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The outcome of hematopoietic stem cell transplantation (HSCT) is shaped by both clinical and genetic factors that determine its
success. Genetic factors including human leukocyte antigen (HLA) and non-HLA genetic variants are believed to influence the
risk of potentially fatal complications after the transplant. Moreover, ethnicity has been proposed as a factor modifying the risk
of graft-versus-host disease. The populations of Latin America are a complex array of different admixture processes with varying
degrees of ancestral population proportions that came in different migration waves. This complexity makes the study of genetic
risks in this region complicated unless the extent of this variation is thoroughly characterized. In this study we compared the HLA-
A and HLA-B allele group profiles for 31 Latin American populations and 61 ancestral populations from Iberia, Italy, Sub-Saharan
Africa, and America. Results from population genetics comparisons show a wide variation in the HLA profiles from the Latin
American populations that correlate with different admixture proportions. Populations in Latin America seem to be organized
in at least three groups with (1) strong Amerindian admixture, (2) strong Caucasian component, and (3) a Caucasian-African
gradient. These results imply that genetic risk assessment for HSCT in Latin America has to be adapted for different population
subgroups rather than as a pan-Hispanic/Latino analysis.

1. Introduction

Hematopoietic stem cell transplantation (HSCT) is a curative
therapy used for the treatment of malignant and nonmalig-
nant hematologic diseases, congenital immune deficiencies,
solid tumors, and metabolic diseases [1]. Its outcome is
shaped not only by clinical factors [2], but also by the
genetics of the patient-donor pair [3]. Apart from the normal
compatibility defined by the human leukocyte antigen (HLA)
system [4, 5], variation in several genetic systems is thought
to have an impact on the complications experienced by
patients that undergo this procedure [6].

Graft-versus-host disease (GVHD) is a major complica-
tion affecting the success of the transplant and the survival

of the patients. Despite the fact that most transplants are
performed with high levels of compatibility in terms of HLA,
a significant proportion of these transplants is affected by
GVHD. Apart from clinical factors [7], a genetic component
for GVHD other than HLA has been pointed out as respon-
sible for the occurrence of GVHD in 10/10 HLA compatible
patient-donor pairs [8, 9]. Moreover, an ethnicity-driven risk
of suffering GVHD after HSCT has been identified [10, 11].
However, these studies focused on “island” populations and
broader populations with low admixture proportions, and
further studies in admixed populations are lacking.

Latin America is a region where the most dramatic
human migrations have taken place, from the early north-
eastern Asian bands of hunter-gatherers that conquered the
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last continent humanity had expanded to [12], through
the 16th and 17th centuries European colonization and
bringing of sub-Saharan African (SSA) slaves [13], to the
latest waves of immigrants from all over the world in the last
two centuries [14]. This complex population history makes
present Latin American Populations (LAP) possibly the most
ethnically diverse on the planet. This genetic diversity is thus
likely to impact the effect of genetics on HSCT and hence it
is necessary to understand it in order to be able to interpret
genetic association studies in this and other medical fields.

In this study, we used population genetics tools to
compare the HLA profiles of 31 LAP and 61 ancestral popul-
ations in order to characterise their diversity and classify
them according to their genetic makeup.

2. Materials and Methods

2.1. Population Samples. A selection of 92 populations from
Latin America, Iberia, Italy, and sub-Saharan Africa with
available DNA-based typing data for HLA-A and HLA-B
allele groups was made and their details are shown in Table 1.
Of these, 31 LAP were defined as populations living in
this region that were not classed as Amerindian. Population
samples from LAP that have emigrated to the USA and Spain
were also included in the analyses.

The remaining 61 populations are native population
samples from the three ancestral regions that have con-
tributed majorly to the Latin American gene pool: Amerindi-
ans (22 populations), Caucasians from Europe (Iberians
and Italians, 19 populations), and SSA (20 populations). In
the Caucasian population group, a sample of Italians was
selected to complement the Iberian populations in view of
the important immigration from this country into some
LAP. In total, the population array included 384,446 chro-
mosomes. HLA frequency data was extracted from journal
articles and/or the Allele Frequencies database website [15].
The approximate geographic location for the LAP is shown
in Figure 1.

