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ABSTRACT

Living organisms change their proteome dramatically
to sustain a stable internal milieu in fluctuating envir-
onments. To study the dynamics of proteins during
stress, we measured the localization and abundance
of the Saccharomyces cerevisiae proteome under
various growth conditions and genetic backgrounds
using the GFP collection. We created a database (DB)
called ‘LoQAEE’ (Localizaiton and Quantitation Atlas
of the yeast proteomE), available online at http://
www.weizmann.ac.il/molgen/logate/, to provide
easy access to these data. Using LoQAtE DB, users
can get a profile of changes for proteins of interest as
well as querying advanced intersections by either
abundance changes, primary localization or localiza-
tion shifts over the tested conditions. Currently, the
DB hosts information on 5330 yeast proteins under
three external perturbations (DTT, H,O, and nitrogen
starvation) and two genetic mutations [in the chap-
eronin containing TCP1 (CCT) complex and in the
proteasome]. Additional conditions will be uploaded
regularly. The data demonstrate hundreds of local-
ization and abundance changes, many of which
were not detected at the level of mMRNA. LOQALE is
designed to allow easy navigation for non-experts in
high-content microscopy and data are available for
download. These data should open up new perspec-
tives on the significant role of proteins while combat-
ing external and internal fluctuations.

INTRODUCTION

The budding yeast Saccharomyces cerevisiae robustly
adapts to a variety of fluctuations such as extreme environ-
ments, genetic mutations and life phases. Many cellular

components within the cell (such as DNA, RNA, proteins
and lipids) rearrange dynamically to promote survival
(1-17). However, although vast amounts of data have
been collected on chromatin modifications and transcrip-
tional responses under changing conditions, only a handful
of pioneering studies describe the dynamics of proteins
(2,9-11). To enable a broader view of the proteomic
response under varying conditions, we constructed an auto-
mated microscopy setup that allows reproducible, accurate
and sensitive measurements of the localization and abun-
dance of fluorescently tagged proteins at single-cell reso-
lution. Using this setup, we visualized the yeast Green
Fluorescence Protein (GFP) library in which nearly 5500
yeast proteins are tagged with a C’ terminal GFP under
their natural promoter (18). Visualizing all strains under
various internal and external fluctuations, we found >100
proteins that could be detected for the first time and
determined their subcellular localization (4). We then
tracked proteome-level changes using two methods: first,
we classified proteins into 13 localization categories and
detected hundreds of proteins that shift between different
cellular locals under stress (4,19). We then computed abun-
dance based on the fluorescence intensity of the GFP signal
and found all proteins that change their abundance (4,19).
Comparison with transcriptome data (14) demonstrated
that up to 60% of proteomic changes could not be pre-
dicted from the dynamics of their transcripts, therefore,
emphasizing the importance of studying proteins directly
(20,21). To easily browse and download all aspects of
these data, we built the LOcalization and Quantitation
ATlas of the yeast protecomE (LoQAtE) database (DB).
The current article presents how ‘LoQAtE’ can be easily
used for uncovering new biological phenomena.

DATABASE DESIGN AND IMPLEMENTATION

The DB is constructed such that both browsing for a
protein of interest and advanced intersections of various
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parameters can be performed easily. LoQAtE holds infor-
mation on 328 localization shifts of proteins from one
organelle to another and 1400 abundance change events.
Each change may contribute directly to the ability of the
cell to respond to the perturbation studied, or it can serve
as a marker for cellular changes if it is a downstream effect
of the stress. Using LoQAtE, such changes can be
uncovered and studied in several methods:

Studying a specific protein

Quick search

The most simple utility of the DB is to insert a single name
or a tab-delimited list of open reading frames (ORFs)/gene
names (for an example of the results screen see Figure 1A)
and receive a ‘quick search’ result. This result presents the
localization and abundance of all proteins of interest
under all conditions tested as well as the ‘fold change’ of
protein abundance in each condition relative to a control
baseline condition (synthetic defined medium) and a stat-
istical assessment of the significance of this change. Full
results including the microscopic images are presented for
up to 100 proteins (to enable rapid display of the search
results). At any moment, the full list of results can be
downloaded ecither as a csv file summarizing the data or
as a folder of the raw images. For ease of utility the default
channel shown in the results screen is the GFP channel;
however, the bright field image is available in a clickable
fashion.

