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Abstract

This study demonstrates the use of bootstrap methods to estimate the total population of urban and periurban areas using
satellite imagery and limited survey data. We conducted complete household surveys in 20 neighborhoods in the city of Bo,
Sierra Leone, which collectively were home to 25,954 persons living in 1,979 residential structures. For five of those twenty
sections, we quantized the rooftop areas of structures extracted from satellite images. We used bootstrap statistical
methods to estimate the total population of the pooled sections, including the associated uncertainty intervals, as a
function of sample size. Evaluations based either on rooftop area per person or on the mean number of occupants per
residence both converged on the true population size. We demonstrate with this simulation that demographic surveys of a
relatively small proportion of residences can provide a foundation for accurately estimating the total population in
conjunction with aerial photographs.
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Introduction

As Viel and Tran [1] have summarized, ‘‘Epidemiology is

sometimes considered the science of denominators, because an

accurate knowledge of the population at risk is a fundamental

requirement for determining rates and deriving meaningful

indicators of health status, health services, and health systems.’’

Calculation of the rates of incidence of new disease or the

prevalence of existing disease in a population or subpopulation

depends on an accurate knowledge of the underlying population

denominators, often stratified by age, sex, and even by levels of

immunity or exposure [2,3]. Without adequate population

denominator data, incidence and prevalence measures must be

reported as counts rather than rates, which introduces a bias

toward higher apparent risk in areas with higher population

density [4]. Although maximum likelihood methods can now be

used to estimate both the serial interval and reproductive number

of an epidemic from counts of incident cases only [5,6], resource-

limited countries often lack data for both the underlying

population denominators and the baseline incidence rates. This

is the situation addressed in this manuscript.

Our overarching goal with our simulations is to demonstrate

approaches for combining readily available satellite imagery with

small sample size field surveys as a means of efficiently estimating

both population size (denominator data) and health states

(numerator data). In this paper, we take a first step towards

improving (denominator) measures by estimating total population

in a West African urban area using remotely-acquired residential

rooftop areas and demographic surveys. Specifically we ask ‘‘what

number of residential surveys are needed to support a particular

level of confidence in the estimated total population size, given a

total number of residential structures or a total rooftop area?’’ We

approach this question using a combination of total rooftop areas

extracted from satellite imagery; a complete count of residents

from 20 neighborhoods in Bo, Sierra Leone, West Africa, which

we collected during a household health census; and simulated

datasets sampled from our complete demographic dataset to

represent small surveys of a subsample of residents.

Although our primary interests are in epidemiological and

health care modeling, the simulation methods presented in this

paper are not restricted to this domain since ‘‘denominator’’ data

are essential for a variety of sectors. In resource-challenged

environments, complete information about population size is often

unavailable due to infrequent government census initiatives, rapid

population growth in cities due to unplanned urbanization and

rural-to-urban migration, political and other instability that

prevents ongoing data collection and management, and the

difficulties associated with securing the time and funding to

conduct large-scale data collection activities. Rooftop areas,
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readily acquired from satellite imagery, and household surveys for

a limited number of residences may be combined with the

algorithms developed in this paper to produce robust estimates of

spatial population distributions.

Background
There are multiple applications for population data, including

demographic profiling, the determination of disease incidence and

prevalence, the mapping of access to health services, and the

estimation of the number of refugees or displaced persons

requiring emergency services. When combined with satellite

imagery, survey data can facilitate the estimation of population

size and population density.

Geospatial Information Systems (GIS) methods are increasingly

being used for population estimation purposes. Wu et al. [7]

distinguish between aerial interpolation methods that project

census data onto a standardized population surface and statistical

modeling methods that use socioeconomic variables (such as map

layers for urbanicity, land use, built structures, and other physical

or human geographic data) to calculate population estimates.

Several research groups have used GIS to estimate population

sizes. For example, the LandScan project, maintained by the Oak

Ridge National Laboratory (ORNL), uses a dasymetric mapping

technique that redistributes census-based population counts based

on constraints imposed by geographic boundaries, the presence of

physical structures, and/or public spaces, bodies of water, and

other spatial constraints [8]. The Gridded Population of the World

(GPW) and the derivative Global Rural-Urban Mapping Project

(GRUMP), both distributed through NASAâJs Socioeconomic

Data and Applications Center (SEDAC), which is hosted by the

Center for International Earth Science Information Network

(CIESIN) at Columbia University have developed novel methods

for estimating the population of urban areas, such as analyzing

nighttime satellite images to map city footprints [9] (see [10,11] for

applications).

In this paper, we used spatially-directed surveying to gather field

data about households in neighborhoods of interest. Using ground

truth information about building use and residential occupancy in

conjunction with imagery-derived estimates of rooftop areas, we

applied a population bootstrap algorithm to estimate the

uncertainty of the estimated population as a function of survey

sample size. The two estimators used are based on average

occupancy per residential structure, or average rooftop area per

person. Prior studies have reported findings using comparable

methods. Checchi et al. [12] used an occupancy-based measure to

estimate the number of displaced persons at 11 different sites. The

population was estimated as the product of (1) the number of
structures and (2) the average occupancy per structure, as inferred

from published reports. The local population may be overesti-

mated in situations where buildings and tents were not physically

distinct from one another, or occupied structures are concealed by

trees. Aminipouri [13] used rooftop extraction methods to estimate

the total rooftop area for three different slum areas in Tanzania.