2.2. Database Construction. A database containing the fre-
quencies for 47 HLA-A and HLA-B allele groups from the 92
populations that were selected was built. When the available
data were at high resolution, the data were reduced to two-
digit allele groups. The database was constructed on the
Multi-Variate Statistical Package (MVSP, Kovach Computing
Services, Anglesey, Wales) and was independently checked
for accuracy.

2.3. Population Comparisons. The HLA-A and HLA-B pro-
files of the 92 populations were analysed by clustering
analysis and Principal Coordinates Analysis (PCO), both
based on Euclidean distances. The clustering analysis was
performed dually and dendrograms were generated for both
analyses. The clustering method was based on minimum
variance of squared Euclidean distances with a randomized
input order. The Eigenanalysis for the PCO was performed
at an accuracy of 1E-7 and axes were extracted according to
Kaiser’s rule [66].

Additionally, three ancestry-specific HLA allele groups
were compared between population subgroups in order to
illustrate the relative contribution of each ancestral popul-
ation across LAP.

3. Results

3.1. Clustering Analysis. A dendrogram based on squared
Euclidean distances was generated by the comparison of 47
HLA-A and HLA-B allele group frequencies present in the
61 ancestral populations and the 31 LAP. The results for this
analysis are shown in Figure 2(a). The first split is between
the Amerindian cluster and the Caucasians and SSA, which
is consistent with higher differentiation of these populations.
The next split is between the SSA and the Caucasian and most
of the LAP.

A closer look at the clusters shows that there is a
correlation between the geographic location of the ancestral
populations and the branching within the clusters. Within
the Amerindian cluster, 4 groups form a South American
lowland group, a South American Andean group, a Central
American group, and a more distinct North American-
Alaskan group. A similar correlation is seen within the SSA
cluster: western Africans split from the southern, eastern
and central African populations. Some of the LAP cluster
with the Amerindians, such as the Peruvian mestizos from
Arequipa, or with the SSA, as the Cuban Mulattos and
the Afro-Brazilians from Paraná. However, 90% of the LAP
cluster within a distinct group which includes the Iberians
and Italians.

The LAP-Iberian+Italian cluster splits further in distinct
subgroups. Most of the Spanish populations, and minority
populations from Spain, cluster in their own groups. Also,
there is a broad group that clusters all of the remaining
Brazilian and Cuban populations, and another one that
clusters the Portuguese, Italian, and Argentinians from La
Plata, the region of Cuyo, and Buenos Aires. Finally, the
last cluster includes the admixed populations from Mexico,
Colombia, Venezuela, Costa Rica, as well as the South
American immigrants to Madrid and the Mexican and pan-
Hispanic samples from the United States.

A dual-clustering method was applied to the dataset in
order to identify the groups of alleles that are most variable
between the populations. The results from this analysis
are shown in Figure 2(b). Clusters of signature ancestry
markers can be identified, such as frequent Amerindian input
allele groups (HLA-A∗68, -B∗15, -A∗31, -B∗48, -B∗40, and
-B∗39), frequent Iberian and Italian Caucasian markers
(HLA-A∗03, -A∗29, -B∗07, -B∗44, -A∗01, and-B∗51), and
frequent alleles that are evidence of SSA genetic input (HLA-
A∗30, -A∗23, -B∗53, -B∗58, -B∗45, and -B∗42).

3.2. Principal Coordinates Analysis. The results from the
PCO are shown in Figure 3. Firstly, the ancestral populations
(Figure 3(a)) show a clear location. The first PC correlates
with the Amerindian-non-amerindian split seen in the
cluster analysis, whereas the second split (SSA-Caucasians)
correlates with the second PC. Amerindian populations show
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Table 1: Summary and details of the populations included in the analyses.