Studying a group of proteins

The ability to search by more advanced criteria enables
users to uncover patterns in protein behavior that may not
have been revealed by examining a single protein. For
example, categorizing groups of proteins that shift their
localization from the same origin to the same target or-
ganelle may allow a unique view on the functional changes
in each organelle, provide a basis for analysis of the
factors mediating these movements or may uncover a
joint function. In another example, regulatory elements
may be found for groups of proteins that are down/
upregulated concordantly. We have, therefore, built
several interfaces to enable advanced queries of the data
and to enable such grouping.

Advanced search

1. Search by localization. 1t allows the user to choose all
proteins localized to a specific organelle/s in a defined
condition. In each query, one condition can be chosen
and as many as 13 localization categories (or ‘below
threshold” that represents no expression) can be picked.
Results are presented and can be downloaded as described
earlier in text.

2. Search by abundance. It allows the user to choose a set
of proteins that changed abundance concordantly for a
specific condition or for several conditions in an ‘AND’
relation. To use this option, one or more growth condi-
tions should be chosen, and for each, the type of abun-
dance change (upregulated, no change or downregulated)
should be defined. Additionally, the user can filter results
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to a specific organelle. Results are presented and can be
downloaded as described earlier in text.

3. Search by movement. A schematic diagram depicting
the types and numbers of changes in cellular localization
observed during yeast growth in the three environmental
stresses is available. In a clickable fashion, the user can
choose one arrow (representative of one type of localiza-
tion shift in a specific condition) and click the search
button. Results provide the entire list of proteins classified
as undergoing this shift and can be downloaded as
described earlier in text (Figure 1B).

Using the advanced search to study transcriptional
networks

Using the data in LoQAtE provides the opportunity to
uncover important layers of cellular function that could
not have been uncovered by mRNA levels alone.
Uncovering the extent of post-transcriptional regulation
can be easily done by comparing all changes observed
under a specific condition with the transcriptional
response under this condition (14). These types of data
may potentially be further characterized to define
mRNA motifs or secondary structures affecting transla-
tion efficiency or mRNA stability as well as protein level
signals such as stress-dependent degrons or binding motifs
that affect protein abundance in the absence of
transcription.

To demonstrate one such utility, we have used the
‘Search by Abundance’ and ‘Search by Movement’ to
retrieve the entire group of transcription factors (TFs)
that change abundance or localization during nitrogen
starvation out of a list of all predicted and known TFs
in yeast (courtesy of Professor Eran Segal) (see Figure 2A
and B). Interestingly, comparing these 33 proteins with
their mRNA levels under the exact same conditions un-
covered that the transcripts of 48% of them had no de-
tectable change (14). To uncover the potential affect of
these post-transcriptional changes on adaptation to star-
vation we used YEASTRACT (22-24) to predict their
potential targets. Then, we calculated the percentage of
abundance changes discovered in LoQAtE that can be
explained by these TFs (see Figure 2C). Intriguingly, an
astounding fraction of changes in protein levels measured
under nitrogen starvation could be explained by the post-
transcriptional changes of this handful of TFs. As these
conditions have been extensively studied from the tran-
scriptional perspective (14) without the post-transcrip-
tional knowledge, this means that the conclusions
reached might have been incomplete.