The total population was estimated as the product of (1) the total
rooftop area and (2) the number of persons per rooftop area, based

on an assumption that the majority of dwellings were residential.

We compare both estimation results with field data from a

household census, and also attempt to quantify the relationship

between the uncertainty of the population estimate and the survey

size.

Methods

Survey Methodology and Dataset Development
Terminology. In Bo, Sierra Leone’s second largest city, a

‘‘section’’ is a formal municipal area with defined boundaries.

Inside a section a variety of building structure types may be

observed in satellite imagery. We divided structure types into two

major categories, residential and non-residential. Residential

structures include all buildings where persons sleep at night. Small

ancillary structures such as carports, outdoor kitchens, storage

sheds, chicken coops, latrines, and small sheds used for micro-

enterprise activities which are located on residential properties but

not used for sleeping were excluded when we delineated residential

structures and rooftop areas. A household was defined as a person

or group of persons identifying themselves as a family unit and

residing within one structure. Each residence comprises the

sleeping space for one or more households. The non-residential

category includes governmental, commercial, nonprofit organiza-

tional, and religious structures.

Survey Methods and Data Assembly. Our creation of a

complete municipal map for Bo, Sierra Leone (central coordinates:

7.959u, 211.740u), using participatory GIS methods has been

described elsewhere [14]. Long-term residents and city officials

were consulted throughout the mapping and validation process to

ensure the accuracy of section boundaries and other map features.

Sections in Bo are divided both by natural topographies, such as

marshy areas, and by man-made structures such as roads. The

central area, which is older, has a more planned layout than the

sections toward the edges of the city, where the growth was more

informal. Figure 1A shows the satellite image of Bo with the

boundaries of sections described in this study marked (red lines).

Figure 1B shows the same sections in relation to the overall

boundaries of Bo. For surveying, the first two sections (Kulanda

Town and Njai Town) were selected for convenience due to

proximity to the Mercy Hospital Research Laboratory (MHRL)

building, which is located in Kulanda Town. There were 68

sections in Bo at the time of the survey. After surveying Kulanda

Town and Njai Town, a random number generator was used to

select 18 of the remaining 66 sections for inclusion in the expanded

survey. In total, we surveyed 20 of the 68 sections. All field

surveyors – MHRL staff and graduate students from Njala

University – were residents of the city of Bo. Prior to beginning

data collection, all surveyors and interviewers completed several

days of training, including instruction on geographic data

collection (determining Global Positioning System (GPS) coordi-

nates with a handheld device, a Garmin GPSMAP 62 series),

interviewing techniques, and research ethics and regulations. The

two sections adjacent to MHRL were surveyed in April 2010. The

remaining sections were surveyed between November 2010 and

February 2011.

Contact with the households occurred in two stages. First, one

adult representative male or female from each residential structure

was interviewed about (1) the number of households in the

residence, (2) the number of persons in the informant’s household,

and (3) the age and sex of each person in his or her household.

Many residential structures were home to multiple households,

even if the residence was a modestly sized structure. Households

were usually related, but maintained some independence in

function. For example, if two adult siblings were both living in the

residence with their minor children, then they were generally

reported as being two separate households. When two or more

households lived within the same residence, a representative of

each household was asked to provide information about the

composition of his or her household. Second, the enumerator
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Figure 1. Aerial map of Bo city and municipal sections. (A) Aerial map of Bo, Sierra Leone showing municipal sections (red lines) described in
this study and (B) Graphical representation of the same. (Image copyright 2010 DigitalGlobe NextView License. Used with permission.)
doi:10.1371/journal.pone.0112241.g001
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sought to interview all mothers of any age who were living in the

residence. Only the first of the two stages are relevant for the

current analysis.

Handheld GPS units were used to obtain geographical

coordinates of all residential structures in the 20 municipal

sections. During this process, field staff distinguished between

residential and non-residential structures [14]. For two sections

where the types and dimensions of all structures (residential and

non-residential) were quantized, field surveyors marked the

coordinates of all non-ancillary structures and noted whether they

were residential or non-residential. Satellite imagery with 0.5-

meter resolution (Digital Globe, Satellite: WorldView-1, Image

date: 7 February 2010) was used in GIS software, ArcGIS (ESRI,

Inc. Redlands, CA) or Quantum GIS (QGIS; www.qgis.org), to

digitize rooftops so that individual areas could be determined. The

area for each rooftop was calculated only from the two-

dimensional coordinates measurable from satellite imagery,

irrespective of the total area that would be calculated using full

three-dimensional coordinates.

Protection of Human Subjects. All data collection involving

human subjects was approved by the institutional review boards of

Njala University, George Mason University, and the U.S. Naval

Research Laboratory. Written informed consent was obtained

from each household representative who participated in the

survey, all of whom were adults.

Table 1. Summary of survey data for 20 sections of Bo.