Code Population Size (2n) Reference

Amerindians

ArgCh Argentinian Chiriguano 108 [15]

ArgET Argentinian Eastern Toba 270 [16, 17]

ArgRT Argentinian Toba from Rosario 172 [15]

BolA Bolivian Aymara 204 [18]

BolQ Bolivian Quechua 160 [19]

BraT Brazilian Terena 120 [20]

GuaM Guatemalan Maya 264 [21]

MexChT Mexican Tarahumara from Chihuahua 88 [22]

MexMT Mexican Tarasco from Michoacán 260 [23]

MexOMx Mexican Mixe from Oaxaca 110 [24]

MexOMxt Mexican Mixtec from Oaxaca 206 [24]

MexOZ Mexican Zapotec from Oaxaca 180 [24]

MexTH Mexican Teenek from Huasteca region 110 [25]

ParGua Paraguayan Guaranı́ 80 [26]

PerLC Peruvian Lama 166 [15]

PerTU Peruvian Uro 210 [27]

VenPMB Venezuelan Bari 110 [28]

VenSPY Venezuelan Yucpa 146 [29]

USAYN Alaska Yupik Natives 504 [30]

USAAI Arizona Gila River Indian 984 [31]

USAPi Arizona Pima 200 [28]

USSDS South Dakota Lakota Sioux 604 [32]

LAP

ArgBA Argentinians from Buenos Aires 2,432 [15]

ArgCY Argentinians from Cuyo Region 840 [15]

ArgLP Argentinians from La Plata 200 [15]

Bra Brazilians 216 [28]

BraBH Brazilians from Belo Horizonte 190 [33, 34]

BraMG Brazilians from Minas Gerais 2,000 [15]

BraPAB Afro-Brazilians from Paraná 154 [35]

BraPCaf Brazilian Cafuzo from Paraná 638 [35]

BraPCau Brazilian Caucasian from Paraná 5,550 [35]

BraPMul Brazilian Mulatto from Paraná 372 [35]

BraPS Brazilians from Pernambuco State 202 [36]

BraSP Brazilians from Sao Paulo 478 [15]

CCVP Costa Ricans from the Central Valley 364 [37]

ChilS Chileans from Santiago 140 [15]

Col Colombians 1,122 [38]

ColMed Colombians from Medellin 1,852 [39]

CubMx Cubans (mixed) 378 [40]

CubMu Cuban Mulattos 84 [33, 34]

CubWh Cuban Whites 140 [33, 34]

MadAm Latin American immigrants in Madrid 346 [41]

MexGM Mexicans from Guadalajara 206 [42]

MexCM Mexicans from Mexico City 242 [43]

MexSM Mexicans from Sinaloa 112 [43]

MexPM Mexicans from Puebla 198 [43]

ParM Paraguayans 100 [44]
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Table 1: Continued.

Code Population Size (2n) Reference

PerA Peruvians from Arequipa 336 [45]

USHis US Hispanics 468 [15]

USHis2 US Hispanics 3,998 [46]

USHisO US Hispanics 3,160 [47]

USMex US Mexicans 1,106 [48]

VenCVM Venezuelans from Caracas, Valencia, and Maracaibo 192 [15]

Iberians and Italians

BasA Basques from Arratia Valley 166 [49]

BasG Basques from Guipuskoa 200 [50]

C&L Castilians 3,880 [51]

CatG Catalonians from Girona 176 [50]

And Spanish from Andalucı́a 198 [15]

AndG Spanish Gypsy from Andalucı́a 198 [15]

Ibi Spanish from Ibiza 176 [52]

Maj Majorcans 814 [52]

MajJD Majorcans of Jewish descent 206 [52]

Min Minorcans 188 [52]

Mur Murcians 346 [53]

NCab North Cabuernigo 190 [49]

NCant North Cantabrians 166 [49]

PasV Spanish from Pas Valley 176 [49]

AzoTI Azoreans from Terceira Island 260 [15]

Ita Italians 318,622 [54]

PorC Portuguese from central Portugal 1,124 [15]

PorP Portuguese from Porto 15,874 [15]

PorF Portuguese from Faro 2,484 [15]

SSA

CamBa Cameroon Bamileke 154 [55]

CamBe Cameroon Beti 348 [55]

CamYa Cameroon Yaounde 184 [56]

CapVNW Cape Verdeans from NW island 124 [57]

CapVSE Cape Verdeans from SE island 124 [57]

CAFMP Pygmy from the Central African Republic 72 [58]

GuiB Guineans 130 [57]

Ken Kenyans 288 [28]

KenL Kenyans-Luo 530 [59]

KenN Kenyans-Nandi 480 [59]