SIMILAR DATABASES

LoQAtE DB is the first ever resource that particularly
concentrates on the dynamic characteristics of the yeast
proteome. The growing interest in directly measuring
proteomic features has brought about several additional
DBs presenting systematic proteomic data. The pioneering
yeast localization DB (http://yeastgfp.yeastgenome.org/)
provides information about the localization and
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Figure 1. Screen shots of two result windows in a LOQAtE search. The LoQAtE allows various search functions to be performed. Both quick search
and advanced search (Search by abundance or localization) (A) enables querying for large groups of proteins and results in the entire localization and
abundance data for each protein being presented. In addition, the results of each search can be downloaded in an excel table or as raw images.
‘Search by movement’ (B) allows the user to choose a movement of interest represented as an arrow on a schematic representation of the cell and
receive information on all proteins that are assigned to this category.
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Figure 2. Application of LoQALtE to study regulatory networks. Two advanced search options were used to put-together a list of all yeast TFs that
changed abundance (search by abundance) or localization (search by movement). (A) Example of change in localization during nitrogen starvation.
Scale bar represents 5. (B) The list of 33 TFs was compared with microarray data on expression changes under the same stress condition (14) to
uncover that 16 of them were not documented to have any change in their transcripts under the exact same experimental conditions. (C) Using the
DB for regulatory motifs (YEASTRACT), we extracted the targets for these 16 TFs and found that an enormous fraction of all changes in protein
levels found in LoQAtE during nitrogen starvation (using the Search by Abundance option) (22-24) can be explained by 10 of the TFs.

abundance of the majority of yeast proteins under
standard laboratory growth conditions based on the con-
struction of the GFP collection (18). Additionally, re-
analysis of the GFP collection and additional proteins
involved in lipid metabolism was performed by high-
resolution confocal imaging (25) and is available at
the YPL + DB (http://yplp.uni-graz.at/index.php) (26,27).
For a broader range of proteomic data, the Yeast
Resource Center (YRC) (http://depts.washington.edu/
yeastrc/) is a collaborative web site that gathers several
core technologies and provides a breadth of information
such as quantitative mass-spectrometry, sequence-
function relationships, microscopy, structure and compu-
tational strategies for structure-function predictions.
Finally, organelle DB (http://organelledb.Isi.umich.edu/
index.php) compiles protein localization data that are
organized into >50 organelles, subcellular structures and
protein complexes (28,29). The data set includes 138 or-
ganisms spanning the eukaryotic kingdom and incorpor-
ates ongoing results from large-scale studies of protein
localization in yeast S. cerevisiae.

A similar effort in human cell lines is based on the
library of annotated reporter cell-clones (LARC) in
which each strain (out of 2180) contains an endogenous
protein fused to yellow fluorescent protein (YFP) (30).
This DB (http://www.weizmann.ac.il/mcb/UriAlon/Dy
namProt/) provides the expression and localization of
each protein over time in response to various drugs and
is regularly updated with newly created clones (30). A
more comprehensive human proteome atlas has recently
become available and harbors expression data for thou-
sands of human proteins from a large number of healthy
tissues, tumors, cell lines and subcellular localizations, all
based on antibody staining (http://www.proteinatlas.org/)
(31). A principally similar DB called ‘PeptideAtlas’
(http://www.peptideatlas.org/) harbor growing data on
proteins expressed under various conditions for a wide

variety of organisms from yeast to human, collected by
tandem mass spectrometry (MS/MS) (32).

OUTLOOK

The LoQAtE DB, in its first version, contains easily ac-
cessible and user-friendly information about subcellular
localization and levels for 5330 yeast proteins under
three environmental stress conditions and two genetic per-
turbations. The richness of post-translational events docu-
mented in this DB underlines the significance of studying
the level of proteins to capture a true picture of a cell’s
response to stress. Starting from behavior of individual
proteins and up to a bird’s eye view on the entire cell as
a holistic functional unit, this DB enables scientists to gain
a new insight on cellular dynamics. As more screens are
performed in our laboratory, they will be added into this
publicly available atlas. This rich resource should serve for
multiparametric searches and discovery of new protein
functions illuminated only by the combination of such
vast amounts of data.