Section Area (km2) Structures Residential Structures* Households* Persons* Population Density{

Bo Central 0.07 103 33 51 273 high

Dodo 0.05 88 26 85 597 high

Kindia Town 0.15 278 102 206 1,160 high

Kissi Town 0.20 287 154 400 2,490 high

Komende 0.20 258 56 175 1,103 high

Kpetewoma 0.20 105 46 94 640 medium

Kulanda Town 0.29 314 197 637 3,882 high

Lewabu 0.48 117 105 170 879 low

Moibawo Farm 0.50 43 17 22 135 low

Nduvuibu 0.49 343 205 439 2,552 medium

New London 0.60 495 208 498 2,873 medium

New Site South (New England) 0.69 194 136 190 1,248 medium

New York 1.51 605 116 176 1,088 low

Njai Town 0.22 269 127 388 2,298 medium

Reservation 2.33 252 66 86 637 low

Roma 0.04 52 4 22 139 high

Salina 0.47 231 59 110 580 low

Tengbewabu 0.68 233 136 185 1,068 low

Toubu 0.02 46 34 88 454 medium

Yemoh Town 0.40 284 152 289 1,858 medium

Total — 4,597 1,979 4,311 25,954 —

Complete residence and household survey data for 20 municipal sections of Bo, showing the area, the total number of structures and the number of residential
structures, households and persons per municipal section.
*From survey data collected from all occupied structures in the section.
{high density: §11,000 residents per km2; medium density: 5,500 to 10,999 residents per km2; low density: v5,500 residents per km2.
doi:10.1371/journal.pone.0112241.t001

Table 2. The subset of Bo residences with known occupancies and rooftop areas.

Section
Residential Structures with Known
Rooftop Areas

Total Residential Structures in
Section

Persons in Residential Structures with Known
Rooftop Areas

Bo Central 25 33 241

Komende 53 56 1,061

Kulanda Town 193 197 3,809

Njai Town 127 127 2,298

Reservation 66 66 637

Total 464 479 8,046

Subset of structures by neighborhood for which data were available for both the rooftop area and total number of residents in five municipal sections.
doi:10.1371/journal.pone.0112241.t002
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Bo City Dataset Construction. Complete survey data were

collected for 20 of the 68 sections (neighborhoods) in Bo (Table 1).

This ground truth Dataset 01 (DS01) include survey records for

1,979 residential structures, representing a total population of

25,954 individuals. Five sections – Bo Central, Komende,

Kulanda Town, Njai Town, and Reservation, which collectively

are home to 479 residential structures and 8,046 individuals

(DS02) – were selected for manual digitization of the rooftop areas

for all of their residential structures (Table 2). For two sections,

Njai Town (DS03) and Reservation (DS04), the rooftop areas of

the non-residential structures were also digitized, and composite

mashup datasets were constructed that contain records for both

residential and non-residential structures (Table 3). Reservation,

originally established as a housing area for government officials,

was selected as an example of a section with large lots and a

relatively high proportion of non-residential buildings. Njai Town

was selected as an example of a densely populated residential

neighborhood with few commercial structures. The differences

between these two sections allowed us to better compare and

evaluate population estimation approaches. Cross-matching of the

residential rooftop areas to surveyed households was used to

identify residential structures; the remaining structures were

classified as non-residential. By definition, a non-residential record

in DS03 and DS04 has a digitized rooftop area and the number of

individuals and households is set to 0. Figure 2 summarizes the 4

datasets and all the simulations that were run.

Population Estimation Methods
Two Population Estimators. Using the GIS data summa-

rized above and spatially-linked demographic data we collected in

Bo, we are able to simulate the estimation of the population (and

the associated uncertainty) as a function of survey size using two

different population estimators:

1. An occupancy-based estimator, which is proportional to the

product of (1) the average number of persons per residential

structure and (2) the estimated total number of residential

structures (Tr).

2. A rooftop area-based estimator, which is proportional to the

product of (1) the average number of persons per m2 of rooftop

area and (2) the estimated total rooftop area of all of the

residential structures (Ar).

For n surveyed residences of index i and number of individual

persons I N Di in the ith residence, and the estimated total

population P̂P based on the total number of residences is given by:

Estimated{Total{Population~P̂P~

Xn

i~1

I N Di

n

� �
� Total{Number

ð1Þ

Table 3. Summary of the four datasets used for the simulation.

Dataset DS01 DS02 DS03 DS04

Brief description All residential structures
in the 20 sections

DS01 subset: 5 sections with
rooftop areas

Njai Town Composite (Mashup) Reservation
Composite
(Mashup)

Total number of residential
records (Tr)

1,979 464 127 66

Total number of non-residential
records (Tn)

Not found Not found 142 186

Total number of structures in dataset
(Ts~TrzTn)

1,979 464 269 252

Total rooftop area (m2) of
residential structures (Ar)

Not found 83,605 21,924 16,857

Total rooftop area (m2) of non-residential
structures (An)

Not found Not found 15,434 30,024

Total rooftop area (m2) of residential
and non-residential structures (As)

Not found Not found 37,358 46,881

Number of sections in dataset 20 5 1 1

Total number of individuals 25,954 8,046 2,298 637

Total number of households 4,311 1,313 388 86

Average number of individuals per
residential structure

13.1 (s~9:1) 17.3 (s~11:7) 18.1 (s~10:4) 9.7 (s~4:7)

