular diseases (Becerra-Calixto et al., 2018), it is
believed that Cdk5 has great potential in the treatment of
ischemic stroke.

Intracerebral hemorrhage (ICH)

Intracerebral hemorrhage (ICH) is a common
cerebrovascular disorder, accompanied by a particularly
high mortality. The prognosis of ICH is not satisfying. Thus, it
is essential to understand the potential molecular mechanisms
of ICH-induced brain injury (Wilson et al., 2015). The most
serious damage of cerebral hemorrhage to neurons is due
to hematoma compression and hemorrhagic inflammation
related pathological changes, while most of the subcellular
pathological changes are similar to ischemic stroke. Inhibition
of Cdk5 activity, such as knockout of Cdk5 kinase activity
(Ke et al., 2015) or glycosylated Cdk5 (Ning et al., 2017), also
showed neuroprotective effect in intracerebral hemorrhage.
The Cdk5-ATM signaling pathway has been demonstrated
to protect neurons in the process of cerebral hemorrhage
(Wu et al., 2016). Phosphorylation of p35 also attenuated
neuronal apoptosis through Cdk5 (Roufayel and Murshid,
2019). Moreover, p75NTR promotedp53 dephosphorylation
and induced neuronal apoptosis after intracerebral hemorrhage
(Zhou et al., 2019). Therefore, Cdk5 plays an important
role in intracerebral hemorrhage and is a potential
therapeutic target.

Neuropathic pain (NP)

Neuropathic pain is caused by a lesion or disease of
the somatosensory system, including peripheral fibers and
central neurons (Bouhassira, 2019). The development of
NP is caused by many pathophysiological mechanisms that
affect pain pathways (Colloca et al., 2017). As a unique
Cdk of the nervous system, Cdk5 has been proved to
play an important role in the pathogenesis of NP. The
role of Cdk5 in NP and its potential substrates, such as
channels, proteins involved in neurotransmitter release, and
receptors, were discussed in many studies (Gomez et al.,
2020b). Researchers have visualized the regulation of trigeminal
sensory neurons by Cdk5, showed the expression change of
Cdk5 and the accumulation of calcium ions, and provided
a strong basis for revealing the pathological mechanism
of neuralgia (Hu et al., 2022). The level of Cdk5 and
phosphorylated CRMP2 was increased in NP models, and
inhibition of CRMP2 could alleviate NP (Moutal et al.,
2019). Cdk5 inhibitors can inhibit neuralgia through the
Cdk5-NR2A pathway (Yang et al., 2014) or attenuate the

response of TRPA1 (Sulak et al., 2018). Cdk5 also plays
a critical role in regulating myelin basic protein (MBP)
fragment (Chernov et al., 2018), inflammatory pain (Zhu
et al., 2021), and calcium channel (Gomez et al., 2020a,
2021) in NP. Cdk5 mediated cyclic AMP response element
binding protein (CREB; Li et al., 2014) and regulated NP
through Cdk5/PPAR γ pathway (Zhong et al., 2019). Silencing
noncoding RNA H19 can relieve by inhibiting Cdk5 mediated
phosphorylation of CREB (Li et al., 2020). Based on these
findings, Cdk5 is supposed to be a potential target to attenuate
neuralgia.

Epilepsy

Epilepsy is a brain disease, with more than 70 million
people suffering from epilepsy worldwide (Thijs et al., 2019).
The pathophysiological mechanism of epilepsy is not fully
clarified. There is a high incidence of comorbidity and
premature mortality in patients with epilepsy (Yuen et al., 2018).
It is important to understand the molecular mechanism
of epilepsy in order to find new prognostic/diagnostic
biomarkers. Cdk5 naturally plays an important role in the
pathological process of epilepsy. Cdk5 maintains the steady-
state synaptic plasticity by regulating the synaptic cascade
in neurons. In the animal refractory epilepsy model, the
expression of the Cdk5 gene at the transcriptional level has
been proved to be abnormal (Dixit et al., 2017). Cdk5 plays
different roles in different brain regions in patients with
mesial temporal lobe epilepsy with hippocampal sclerosis
(Banerjee et al., 2021). The occurrence and development
of epilepsy are related to the blood-brain barrier. It is
verified that endothelial specific Cdk5 knockout induced
spontaneous seizures in mice (Liu et al., 2020). In status
epilepticus, Cdk5 promotes neuronal apoptosis through
excessive mitochondrial fragmentation (Kim and Kang,
2017), regulates neuroinflammation (Hiragi et al., 2018), and
endoplasmic reticulum stress (Lee and Kim, 2021). After status
epilepticus, Cdk5 was less expressed in CA1 cells in animal
models (Kim and Kang, 2018). Roscovitine, a Cdk5 inhibitor,
inhibits status epilepticus-induced neuroinflammation by
regulating p38 MAPK-mediated microglial response (Kim et al.,
2019). P35 and P39, Cdk5 activators, have also been shown
to play a significant role in synaptic function and epileptic
response (Li et al., 2016). The change of Cdk5/p35 expression in
the hippocampus may play a role in epilepsy by affecting
mossy fiber germination (Tian et al., 2008, 2010). It is
well known that NMDAR is intimately related to epilepsy.
NMDAR induced axon injury in temporal lobe epilepsy
through regulating GSK-3 β and Cdk5 (Liu et al., 2017;
Fan et al., 2020). However, more studies are still needed to
unveil the role of Cdk5 in the pathophysiological process
of epilepsy.
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FIGURE 3

Molecular mechanisms of Cdk5 in some of the neurological diseases. →: promote or aggravate; a: inhibit or protect.