ACKNOWLEDGEMENTS

The authors would like to thank Jonathan Weissman for
providing them with the full GFP library and Amnon
Horovitz and Michal Nadler-Holly for their fruitful col-
laboration studying the CCT complex. They would like to
thank Keren Katzav, Genia Brodsky and Orit Bechar for
the graphical designs of the database, and Rachel Bauman
and Anastasia Zarankin from the internet services section
of the Weizmann Institute for constructing the LoQAtE
database.

FUNDING

Isreali Ministry of Science, the European Research
Council (ERC) Starting Grant [StG 260395] and


http://yplp.uni-graz.at/index.php
http://depts.washington.edu/yeastrc/
http://depts.washington.edu/yeastrc/
website 
Mass
,
http://organelledb.lsi.umich.edu/index.php
http://organelledb.lsi.umich.edu/index.php
is 
more than 
,
Saccharomyces 
Library 
http://www.weizmann.ac.il/mcb/UriAlon/DynamProt/
http://www.weizmann.ac.il/mcb/UriAlon/DynamProt/
 and 
,
s well as
-
http://www.proteinatlas.org/
``
''
http://www.peptideatlas.org/
-
database
database
-
This work was supported by the 
grant number 

D730 Nucleic Acids Research, 2014, Vol. 42, Database issue

reintegration grant

[IRG 239224]; EMBO Young

Investigator Fellow (to M.S.); Recipient of an MIT
International Science and Technology Initiative (MISTT)
(to M.S.). Funding for open access charge: ERC Starting
Grant [260395].

Conflict of interest statement. None declared.

REFERENCES

1.

10.

Frenkel-Morgenstern,M., Cohen,A.A., Geva-Zatorsky,N.,
Eden,E., Prilusky,J., Issaeva,l., Sigal,A., Cohen-Saidon,C.,
Liron,Y., Cohen,L. et al. (2010) Dynamic Proteomics: a database
for dynamics and localizations of endogenous fluorescently-tagged
proteins in living human cells. Nucleic Acids Res., 38,
D508-D512.

. Aragon,T., van Anken,E., Pincus,D., Serafimova,[.M.,

Korennykh,A.V., Rubio,C.A. and Walter,P. (2009) Messenger
RNA targeting to endoplasmic reticulum stress signalling sites.
Nature, 457, 736-740.

. Beyer,A., Hollunder,J., Nasheuer,H.P. and Wilhelm,T. (2004)

Post-transcriptional expression regulation in the yeast
Saccharomyces cerevisiae on a genomic scale. Mol. Cell.
Proteomics, 3, 1083-1092.

. Breker,M., Gymrek,M. and Schuldiner,M. (2013) A novel single-

cell screening platform reveals proteome plasticity during yeast
stress responses. J. Cell Biol., 200, 839-850.

. Eden,E., Geva-Zatorsky,N., Issaeva,l., Cohen,A., Dekel,E.,

Danon,T., Cohen,L., Mayo,A. and Alon,U. (2011) Proteome
half-life dynamics in living human cells. Science, 331, 764-768.

. Erjavec,N., Larsson,L., Grantham,J. and Nystrom,T. (2007)

Accelerated aging and failure to segregate damaged proteins in
Sir2 mutants can be suppressed by overproducing the protein
aggregation-remodeling factor Hspl04p. Genes Dev., 21,
2410-2421.

. Hedbacker,K., Townley,R. and Carlson,M. (2004) Cyclic AMP-

dependent protein kinase regulates the subcellular localization of
Snfl-Sipl protein kinase. Mol. Cell. Biol., 24, 1836-1843.

. Lee,M.V., Topper,S.E., Hubler,S.L., Hose,J., Wenger,C.D.,

Coon,J.J. and Gasch,A.P. (2011) A dynamic model of proteome
changes reveals new roles for transcript alteration in yeast. Mol.
Syst. Biol., 7, 514.