Average rooftop area (m2) per
residential structure

Not found 180.2 (s~88:7) 172.6 (s~66:9) 255.4 (s~4:7)

Average rooftop area (m2) per
non-residential structure

Not found Not found 108.7 (s~70:6) 161.4 (s~91:7)

Average residential rooftop area

(m2) per individual resident

Not found 16.7 (s~18:2) 13.7 (s~13:0) 32.2 (s~22:8)

Number of records with digitized
rooftop areas

464 (5/20) sections 464 (of 479) records with
rooftop areas

269 252

Summary of the four datasets used for the simulation.
doi:10.1371/journal.pone.0112241.t003
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In Equation (1), Total{Number is the scale factor for the

population estimator, and is either the Total{Number of

residential structures, or the Total{Number of residential and

non-residential structures. This scale factor is required because the

total number of residence structures TrvTs, where Ts is the total

number of residential plus non-residential structures. If only

residential structures are included in the survey, then

Total{Number~Tr. If the survey includes both residential and

non-residential structures, then Total{Number should be set

equal to Ts, rather than Tr.

Alternatively, the population may be estimated on the total area

of the residence rooftops:

Figure 3. Flowchart for population bootstrap.
doi:10.1371/journal.pone.0112241.g003

Figure 2. Flowchart illustrating datasets and simulations.
doi:10.1371/journal.pone.0112241.g002
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Estimated{Total{Population~P̂P~P
n
i~1 I N Di

� �
P

n
i~1 Res{Areai

� �
 !

� Total{Area
ð2Þ

In Equation (2), Total{Area is the scale factor for the

population estimator. Total{Area is either the total rooftop area

of the residential structures, or the Total{Area of the residential

and non-residential structures. This scale factor is required

because the total rooftop area of residence structures ArvAs,

where As is the total rooftop area of (residential plus non-

residential) structures. If only residential rooftop areas are included

in the survey, then Total{Area~Ar. If the survey includes both

residential and non-residential structures, then Total{Area
should be set to As rather than Ar.

A population bootstrap algorithm [15] (pages 93–94) is used to

estimate the uncertainty of the two estimators as a function of

survey size. We will demonstrate that the population of the pooled

survey sections can be accurately estimated from small samples of

survey participants, given reasonable values for specific parameters

such as the total number of residential buildings or the total

rooftop area of all residential buildings. The latter parameters can

be partially derived from aerial imagery, but residential and non-

residential structures cannot be readily distinguished using the

imagery alone.

Figure 3 is a flowchart of the bootstrap simulation approach

used. Two estimators are tested, the occupancy-based population

estimator and the rooftop area-based population estimator. For a

given dataset, and for each sample size n, 2,000 replicate bootstrap

samples are created (step 2), using the population bootstrap

algorithm. The desired population estimate is calculated for each

replicate (step 3), along with the associated confidence intervals.

The individual 2,000 bootstrap replicate samples themselves can

be saved, if desired (step 4a). Alternative estimates of the

population and the associated uncertainty can be made from the

distributions of replicated samples, as required to parameterize

external epidemiological models as a function of sample size. The

expected bootstrap estimate of the population, and the associated

confidence levels (0.50 and 0.95), are always calculated (step 4b)

and saved (step 5). If surveys for all of the sample sizes have not

been completed, this process will proceed through the next

iteration (step 6).

The estimated total population is the mean value of the 2,000

individual population estimates [15]. The confidence levels (0.50

and 0.95) for the estimate of the total population were calculated

as the equal-tailed two-sided bootstrap percentile intervals [16].

The basic bootstrap methodology is summarized in [17], and

percentile methods are discussed in [15,18]. The specific samples

selected from the pool of 1,979 residences were dictated by the

choice of the initial random number seed used for the sampling

function, as well as the sequence of contingent bootstrap replicates.

Each of the 2,000 replications for a sample of size n requires the

random selection of 2,000 samples, each of size n. A random

number seed is a number, or vector of numbers, that is used to

initialize the pseudorandom number generator used to randomly

select the survey records in step 3 of Figure 2. This initial seed was

always explicitly specified and saved, which facilitated the uniform

replication of any of the simulations presented in this analysis.

Changing the random number seed will result in a different

sequence of bootstrap replicate samples, and the output from the

bootstrap algorithm will vary, as will be discussed.
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Figure 5. A comparison of occupancy-based and rooftop area-based bootstrap population estimators. (A) Occupancy-based
population estimations and (B) rooftop area-based population estimations with 0.50 CIs (blue) and 0.95 CIs (red). There are 464 residences (DS02) and
2,000 bootstrap replications per sample. The confidence intervals (CIs) were calculated using bootstrap percentiles.
doi:10.1371/journal.pone.0112241.g005

Figure 4. Occupancy-based bootstrap population estimations parameterized by sample size and random number seed. Results for
(A) random number seed = 12345 and (B) random number seed = 67890. In both panels, the brown line is the total population count P~25,954, the
number of individuals counted in the 1,979 residences surveyed for DS01. The 0.50 CIs is shown in blue and the 0.95 CI in red. (C) A quartile boxplot

shows the variation in the population bootstrap estimates P̂P for 25 replicate samples initiated with different random number seeds.
doi:10.1371/journal.pone.0112241.g004
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Table 3 shows the values for Tr, Ts, Ar, and As as obtained for

the 20- and 5-section aggregates and for Njai Town and

Reservation individual sections. If any non-residential areas or

structures were identified in satellite imagery, they were excluded

from consideration. For the 20 and 5 section aggregates, only data

for Tr were collected. For both Njai Town and Reservation

sections, Tr, Ts, Ar, and As were completely delineated.