Glioblastoma

Glioblastoma (GBM) is an aggressive malignant primary
brain tumor. Currently, there are only palliative treatments such
as radiotherapy and chemotherapy (Stupp et al., 2009). It is
important to find effective therapeutic drugs for GBM. The
aberrant activity of Cdk5 is found in various tumors, including
GBM. A biosensor for Cdk5 can be used to probe Cdk5 activity
in living glioblastoma cells by fluorescence imaging (Peyressatre
et al., 2020b). The level of Cdk5 may be a potential biomarker
for early diagnosis of GBM (Gonzalez-Vera et al., 2016). Cdk5 is
also identified as a valuable predictive marker for tumorigenesis
and progression in GBM. Cdk5 can promote the migration,
invasion, and progression of GBM by phosphorylating PIKE-A
(Liu et al., 2008) and Drp1 (Xie et al., 2015). Cdk5 inhibition
by TP5 (Tabouret et al., 2020), AC1MYR2 (Ren et al., 2015),
inhibition of DYRK1A (Chen et al., 2021), Cdk5 knockdown
(Zhou et al., 2021), and a new quinazolinone family (Peyressatre
et al., 2020a) can suppress the progression of GBM. Moreover,
it is supposed that targeting the Cdk5/TRIM59 signal axis
(Sang et al., 2019) and OGT/CDK5/ACSS2 pathway (Ciraku
et al., 2022) may be future strategies for the treatment of GBM
(Figure 3).

Multiple sclerosis

Cdk5 is essential in regulating the transformation of
the precursor cells of adult oligodendrocytes to mature

oligodendrocytes (Luo et al., 2014). Cdk5 plays an important
role in the formation of myelin sheath for oligodendrocytes.
Abnormal Cdk5 activity can lead to demyelination-related
diseases, such as multiple sclerosis (Luo et al., 2016).
Cdk5 activity in oligodendrocytes contributes to demyelination
and cognitive dysfunction in a mouse model of multiple sclerosis
(Luo et al., 2018). However, the specific mechanism for Cdk5 in
multiple sclerosis is still unclear. It is found that Cdk5 can
participate in the pathological process of multiple sclerosis by
regulating lymphocyte activation (Pareek et al., 2010).

Other neurological disorders

Cdk5 has been proved to play a key role in many other
neurological diseases, such as ALS (Bk et al., 2019), early brain
injury (Ding et al., 2022), cerebral amyloidosis (Kiss et al.,
2020), fragile X-associated tremor/ataxia syndrome (FXTAS;
Robin et al., 2017), spinal muscular atrophy (Tejero et al.,
2020), and systemic sclerosis (Wei et al., 2017). Circadian
behavior (Zhou et al., 2022), learning disabilities (Kamiki
et al., 2018), and aging (Spurrier et al., 2018) are also
closely related to Cdk5. Diabetes induces brain damage by
regulating Cdk5 phosphorylation (Li et al., 2020b). Inhibition
of Cdk5 improves glucose uptake in insulin-resistant neuronal
cells via the ERK1/2 pathway (Manglani and Dey, 2022),
and alleviates cognitive deficits caused by diabetes (Liu et al.,
2019). Inhibition of the Cdk5/caspase-3 pathway by p5-TAT
can also attenuate radiation-induced cognitive dysfunction
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FIGURE 4

Pathological mechanisms of Cdk5 in neurological disorders. When neurons are subjected to pathological stimuli, such as ischemia and toxic
injury. Cdk5 is highly activated after binding to p25, phosphorylates many substrates, and also induces mitochondrial fragmentation, Golgi
apparatus and endoplasmic reticulum dysfunction, and destruction of the cytoskeleton. Cdk5 inhibitors can attenuate or even reverse the above
pathological processes.

(Zhang et al., 2021). Inhibition of Cdk5 activity ameliorates
anxiety and depression in mice (Takahashi et al., 2022b).
Cdk5 is found to induce mitochondrial kinetic defects in
optic neuropathy (Rong et al., 2020). Cdk5 phosphorylates
CRMP-2, which will aggravate optic nerve damage (Chen
et al., 2019). Cdk5 contributes to oxidative stress (Guo et al.,
2018) and endoplasmic reticulum stress (Shi et al., 2018).
Nestin is closely related to Cdk5 signaling (Lindqvist et al.,
2017) and the nestin-Cdk5-drp1 axis regulates neural stem
cell stemness (Wang et al., 2018). The role of Cdk5 in
nervous system diseases may be different in male and
female models (Barrett et al., 2019). Estrogen promotes
axon regeneration after subcortical axon injury through the
PI3K/Akt/CDK5/Tau pathway (Xia et al., 2020). Epigenetic
editing of Cdk5 also has been applied to neurological disorders,
such as sex-specific regulation of fear memory (Sase et al.,
2019). Till now, researchers try to find new phosphorylation
substrates of Cdk5 (Roach et al., 2018), and discover new
Cdk5 inhibitors by various biotechnology methods (Shukla
and Singh, 2020, 2022). In a recent study, a highly selective
inhibitor of CDK5, GFB-12811, was discovered and optimized

(Daniels et al., 2022). A brain-penetrating Cdk5 inhibitor was
also developed and found to alter neurobehavior (Figure 4;
Umfress et al., 2022).

Conclusion

In general, our understanding of Cdk5 in neurological
disorders has made great progress in recent years. A large
number of studies have confirmed its important physiological
function and its toxic effect after over-activation. It is
increasingly clear and certain that Cdk5 plays a pivotal role
in the physiological function of the nervous system and the
pathological process of neurological disorders. Cdk5 inhibitors
have shown promising effects in numerous studies and
Cdk5 has great potential as a therapeutic target for neurological
disorders. However, many issues, such as the more detailed
molecular mechanisms of Cdk5 in different neurological
disorders and the development of more selective inhibitors
of CDK5, still need to be further clarified before its
clinical application.
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