MalB Mali Bandiagara 276 [59]

Moz Mozambicans 500 [60]

Rwa Rwandans 560 [61]

STIF Sao Tome Islanders (Forro) 132 [62]

SenNM Senegalese (Madenka) 330 [63]

SAB Black South Africans 400 [64]

Sud Sudanese 400 [15]

UgaK Ugandan from Kampala 350 [65]

ZamL Zambians from Lusaka 88 [59]

ZimHS Zimbabwe Harare Shona 460 [28]

Total 92 384,446
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Figure 1: Map showing the approximate location of the LAP included in the study.

a much more dispersed array and higher distances from
the Caucasians and the SSA, which is in accordance with
their genetic history being shaped by the colonization of
the last continent after the out-of-Africa migrations and
successive bottlenecks in this process [67]. Interestingly, SSA
that have been in closer genetic and geographic contact with
the Caucasians, such as the Sudanese and the Cape Verdeans,
are closer to these populations, whereas the southernmost
Africans lie on the upper left extreme of the PCO map.
Likewise, the North American Amerindians tend to be
closer to the Alaskan Natives, who have been shown to be
genetically different from the Amerindians of more southern
regions [30].

When the LAP are included in the analysis (Figure 3(b)),
the results show that LAP are located on a wide arch that
connects the three ancestral populations. This arch stretches
from the Peruvian mestizos from Arequipa, which appear
deep into the Amerindian region, to the Afro-Brazilians from
Paraná, which lie on the periphery of the SSA cluster. In
between these populations there is a spectrum of locations
for the remaining LAP. It is clear that there are two major
regions: one that includes the LAP that lie between the
Iberian and Italian populations and the Amerindian region
and the others, which lie between the Caucasians and the
SSA populations. Moreover, the first group seems to be
divided in two subregions: one that clusters populations that
lie closely to the Caucasian group (from the Argentinians
from Buenos Aires to the Hispanic samples from the US),
and the other (from the Mexican population from the US
up to the Peruvians from Arequipa) which is dragged more
intensely towards the Amerindians. The SSA component in
these populations seems to be reduced, although not absent

(see below). On the other hand, the populations that lie
between the Caucasians and the SSA samples also cluster
closely to the Iberians and Italians, but show a gradient
towards the SSA cluster. This group is composed mainly by
Brazilian and Cuban populations.

A few populations seem to cluster closely enough to
the ancestral populations to be considered part of those
clusters. This is the case of the Cuban Mulattos and the
Afro-Brazilians from Paraná, the Cuban Whites, the Brazilian
Caucasians from Paraná, and the Peruvians of Arequipa.
In turn, it must be noted that a population classified as
Amerindian, the Argentinian Toba from the city of Rosario,
show significant Caucasian admixture and, consequently, lie
closer to the admixed Mexicans than the Peruvians do.

3.3. Specific Ancestry Markers. To further illustrate the dif-
ferential admixture patters present in LAP based on their
HLA profile, 3 allele groups which are present in one
of the ancestral populations and absent or nearly absent
in the other two (HLA-A∗25, -B∗42, and -B∗48) were
selected in order to evaluate their frequency among the
LAP groups (Figure 4). As seen in Figure 4(a), HLA-A∗25,
a common allele group in western Europe and virtually
absent in Amerindian and SSA populations, is present more
frequently in the admixed populations with strong Caucasian
component (i.e., those that lie closest to the Caucasians on
the Caucasian-Amerindian axis of the PCO). Interestingly,
some of the ancestral populations classified as Amerindian
show evidence of Caucasian admixture as demonstrated by
the presence of HLA-A∗25 alleles in their gene pool.