The total rooftop area As can be estimated from aerial imagery

without distinguishing between residential and non-residential

structures. If the ratio of Ar/As can be estimated, perhaps by

collaboratively analyzing the aerial imagery and/or participatory

GIS maps with local residents, Ar can then be calculated. A

similar calculation yields Tr:

Ar~(Ar=As)|(As) ð3Þ

Tr~(Tr=Ts)|(Ts) ð4Þ

The Population Bootstrap Algorithm. If we had a single

sample n, drawn from a larger unknown population, then a

conventional bootstrap could be used for estimating the uncer-

tainty. In this case, we would repeatedly resample without

replacement from n, and determine the expected value of the

estimator on the distribution of replicated samples – 2,000

replicates, in our examples. In our current study, we are drawing

ascending samples of size n from a previously measured finite

population of size N . More specifically, we are resampling from a

finite population of either 464 or 1,979 houses (N) by drawing

increasing samples of size n. The conventional bootstrap algorithm

would fail to properly account for the decrease in the uncertainty

(confidence intervals) that occurs as the sampling fraction (n=N)

becomes large, and the number of possible samples n that can be

drawn from N decrease as C(N,n). The chapter on finite

population sampling in Bootstrap Methods and Their Applications

by Davison and Hinkley summarizes this issue succinctly: ‘‘The

key difficulty with the ordinary bootstrap is that it involves with-

replacement samples of size ‘n’ and so does not capture the effect

of the sampling fraction, which is to shrink the variance of an

estimator.’’ [15].

Davison and Hinkley suggest four methods to correct for this

effect: (1) modifying the sample size to match the estimator

variance (2) matching the original sample size while maintaining

Figure 6. Residential and non-residential structures in Njai Town and Reservation. (A) Njai Town residence structures (blue) and non-
residential structures (red), (B) Njai Town satellite imagery, (C) Reservation residential structures (blue) and non-residential structures (red), and (D)
Reservation satellite imagery. When comparing either the maps or imagery for Njai Town and Reservation, note the differences in the map scales,
which create the illusion that the structures in Reservation are smaller, although the average residential rooftop area in Reservation (255 m2) is
actually greater than that of Njai Town (172 m2). The total land areas for Njai Town and Reservation are 0.21 km2 and 2.33 km2, respectively. (Image
copyright 2010 DigitalGlobe NextView License. Used with permission.)
doi:10.1371/journal.pone.0112241.g006
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the sampling fraction - the mirror-match bootstrap, (3) the

superpopulation bootstrap, and (4) the population bootstrap. In

a resampling analysis of longitudinal United States city data, the

authors conclude (page 97) ‘‘that the population and super-

population bootstraps are the best of those considered here’’ [15].

The population bootstrap is easier to implement and executes

faster than the superpopulation bootstrap, and is the algorithm

used here.

Let R = 2,000. For each of the R bootstrap replicates, execute

the following steps:

1. Randomly select without replacement a sample yn [y1, y2,…,

yn] of n records from a dataset of size N. (For example, let

n = 264 and N = 1,979.)

2. Create an empty vector Y* of length N.

3. Copy f = truncate(N/n) consecutive copies of yn into Y*, which

now contains n*f records.

(a) for example, f = truncate(1,979/264) = truncate(7.49) = 7

(b) n*f = 7*264 = 1,848 records

4. Select m = N-n*f records without replacement from yn, and

append these records to Y*, which will now contain N records.

(a) m = 1,979–1,848 = 131 records

(b) n*f+m = 1,848+131 = 1,979 records = N

5. Select the population bootstrap replicate by randomly selecting

n records without replacement from the N records in Y*.

6. Repeat steps 1 to 5 to create R bootstrap replicates. In our

examples, R = 2,000. Note that each of the 2,000 replicates has

the same sampling fraction (n=N). The estimate is exact when

n~N .

Results

Figure 2 and Table 4 summarize the simulations executed, and

the datasets used.

1. SIM01. Figure 4AB shows the required convergence [19] of

the occupancy-based population estimator as a function of the

N = 1,979 residential structures in DS01. The variance

(uncertainty) decreases uniformly as the sample size increases.

The confidence intervals (CIs) are illustrated by the blue (0.50

CI) and red (0.95 CI) bars. The otherwise identical simulations

were initiated with two different random seeds. Changing the

random number seed will result in a different sequence of

bootstrap replicate samples, and the estimated population P̂P as

a function of sample size n will vary. Using a different seed has

little impact on the variance (CIs) but does result in modest

variation in the estimated population P̂P as a function of sample

size, as shown in the quartile boxplots in Figure 4C. Note that

the expanded Y -axis exaggerates the absolute variation relative

to the measured value of the population.