. Sigal,A., Milo,R., Cohen,A., Geva-Zatorsky,N., Klein,Y.,

Alaluf,I., Swerdlin,N., Perzov,N., Danon,T., Liron,Y. et al. (2006)
Dynamic proteomics in individual human cells uncovers
widespread cell-cycle dependence of nuclear proteins. Nat.
Methods, 3, 525-531.

Tkach,J.M., Yimit,A., Lee,A.Y., Riffle M., Costanzo,M.,
Jaschob,D., Hendry,J.A., Ou,J., Moffat,J., Boone,C. et al. (2012)
Dissecting DNA damage response pathways by analysing protein
localization and abundance changes during DNA replication
stress. Nat. Cell Biol., 14, 966-976.

. Newman,J.R., Ghaemmaghami,S., Thmels,J., Breslow,D.K.,

Noble,M., DeRisi,J.L. and Weissman,J.S. (2006) Single-cell
proteomic analysis of S. cerevisiae reveals the architecture of
biological noise. Nature, 441, 840-846.

. Stathopoulos-Gerontides,A., Guo,J.J. and Cyert,M.S. (1999)

Yeast calcineurin regulates nuclear localization of the Crzlp
transcription factor through dephosphorylation. Genes Dev., 13,
798-803.

. Toulmay,A. and Prinz,W.A. Direct imaging reveals stable,

micrometer-scale lipid domains that segregate proteins in live
cells. J. Cell Biol, 202, 35-44.

. Gasch,A.P., Spellman,P.T., Kao,C.M., Carmel-Harel,O.,

Eisen,M.B., Storz,G., Botstein,D. and Brown,P.O. (2000) Genomic
expression programs in the response of yeast cells to environmental
changes. Mol. Biol. Cell, 11, 4241-4257.

. Hughes,T.R., Marton,M.J., Jones,A.R., Roberts,C.J.,

Stoughton,R., Armour,C.D., Bennett,H.A., Coffey,E., Dai,H.,
He,Y.D. et al. (2000) Functional discovery via a compendium
of expression profiles. Cell, 102, 109-126.

16.

18.

19.

20.

21.

22.

23.

24.

25.

27.

28.

29.

30.

31.

32.

Causton,H.C., Ren,B., Koh,S.S., Harbison,C.T., Kanin,E.,
Jennings,E.G., Lee,T.I., True,H.L., Lander,E.S. and Young,R.A.
(2001) Remodeling of yeast genome expression in response to
environmental changes. Mol. Biol. Cell, 12, 323-337.

. Roh,T.Y. and Zhao,K. (2008) High-resolution, genome-wide

mapping of chromatin modifications by GMAT. Methods Mol.
Biol., 387, 95-108.

Huh,W.K., Falvo,J.V., Gerke,L.C., CarrollLA.S., Howson,R.W.,
Weissman,J.S. and O’Shea,E.K. (2003) Global analysis of protein
localization in budding yeast. Nature, 425, 686—691.
Nadler-Holly,M., Breker,M., Gruber,R., Azia,A., Gymrek,M.,
Eisenstein,M., Willison,K.R., Schuldiner,M. and Horovitz,A.
Interactions of subunit CCT3 in the yeast chaperonin CCT/TRiC
with Q/N-rich proteins revealed by high-throughput microscopy
analysis. Proc. Natl Acad. Sci. USA, 109, 18833-18838.
Picotti,P., Clement-Ziza,M., Lam,H., Campbell,D.S., Schmidt,A.,
Deutsch,E.W., Rost,H., Sun,Z., Rinner,O., Reiter,L. et al.

A complete mass-spectrometric map of the yeast proteome
applied to quantitative trait analysis. Nature, 494, 266-270.

de Godoy,L.M., Olsen,J.V., Cox,J., Nielsen,M.L., Hubner,N.C.,
Frohlich,F., Walther,T.C. and Mann,M. (2008) Comprehensive
mass-spectrometry-based proteome quantification of haploid
versus diploid yeast. Nature, 455, 1251-1254.