Figure 4(b) shows the frequency of the SSA allele group
HLA-B∗42 in the 3 LAP subgroups. It is evident that these
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Figure 2: Cluster analysis based on 47 HLA-A and HLA-B allele group frequencies among 31 LAP and 61 ancestral populations. (a)
Dendrogram showing the clustering of the 92 populations. (b) Dendrogram showing the dual-clustering of HLA allele groups in the
dataset. SSA: Sub-Saharan Africans; SAL: South American Lowlanders; SAA: South American Andeans; CA: Central Americans; NAA:
North Americans and Alaskans; SAf: Southern Africans; EAf, Eastern Africans; CAf: Central Africans; WAf: Western Africans; Spm: Spanish
minorities; Sp: Spanish; BC: Brazilians and Cubans; PIA: Portuguese, Italians, and Argentinians; NLA: Northern Latin Americans.
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Figure 3: Principal coordinates analysis (PCO) based on the frequencies of 47 HLA-A and HLA-B allele groups in 31 LAP and 61 ancestral
populations. (a) PCO map of the first 2 principal components (57.7% cumulative variance) for 61 ancestral populations from sub-Saharan
Africa (SSA), America, and Europe. (b) PCO map showing the first 2 principal components (56.7% cumulative variance) for 31 LAP (blue)
and 61 ancestral populations.
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Figure 4: Frequency of ethnic-specific HLA allele groups among three subgroups of LAP and the ancestral populations. (a) Frequency
of HLA-A∗25 allele group as a Caucasian marker. (b) Frequency of HLA-B∗42 allele group as a Sub-Saharan African (SSA) marker. (c)
Frequency of HLA-B∗48 as an Amerindian marker.

alleles are much more frequent in these populations (mainly,
Brazilian and Cuban) than in the rest. However, HLA-B∗42
alleles are not absent from other LAP, which may have lower
levels of SSA admixture.

Finally, Figure 4(c) shows the average frequency of HLA-
B∗48 alleles. This group, common in Amerindians and
nearly absent from SSA and Iberian and Italian populations,
is more strongly represented in the populations that form the
bridge between the Amerindian and Caucasian regions in the
PCO.

4. Discussion

The results obtained after comparing 47 HLA-A and HLA-B
allele groups among the LAP and their ancestral populations
show that there is widespread variation between the genetic
profiles of these admixed or exported populations. In the
cluster analysis it is clear that most LAP have substantial Cau-
casian components, with the exception of some populations
such as the Peruvians from Arequipa or the Afro-Brazilians
from Paraná. This is in agreement with the uneven process
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of population replacement and the collapse of many Native
American groups that took place throughout the continent.

However, PCO analysis showed that most LAP sit on a
wide admixture arch that approaches the ancestral clusters.
A few populations fall very close to or in the ancestral
clusters, but most are scattered in intermediate regions.
Interestingly, population samples that are likely to be a
mixture of several LAP, such as those of the USA Hispanic
immigrants and the Ibero-American expatriates in Madrid,
sit in the center of the distribution. In fact, the heterogeneity
of the Hispanic population in the US has been described
using other markers [68, 69], showing differential admixture
patterns between areas that have received mostly Mexican
immigration and those that are predominantly colonized
by Caribbean islanders from Cuba and Puerto Rico. In
agreement with this, US Mexicans lie slightly closer to the
Amerindian side on the PCO and locate between the Mexican
populations from the center and the sample from the north-
ern state of Sinaloa. This further illustrates the heterogeneity
of the Mexican populations, where a stronger Caucasian
component is preserved in the north of the country [43],
while the US Mexicans are likely to be a combination of
northern and southern Mexican populations.

The stronger Caucasian component in some LAP can be
attributed to recent European migration [14], such as that
of urban populations from Argentina and some Brazilian
populations, or to relatively stronger Caucasian proportions
generated at colonial times in areas where Amerindian
populations were low at the time of the arrival of Europeans,
which is thought to be the case of the Costa Rican Central
Valley and the Colombians from Medellin [70, 71].

On the Caucasian-SSA axis of admixture, several Brazil-
ian and Cuban populations can be found. It seems that
for these populations, Amerindian admixture is very low or
absent. This has been noted by others [72] and it is argued
that a dual admixture model is more likely to describe the
patterns seen in these populations as opposed to a triple
admixture model identified for other LAP. Although not
included in our analysis because of the lack of molecular HLA
data, serological HLA data from Panama [73] and Puerto
Rico [74] suggest that these populations are likely to join
this group, whereas the data from Uruguay suggest that its
major population would cluster with the strong Caucasian
component group [75].