2. SIM02 and SIM03. The occupancy-based and rooftop-area

based sequences of sample size simulations for dataset DS02
(N = 462) are compared in Figure 5. Both estimators converge

properly. The uncertainty of the occupancy-based estimator is

about 20% less than for the rooftop-based estimator for both

the 0.95 and 0.50 confidence intervals. For a given sample size

n and confidence interval, the corresponding confidence

interval is defined as the difference between the upper and

lower confidence limits. For each estimator, and for each of the

two confidence intervals, 14 confidence intervals were

calculated. A two-tailed paired t test between the paired

differences was statistically significant for both confidence levels

(pv0:001).

Figure 7. Rooftop area-based population estimations for Njai Town using invalid and valid scale factors. (A) Non-convergent rooftop
area-based population estimate with 0.50 (blue) and 0.95 CIs (red). Samples were drawn from the Njai Town dataset of 127 residences only, but the
scale factor Total{Area was set to the rooftop area for all 269 structures (As). (B) Convergent rooftop-based population estimate with 0.50 (red) and
0.95 (blue) CIs. Samples were drawn from the Njai Town dataset of 269 residential and non-residential structures, and Total{Area was set correctly
set to As. Source: residential survey data and digitized rooftop areas, As = 37,358 m2 .
doi:10.1371/journal.pone.0112241.g007
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3. SIM04 and SIM05. Figure 6 shows the imagery and map of

the Njai Town and Reservation sections. Residential structures

are denoted in red; non-residential structures are denoted in

blue. Figure 7 compares the rooftop-area population estimator

under two different scenarios, both using DS03. In SIM04 only

the 127 residential records are sampled – that is, all records

drawn have 1 or more individuals as residents – but the total

rooftop area As is equal to the rooftop area of the combined

residential and non-residential structures (As = 37,358 m2).

This results in a total population estimate for Njai Town that

is much greater than the true value. In SIM05, the population

estimate draws on both residential and non-residential

structures, so in some records the number of individuals is 0.

This time the estimator converges correctly.

Thus, we have defined two different rooftop area-based

protocols that can be used to estimate the population, with

analogous protocols defined for the occupancy-based simulation:

1. Include both residential and nonresidential structures in the n

records sampled for each survey size, using the scale factor As,

knowing that many of the sampled records will have a

population of 0.

2. Use the scale factor Ar, where ArvAs, and sample residential

records only, as was done in SIM02.

Both methods will converge to the correct population estimate.

For brevity, additional results are not graphed, but comparable

findings were demonstrated using the occupancy-based population

estimator with both the Njai Town and Reservation datasets DS04
(simulations SIM06 and SIM07).

Discussion

Occupancy-Based Estimation vs. Rooftop Area-Based
Estimation

Based on the uncertainty functions, the occupancy-based

population estimator is to be preferred. Both the occupancy-based

and rooftop-area based estimators converge properly, with

decreasing uncertainty as the sample size increases.

Determining which estimator also poses pragmatic consider-

ations, apart from the relative technical merits of the estimators.

Consider the following three scenarios:

1. Assume that high-resolution imagery is available, and auto-

mated procedures can be applied to extract rooftops and

estimate their total area As. In this scenario the survey data can

be represented spatially and coded to the location of the

surveyed structures, if required. (We have not attempted to do

so here, as mapping the survey data onto specific residential

structures would violate our confidentiality agreement with

participants.) If the survey data include both residential and

non-nonresidential records, the population can be estimated as

shown in Figure 5, using either the occupancy-based or

rooftop-area based estimator. If the survey data are only for

residential structures, either Ar or Tr must be estimated for the

scale factor (Table 3), perhaps as a percentage of the measured

values for As or Ts.

2. Assume that the individual residential structures can be

resolved and counted automatically in the aerial imagery, but

the rooftop areas cannot be successfully extracted. In this case,

only the occupancy-based population estimator can be used,

because the residential rooftop area Ar cannot be estimated.

3. Assume that individual structures cannot be resolved in the

imagery, but it is possible to estimate the total rooftop area As
in the region of interest. This may occur when using low-

resolution imagery in a densely populated area. In this

scenario, the rooftop-area based estimator alone is applicable,

provided that either (1) the survey data include proportional

numbers of residential and non-residential records, and As is

the correct scale factor or (2) the survey data include residential

records only, but Ar can be estimated as a percentage of the

measured total rooftop area As.

Delineating Structures and Rooftop Areas. In practice,

the total rooftop area and/or the total number of individual

residences within a large area will likely be extracted from aerial

imagery using automated methods, rather than manually, as was

done here. Relevant methods for extracting buildings from aerial

imagery are described in numerous publications (for example, see

[13,20,21]). Object based image analysis (OBIA) provides a

particularly powerful set of methods; see [22] for a review of OBIA

and a discussion of available commercial tools such as eCognition

[23]. Given our current data, it would be instructive to use a

commercial program to extract rooftop counts and areas from

satellite imagery of Bo, and to compare these estimates with the

rooftop areas collected in our limited ground truth datasets. It may

also be easier, particularly if only relatively low-resolution imagery

is available, to estimate the aggregate rooftop area rather than to

extract the rooftop areas of individual structures.