Teixeira,M.C., Monteiro,P., Jain,P., Tenreiro,S., Fernandes,A.R.,
Mira,N.P., Alenquer,M., Freitas,A.T., Oliveira,A.L. and Sa-
Correia,l. (2006) The YEASTRACT database: a tool for the
analysis of transcription regulatory associations in Saccharomyces
cerevisiae. Nucleic Acids Res., 34, D446-D451.

Monteiro,P.T., Mendes,N.D., Teixeira,M.C., d’Orey,S.,
Tenreiro,S., Mira,N.P., Pais,H., Francisco,A.P., Carvalho,A.M.,
Lourenco,A.B. et al. (2008) YEASTRACT-DISCOVERER: new
tools to improve the analysis of transcriptional regulatory
associations in Saccharomyces cerevisiae. Nucleic Acids Res., 36,
D132-D136.

Abdulrehman,D., Monteiro,P.T., Teixeira,M.C., Mira,N.P.,
Lourenco,A.B., dos Santos,S.C., Cabrito,T.R., Francisco,A.P.,
Madeira,S.C., Aires,R.S. et al. (2010) YEASTRACT: providing a
programmatic access to curated transcriptional regulatory
associations in Saccharomyces cerevisiae through a web services
interface. Nucleic Acids Res., 39, D136-D140.

Natter,K., Leitner,P., Faschinger,A., Wolinski,H., McCraith,S.,
Fields,S. and Kohlwein,S.D. (2005) The spatial organization of
lipid synthesis in the yeast Saccharomyces cerevisiae derived from
large scale green fluorescent protein tagging and high resolution
microscopy. Mol. Cell. Proteomics, 4, 662—672.

. Habeler,G., Natter,K., Thallinger,G.G., Crawford, M.E.,

Kohlwein,S.D. and Trajanoski,Z. (2002) YPL.db: the yeast
protein localization database. Nucleic Acids Res., 30, 80-83.
Kals,M., Natter,K., Thallinger,G.G., Trajanoski,Z. and
Kohlwein,S.D. (2005) YPL.db2: the yeast protein localization
database, version 2.0. Yeast, 22, 213-218.

Wiwatwattana,N. and Kumar,A. (2005) Organelle DB: a cross-
species database of protein localization and function. Nucleic
Acids Res., 33, D598-604.

Wiwatwattana,N., Landau,C.M., Cope,G.J., Harp,G.A. and
Kumar,A. (2007) Organelle DB: an updated resource of
eukaryotic protein localization and function. Nucleic Acids Res.,
35, D810-D814.

Frenkel-Morgenstern,M., Cohen,A.A., Geva-Zatorsky,N.,
Eden,E., Prilusky,J., Issaeva,l., Sigal,A., Cohen-Saidon,C.,
Liron,Y., Cohen,L. et al. (2010) Dynamic Proteomics: a database
for dynamics and localizations of endogenous fluorescently-tagged
proteins in living human cells. Nucleic Acids Res., 38,
D3508-D512.

Uhlen,M., Oksvold,P., Fagerberg,L., Lundberg,E., Jonasson,K.,
Forsberg,M., Zwahlen,M., Kampf,C., Wester,K., Hober.,S. et al.
(2010) Towards a knowledge-based Human Protein Atlas. Nat.
Biotechnol., 28, 1248-1250.

Desiere,F., Deutsch,E.W., Nesvizhskii,A.I., Mallick,P., King,N.L.,
Eng,J.K., Aderem,A., Boyle,R., Brunner,E., Donohoe,S. et al.
(2005) Integration with the human genome of peptide

sequences obtained by high-throughput mass spectrometry.
Genome Biol., 6, R9.


grant number 
The authors claim that they have no competing interests. 