Our study is limited by both the availability of population
data and the need to use HLA allele group data for
comparison as opposed to high-resolution allele frequencies
or haplotype frequencies. It is likely that an analysis of high-
resolution frequencies would give finer results, but it would
seriously diminish the number of populations that can be
included in the analysis. However, the use of 47 allele groups
from the most polymorphic genes in the human genome
gives robustness to the analysis.

The effect of ethnicity on complications after HSCT has
been suspected for many years [76, 77] but some studies
have not shown such association [78]. Hence, there is
growing interest in unraveling the genetic-ethnic component
of GVHD in HLA-compatible HSCT. Currently, there is a
project within the International Histocompatibility Working

Group that aims at analyzing the risk of GVHD after
HSCT in unrelated donor pairs according to the ethnic
origin of both patients and donors, based on previous
findings in sibling transplantations in isolated and general
populations of certain countries [10]. Preliminary results
in a cohort of unrelated transplants showed that Hispanic
pairs have high risks of mortality and acute GVHD (grades
III-IV) only second to African American pairs. Moreover,
Hispanic-Hispanic pairs had the highest risk of relapse
[79]. Both analyses were carried out having Asian/Pacific
(mostly Japanese) ethnically matched pairs as the reference
group. These findings suggest that ethnic heterogeneity in
the Hispanic population may be playing a role on the risk
of complications after HSCT, and the complexity of the
admixture patterns illustrated in this study and others is
likely to account for much of this variation. Also, ethnicity
has been associated with other complications after HSCT
such as chronic GVHD [80]. Moreover, an increased risk
of complications has been reported specifically for His-
panic groups in North America when compared to other
ethnicities in terms of survival [81] and treatment failure
[82].

It is likely that the evidence for differential outcome in
different ethnic groups could be explained, at least in part,
by differences in allele frequencies in genes that are relevant
to the immune response and that show variable interethnic
polymorphism, such as the cytokine genes [83]. Moreover,
polymorphisms in other genes such as those that intervene
in drug metabolism or drug targets may play a role in the
way patients from different ethnicities respond to treatment
in HSCT, especially in admixed populations [84, 85].

LAP show widespread variation in their genetic profiles,
and this complicates genetic association studies made in
these populations. There is noticeable variation not only
between regions and countries, but also between areas
of the same country [43, 86]. Furthermore, the presence
of minority populations of different ethnic composition
adds to the complexity of population stratification in Latin
America. Additionally, many populations remain to be
studied. If an ethnic component is to be used as one
prognostic factor affecting the risk of complications after
HSCT, the application of this concept in Latin American
populations will have to take into account the great diversity
found among the different populations derived from this
region and the different population subgroups generated by
different admixture histories. Consequently, there is need of
a more detailed understanding of the genetic profiles of the
LAP, in order to be able to accurately stratify genetic risk in
HSCT.

It is also important that a better definition of individual
ancestry in LAP is reached in view of the evident limitations
of both self-reported [87] and researcher-assigned ethnicities
[41, 88]. To this purpose, the use of a more objective
assignment based on ancestry markers [69] is likely to
increase the accuracy of the information derived from
these studies. Hopefully, a finer characterization of the
risk of complications after HSCT in LAP will help foresee
these complications and increase the access and success of
transplantation in these populations.
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[40] B. Sierra, R. Alegre, A. B. Pérez et al., “HLA-A, -B, -C, and -
DRB1 allele frequencies in Cuban individuals with antecedents
of dengue 2 disease: advantages of the Cuban population for
HLA studies of dengue virus infection,” Human Immunology,
vol. 68, no. 6, pp. 531–540, 2007.

[41] C. Parga-Lozano, D. Rey-Medrano, P. Gomez-Prieto et al.,
“HLA genes in Amerindian immigrants to Madrid (Spain):

epidemiology and a virtual transplantation waiting list:
amerindians in Madrid (Spain),” Molecular Biology Reports,
vol. 38, no. 4, pp. 2263–2271, 2011.

[42] C. A. Leal, F. Mendoza-Carrera, F. Rivas, S. Rodriguez-
Reynoso, and E. Portilla-De Buen, “HLA-A and HLA-B allele
frequencies in a mestizo population from Guadalajara, Mex-
ico, determined by sequence-based typing,” Tissue Antigens,
vol. 66, no. 6, pp. 666–673, 2005.
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