Correcting for Non-Residential Structures. As discussed

previously, if data are not available for non-residential structures, it

may necessary to estimate either Tr or Ar from Ts or As, because

only the latter two parameters can be directly estimated from the

aerial imagery. In some places it might be possible to estimate the

ratio of residential to non-residential structures based on relative

locations or other distinguishing features. Very small structures –

like ones that are latrine (outhouse) sized – can also be removed

from consideration. Census data or published business listings

could augment this analysis, if available. As a specific example,

Aminipouri [13] identified Tanzanian slum areas, and used

rooftop extraction to estimate the total rooftop area, assuming that

the majority of dwellings were residential. This approach is likely

to be invalid in urban or periurban areas, where buildings may

include both family dwellings and non-residential structures, or in

rural areas that may have many farm structures per residence.

Figure 6 shows the locations of the residential and non-

residential structures in Njai Town and Reservation sections. In

both sections, the non-residential structures may include ancillary

structures that are on the same property as the residences. Without

using auxiliary survey data, it would be difficult to distinguish be-

tween the two commingled classes of structures from imagery alone.

The mean rooftop area for structures in Njai Town is significantly

less than the mean rooftop area for the residential structures alone.

The mean rooftop area in Njai Town was 172 m2 (s~67 m2) and

the mean non-residential rooftop area was 108 m2 (s~71 m2). In

Reservation, these figures were 255 m2 (s~126 m2) and 161m2

(s~92 m2), respectively. These distributions are consistent with our

observations that the non-residential structures were often small

sheds or outdoor cooking facilities. However, some outbuildings are

‘‘residence’’ sized, so it is not possible to discriminate between

residential and non-residential buildings based on rooftop area

alone.

The difficulty of estimating the ratio of residential to non-

residential buildings or rooftop areas is non-trivial. Based on our

analysis of the Njai Town and Reservation datasets, this cannot be

accomplished based on simple image analysis, or based on the
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statistical differences between the rooftop areas of the two groups.

One strategy is to exploit expert local knowledge with respect to

the distribution of residential and non-residential structures. In this

study, having identified all of the residential buildings surveyed in

spatially-guided population survey, we were able to estimate both

the number (Ts-Tr) and total rooftop area (As-Ar) of the remaining

non-residential buildings in Njai Town and Reservation in the

aerial imagery. Participatory GIS (PGIS) is an incredibly valuable

tool for the identification of non-residential structures such as

markets, businesses, schools, hospitals, nonprofit organizations,

and government buildings. Optimally, PGIS can be used in

conjunction with analyses of vegetation and other GIS layers

predict and validate residential and non-residential zones in other

urban and periurban contexts.

Parameter Estimation for Epidemiological

Modeling. Given the range and diversity of epidemiological

models, it is not possible to determine what minimal sample size is

sufficient for all applications. What the present approach enables is

the estimated population size as a function of n, with confidence

intervals of a desired range. For a cross-sectional or cohort study

this set of denominator parameters may be sufficient for study

design purposes. Each population estimate is the expected value of

2,000 population bootstrap replicates (see Figure 3). (In practice,

200 bootstrap replications are generally considered to be sufficient,

but generating 2,000 replicates guarantees the stability of the

upper and lower 2.5 percentiles used to estimate the limits of the

0.95 CI [17].) The 2,000 population bootstrap estimates can also

be saved for each sample size n (Figure 3, step 4a). This provides a

number of advantages: Alternative measures of uncertainty can be

calculated for each sample size distribution as required, rather

than using the percentile confidence intervals. The cumulative

distribution function can also be calculated if required from any of

the distributions for a given size sample n (Figure 3, step 4a). The

set of population bootstrap replicate distributions can then be

sampled repeatedly to generate the sequence of Monte Carlo

inputs required for Population-Based Microsimulation (PMS)

models (also known as agent-based models), an approach

recommended by Sharif et al. [24].

An additional consideration is that the choice of the initial

random number seeds will also influence the distribution of the

parameters generated in the empirical space [25]. This is

demonstrated in Figure 4. Changing the random seed had little

impact on the uncertainty, but did cause modest variations in the

expected value of the population bootstrap for a given sample size

n. For PMS models, it is probably best practice to generate and

sample multiple distributions of the population bootstrap estima-

tion for a sample of size n, each with 2,000 replicates and a

different initial random number seed. To achieve even sampling

throughout a complex parameter space, Sharif suggests using a

Latin hypercube sampling algorithm [24].

Conclusions
Several studies have demonstrated spatial population density

estimation using only satellite sensor data [26], acknowledging the

limitations of those approaches and recommending combining

household data with high resolution remote sensing information

[27]. In 2009, no complete municipal maps existed for Bo, Sierra

Leone, despite the existence of 68 recognized sections, the

boundaries of which were well-known to local populations. In

order to establish spatial epidemiology capabilities in Bo, we took

an approach from the onset that combines satellite imagery and

GIS with local knowledge [14]. The data used in this study came

from a larger field survey aimed at obtaining community health

data from the 20 municipal sections described in this paper [28–

30]. Given the large ground truth dataset afforded by the field

survey, we simulated the collection of survey data using samples of

varying sizes and a bootstrap population algorithm. Occupancy-

based and rooftop-area-per-person-based total population estima-

tors converged correctly on the measured population as the

simulated sample size n approached the size N of the dataset. The

uncertainty estimates may be useful designing a resampling study

to update the population estimate, while reducing the size of the

total number of samples to be collected. These specific findings

cannot not be extrapolated to a different set of sections without the

making the strong assumption that the new area is demograph-

ically comparable with the original survey area, in the sense of

having the same underlying distributions of occupants/residential

structure. Another advantage of the population bootstrap is that

the distributions of the bootstrap population estimates can be

saved for each sample of size n, and subsequently used to estimate

alternative estimates of uncertainty.

The choice of which estimator to use, occupancy based or

rooftop area based, will depend upon factors discussed earlier,

including (1) the apparent reduction in uncertainty achieved by the

occupancy-based estimator to the rooftop area-based estimator; (2)

the relative difficulty of estimating the required scale factors (Ar,

Tr, As, or Ts); and (3) the composition of the survey data.

If only residential buildings are surveyed, as might be dictated

by schedule or financing, either Ar or Tr must be estimated. In

this simulation study, both of the residential scale factors, Ar and

Tr, were known for datasets DS02, DS03, and DS04. If both

residential and non-residential buildings are surveyed, and

represented proportionally in each simulated survey of size n,

only As or Ts are required as scale factors. As and Ts can

potentially be inferred directly from aerial imagery of the total

area, because it is not necessary to distinguish between residential

and non-residential structures.

In this study, we have shown that it is possible to ascertain the

appropriate sampling and scale factors by combining local

knowledge, satellite imagery, GIS, and surveys of a limited

number of households in order to produce robust estimates of total

populations. For the type of resource-challenged environment

represented in this study, the process consists of the following steps:

1. Visual examination of satellite imagery by persons having local

knowledge and removal from consideration of any large non-

residential areas (such as commercial or governmental

buildings) in the GIS.

2. GIS-directed household surveying of a portion of the residences

in a section needed to achieve a desired confidence interval for

population estimates.

3. Calculation of the total number of residential structures Tr, or

the total residential rooftop area Ar, to deduce appropriate

scale factors (Table 3). Alternatively, if the survey spatially

encoded both residential and non-residential structures, the

total number of structures Ts and/or the total rooftop area As
provide the scale factors.

4. Use of the scale factors, along with datasets of household

surveys, to estimate the population using population bootstrap

statistical methods, including the uncertainty in the population

estimate as a function of simulated sample size.

We anticipate that refinements of the approach specific to a

geographical area will be necessary when extrapolating from an

area comprised almost exclusively of single-level residential

structures to an area with multiple level ones, as well as those

having other unique characteristics. Spatial distributions of

population strata, while not estimated here, are a logical extension
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of total population estimates, and are made possible by defining

such strata in the household survey step.

Another potential application of this approach is for augmenting

population estimates derived from satellite imagery alone. In [26],

Harvey develops regression models for population estimation that

aggregate several different remote sensing indicators, but do not

use survey data or rooftop extractions directly. The population

space is tested against Australian census data. As noted in [26]:

There was also evidence of estimation bias associated with

the somewhat higher population densities in the secondary

study area. This seems to be related to smaller lot sizes and a
higher spatial concentration of separate houses, rather than to
substantial differences in the distribution of other types of
residential structure.... It is concluded that the potential of

this methodology is limited by heterogeneity of both land

cover and population density within the individual CDs

[collection districts], and that further improvements are in

principle unlikely using this approach. In particular, the
sacrifice of detailed spatial information leaves no way to
respond to the problem of over-estimation of population in
large areas of low density. (page 2093, italics added)

The first comment emphasizes the importance of collecting

local survey data. Although we have not addressed housing

density, given the number of resident structures per section and

the areas of each section, the density of residential housing can be

readily calculated. The second comment is especially applicable to

areas like Reservation, where there are a large number of

commercial and government buildings and relatively few residen-

tial structures. If the residential and non-residential structures can

be differentiated in the imagery, or resolved by surveying the area,

the scale factors for both population estimators can be estimated.

In summary, it appears that some of the biases in population

estimates based on satellite imagery alone could be addressed by

analyzing supplementary survey data and/or structural-level

imagery.

The ability to quickly estimate total population size with

reasonable precision based on satellite or aerial imagery,

digitization of rooftops, and demographic surveys of a limited

sample of households has important applications for epidemiology

and public health, the social sciences, and emergency response.

For example, in disaster areas the methods described in this paper

could be used to identify permanent and temporary shelters from

aerial photographs, guide enumerators to a randomly sampled

subset of dwellings, and use those household survey results to

estimate the total number of affected persons and to identify

resource needs. This critical and timely information about affected

communities could contribute to improved delivery of goods and

services and facilitate better coordination among response

agencies, and might ultimately lead to saved lives. Widespread

adoption of these techniques in support of relief activities,

community development, and social research will not be possible

without improved (and less expensive) digitization software, but

the field tests we conducted in Sierra Leone suggest that a process

of mapping, sampling, surveying, and bootstrapping can be

successfully implemented in low-resource settings to generate

accurate population estimates.
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